
Kerberos Application Developer Guide
Release 1.14

MIT

CONTENTS

1 Developing with GSSAPI 1
1.1 Name types . 1
1.2 Initiator credentials . 1
1.3 Acceptor names . 2
1.4 Importing and exporting credentials . 3
1.5 AEAD message wrapping . 3
1.6 IOV message wrapping . 4
1.7 IOV MIC tokens . 6

2 Differences between Heimdal and MIT Kerberos API 9

3 Initial credentials 11
3.1 Options for get_init_creds . 12
3.2 Getting anonymous credentials . 12
3.3 User interaction . 13
3.4 Verifying initial credentials . 15

4 Principal manipulation and parsing 17

5 Complete reference - API and datatypes 19
5.1 krb5 API . 19
5.2 krb5 types and structures . 19
5.3 krb5 simple macros . 19

Index 21

i

ii

CHAPTER

ONE

DEVELOPING WITH GSSAPI

The GSSAPI (Generic Security Services API) allows applications to communicate securely using Kerberos 5 or other
security mechanisms. We recommend using the GSSAPI (or a higher-level framework which encompasses GSSAPI,
such as SASL) for secure network communication over using the libkrb5 API directly.

GSSAPIv2 is specified in RFC 2743 and RFC 2744. This documentation will describe how various ways of using
GSSAPI will behave with the krb5 mechanism as implemented in MIT krb5, as well as krb5-specific extensions to the
GSSAPI.

1.1 Name types

A GSSAPI application can name a local or remote entity by calling gss_import_name, specifying a name type and a
value. The following name types are supported by the krb5 mechanism:

• GSS_C_NT_HOSTBASED_SERVICE: The value should be a string of the form service or
service@hostname. This is the most common way to name target services when initiating a security con-
text, and is the most likely name type to work across multiple mechanisms.

• GSS_KRB5_NT_PRINCIPAL_NAME: The value should be a principal name string. This name type only
works with the krb5 mechanism, and is defined in the <gssapi_krb5.h> header.

• GSS_C_NT_USER_NAME or GSS_C_NULL_OID: The value is treated as an unparsed principal name
string, as above. These name types may work with mechanisms other than krb5, but will have different in-
terpretations in those mechanisms. GSS_C_NT_USER_NAME is intended to be used with a local username,
which will parse into a single-component principal in the default realm.

• GSS_C_NT_ANONYMOUS: The value is ignored. The anonymous principal is used, allowing a client to
authenticate to a server without asserting a particular identity (which may or may not be allowed by a particular
server or Kerberos realm).

• GSS_C_NT_MACHINE_UID_NAME: The value is uid_t object. On Unix-like systems, the username of the
uid is looked up in the system user database and the resulting username is parsed as a principal name.

• GSS_C_NT_STRING_UID_NAME: As above, but the value is a decimal string representation of the uid.

• GSS_C_NT_EXPORT_NAME: The value must be the result of a gss_export_name call.

1.2 Initiator credentials

A GSSAPI client application uses gss_init_sec_context to establish a security context. The initiator_cred_handle
parameter determines what tickets are used to establish the connection. An application can either pass

1

http://tools.ietf.org/html/rfc2743.html
http://tools.ietf.org/html/rfc2744.html
http://tools.ietf.org/html/rfc2744.html#section-5.16
http://tools.ietf.org/html/rfc2744.html#section-5.13
http://tools.ietf.org/html/rfc2744.html#section-5.19

Kerberos Application Developer Guide, Release 1.14

GSS_C_NO_CREDENTIAL to use the default client credential, or it can use gss_acquire_cred beforehand to ac-
quire an initiator credential. The call to gss_acquire_cred may include a desired_name parameter, or it may pass
GSS_C_NO_NAME if it does not have a specific name preference.

If the desired name for a krb5 initiator credential is a host-based name, it is converted to a principal name of the form
service/hostname in the local realm, where hostname is the local hostname if not specified. The hostname will
be canonicalized using forward name resolution, and possibly also using reverse name resolution depending on the
value of the rdns variable in libdefaults.

If a desired name is specified in the call to gss_acquire_cred, the krb5 mechanism will attempt to find existing tick-
ets for that client principal name in the default credential cache or collection. If the default cache type does not
support a collection, and the default cache contains credentials for a different principal than the desired name, a
GSS_S_CRED_UNAVAIL error will be returned with a minor code indicating a mismatch.

If no existing tickets are available for the desired name, but the name has an entry in the default client keytab_definition,
the krb5 mechanism will acquire initial tickets for the name using the default client keytab.

If no desired name is specified, credential acquisition will be deferred until the credential is used in a call to
gss_init_sec_context or gss_inquire_cred. If the call is to gss_init_sec_context, the target name will be used to choose
a client principal name using the credential cache selection facility. (This facility might, for instance, try to choose
existing tickets for a client principal in the same realm as the target service). If there are no existing tickets for the
chosen principal, but it is present in the default client keytab, the krb5 mechanism will acquire initial tickets using the
keytab.

If the target name cannot be used to select a client principal (because the credentials are used in a call to
gss_inquire_cred), or if the credential cache selection facility cannot choose a principal for it, the default credential
cache will be selected if it exists and contains tickets.

If the default credential cache does not exist, but the default client keytab does, the krb5 mechanism will try to acquire
initial tickets for the first principal in the default client keytab.

If the krb5 mechanism acquires initial tickets using the default client keytab, the resulting tickets will be stored in
the default cache or collection, and will be refreshed by future calls to gss_acquire_cred as they approach their expire
time.

1.3 Acceptor names

A GSSAPI server application uses gss_accept_sec_context to establish a security context based on tokens provided by
the client. The acceptor_cred_handle parameter determines what keytab_definition entries may be authenticated to by
the client, if the krb5 mechanism is used.

The simplest choice is to pass GSS_C_NO_CREDENTIAL as the acceptor credential. In this case, clients may
authenticate to any service principal in the default keytab (typically FILE:/etc/krb5.keytab, or the value of
the KRB5_KTNAME environment variable). This is the recommended approach if the server application has no
specific requirements to the contrary.

A server may acquire an acceptor credential with gss_acquire_cred and a cred_usage of GSS_C_ACCEPT or
GSS_C_BOTH. If the desired_name parameter is GSS_C_NO_NAME, then clients will be allowed to authenticate
to any service principal in the default keytab, just as if no acceptor credential was supplied.

If a server wishes to specify a desired_name to gss_acquire_cred, the most common choice is a host-based name. If
the host-based desired_name contains just a service, then clients will be allowed to authenticate to any host-based
service principal (that is, a principal of the form service/hostname@REALM) for the named service, regardless
of hostname or realm, as long as it is present in the default keytab. If the input name contains both a service and
a hostname, clients will be allowed to authenticate to any host-based principal for the named service and hostname,
regardless of realm.

2 Chapter 1. Developing with GSSAPI

http://tools.ietf.org/html/rfc2744.html#section-5.2
http://tools.ietf.org/html/rfc2744.html#section-5.2
http://tools.ietf.org/html/rfc2744.html#section-5.2
http://tools.ietf.org/html/rfc2744.html#section-5.19
http://tools.ietf.org/html/rfc2744.html#section-5.21
http://tools.ietf.org/html/rfc2744.html#section-5.19
http://tools.ietf.org/html/rfc2744.html#section-5.21
http://tools.ietf.org/html/rfc2744.html#section-5.2
http://tools.ietf.org/html/rfc2744.html#section-5.1
http://tools.ietf.org/html/rfc2744.html#section-5.2
http://tools.ietf.org/html/rfc2744.html#section-5.2

Kerberos Application Developer Guide, Release 1.14

Note: If a hostname is specified, it will be canonicalized using forward name resolution, and possibly also using
reverse name resolution depending on the value of the rdns variable in libdefaults.

Note: If the ignore_acceptor_hostname variable in libdefaults is enabled, then hostname will be ignored even if one
is specified in the input name.

Note: In MIT krb5 versions prior to 1.10, and in Heimdal’s implementation of the krb5 mechanism, an input name
with just a service is treated like an input name of service@localhostname, where localhostname is the string
returned by gethostname().

If the desired_name is a krb5 principal name or a local system name type which is mapped to a krb5 principal name,
clients will only be allowed to authenticate to that principal in the default keytab.

1.4 Importing and exporting credentials

The following GSSAPI extensions can be used to import and export credentials (declared in
<gssapi/gssapi_ext.h>):

OM_uint32 gss_export_cred(OM_uint32 *minor_status,
gss_cred_id_t cred_handle,
gss_buffer_t token);

OM_uint32 gss_import_cred(OM_uint32 *minor_status,
gss_buffer_t token,
gss_cred_id_t *cred_handle);

The first function serializes a GSSAPI credential handle into a buffer; the second unseralizes a buffer into a GSSAPI
credential handle. Serializing a credential does not destroy it. If any of the mechanisms used in cred_handle do
not support serialization, gss_export_cred will return GSS_S_UNAVAILABLE. As with other GSSAPI serialization
functions, these extensions are only intended to work with a matching implementation on the other side; they do not
serialize credentials in a standardized format.

A serialized credential may contain secret information such as ticket session keys. The serialization format does
not protect this information from eavesdropping or tampering. The calling application must take care to protect the
serialized credential when communicating it over an insecure channel or to an untrusted party.

A krb5 GSSAPI credential may contain references to a credential cache, a client keytab, an acceptor keytab, and a
replay cache. These resources are normally serialized as references to their external locations (such as the filename
of the credential cache). Because of this, a serialized krb5 credential can only be imported by a process with similar
privileges to the exporter. A serialized credential should not be trusted if it originates from a source with lower
privileges than the importer, as it may contain references to external credential cache, keytab, or replay cache resources
not accessible to the originator.

An exception to the above rule applies when a krb5 GSSAPI credential refers to a memory credential cache, as is
normally the case for delegated credentials received by gss_accept_sec_context. In this case, the contents of the
credential cache are serialized, so that the resulting token may be imported even if the original memory credential
cache no longer exists.

1.5 AEAD message wrapping

The following GSSAPI extensions (declared in <gssapi/gssapi_ext.h>) can be used to wrap and unwrap
messages with additional “associated data” which is integrity-checked but is not included in the output buffer:

1.4. Importing and exporting credentials 3

http://tools.ietf.org/html/rfc2744.html#section-5.1

Kerberos Application Developer Guide, Release 1.14

OM_uint32 gss_wrap_aead(OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
int conf_req_flag, gss_qop_t qop_req,
gss_buffer_t input_assoc_buffer,
gss_buffer_t input_payload_buffer,
int *conf_state,
gss_buffer_t output_message_buffer);

OM_uint32 gss_unwrap_aead(OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
gss_buffer_t input_message_buffer,
gss_buffer_t input_assoc_buffer,
gss_buffer_t output_payload_buffer,
int *conf_state,
gss_qop_t *qop_state);

Wrap tokens created with gss_wrap_aead will successfully unwrap only if the same input_assoc_buffer contents are
presented to gss_unwrap_aead.

1.6 IOV message wrapping

The following extensions (declared in <gssapi/gssapi_ext.h>) can be used for in-place encryption, fine-
grained control over wrap token layout, and for constructing wrap tokens compatible with Microsoft DCE RPC:

typedef struct gss_iov_buffer_desc_struct {
OM_uint32 type;
gss_buffer_desc buffer;

} gss_iov_buffer_desc, *gss_iov_buffer_t;

OM_uint32 gss_wrap_iov(OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
int conf_req_flag, gss_qop_t qop_req,
int *conf_state,
gss_iov_buffer_desc *iov, int iov_count);

OM_uint32 gss_unwrap_iov(OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
int *conf_state, gss_qop_t *qop_state,
gss_iov_buffer_desc *iov, int iov_count);

OM_uint32 gss_wrap_iov_length(OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
int conf_req_flag,
gss_qop_t qop_req, int *conf_state,
gss_iov_buffer_desc *iov,
int iov_count);

OM_uint32 gss_release_iov_buffer(OM_uint32 *minor_status,
gss_iov_buffer_desc *iov,
int iov_count);

The caller of gss_wrap_iov provides an array of gss_iov_buffer_desc structures, each containing a type and a
gss_buffer_desc structure. Valid types include:

• GSS_C_BUFFER_TYPE_DATA: A data buffer to be included in the token, and to be encrypted or decrypted
in-place if the token is confidentiality-protected.

4 Chapter 1. Developing with GSSAPI

Kerberos Application Developer Guide, Release 1.14

• GSS_C_BUFFER_TYPE_HEADER: The GSSAPI wrap token header and underlying cryptographic header.

• GSS_C_BUFFER_TYPE_TRAILER: The cryptographic trailer, if one is required.

• GSS_C_BUFFER_TYPE_PADDING: Padding to be combined with the data during encryption and decryp-
tion. (The implementation may choose to place padding in the trailer buffer, in which case it will set the padding
buffer length to 0.)

• GSS_C_BUFFER_TYPE_STREAM: For unwrapping only, a buffer containing a complete wrap token in
standard format to be unwrapped.

• GSS_C_BUFFER_TYPE_SIGN_ONLY: A buffer to be included in the token’s integrity protection checksum,
but not to be encrypted or included in the token itself.

For gss_wrap_iov, the IOV list should contain one HEADER buffer, followed by zero or more SIGN_ONLY buffers,
followed by one or more DATA buffers, followed by a TRAILER buffer. The memory pointed to by the buffers is not
required to be contiguous or in any particular order. If conf_req_flag is true, DATA buffers will be encrypted in-place,
while SIGN_ONLY buffers will not be modified.

The type of an output buffer may be combined with GSS_C_BUFFER_FLAG_ALLOCATE to re-
quest that gss_wrap_iov allocate the buffer contents. If gss_wrap_iov allocates a buffer, it sets the
GSS_C_BUFFER_FLAG_ALLOCATED flag on the buffer type. gss_release_iov_buffer can be used to release
all allocated buffers within an iov list and unset their allocated flags. Here is an example of how gss_wrap_iov can be
used with allocation requested (ctx is assumed to be a previously established gss_ctx_id_t):

OM_uint32 major, minor;
gss_iov_buffer_desc iov[4];
char str[] = "message";

iov[0].type = GSS_IOV_BUFFER_TYPE_HEADER | GSS_IOV_BUFFER_FLAG_ALLOCATE;
iov[1].type = GSS_IOV_BUFFER_TYPE_DATA;
iov[1].buffer.value = str;
iov[1].buffer.length = strlen(str);
iov[2].type = GSS_IOV_BUFFER_TYPE_PADDING | GSS_IOV_BUFFER_FLAG_ALLOCATE;
iov[3].type = GSS_IOV_BUFFER_TYPE_TRAILER | GSS_IOV_BUFFER_FLAG_ALLOCATE;

major = gss_wrap_iov(&minor, ctx, 1, GSS_C_QOP_DEFAULT, NULL,
iov, 4);

if (GSS_ERROR(major))
handle_error(major, minor);

/* Transmit or otherwise use resulting buffers. */

(void)gss_release_iov_buffer(&minor, iov, 4);

If the caller does not choose to request buffer allocation by gss_wrap_iov, it should first call gss_wrap_iov_length to
query the lengths of the HEADER, PADDING, and TRAILER buffers. DATA buffers must be provided in the iov list
so that padding length can be computed correctly, but the output buffers need not be initialized. Here is an example of
using gss_wrap_iov_length and gss_wrap_iov:

OM_uint32 major, minor;
gss_iov_buffer_desc iov[4];
char str[1024] = "message", *ptr;

iov[0].type = GSS_IOV_BUFFER_TYPE_HEADER;
iov[1].type = GSS_IOV_BUFFER_TYPE_DATA;
iov[1].buffer.value = str;
iov[1].buffer.length = strlen(str);

iov[2].type = GSS_IOV_BUFFER_TYPE_PADDING;

1.6. IOV message wrapping 5

Kerberos Application Developer Guide, Release 1.14

iov[3].type = GSS_IOV_BUFFER_TYPE_TRAILER;

major = gss_wrap_iov_length(&minor, ctx, 1, GSS_C_QOP_DEFAULT,
NULL, iov, 4);

if (GSS_ERROR(major))
handle_error(major, minor);

if (strlen(str) + iov[0].buffer.length + iov[2].buffer.length +
iov[3].buffer.length > sizeof(str))
handle_out_of_space_error();

ptr = str + strlen(str);
iov[0].buffer.value = ptr;
ptr += iov[0].buffer.length;
iov[2].buffer.value = ptr;
ptr += iov[2].buffer.length;
iov[3].buffer.value = ptr;

major = gss_wrap_iov(&minor, ctx, 1, GSS_C_QOP_DEFAULT, NULL,
iov, 4);

if (GSS_ERROR(major))
handle_error(major, minor);

If the context was established using the GSS_C_DCE_STYLE flag (described in RFC 4757), wrap tokens compatible
with Microsoft DCE RPC can be constructed. In this case, the IOV list must include a SIGN_ONLY buffer, a DATA
buffer, a second SIGN_ONLY buffer, and a HEADER buffer in that order (the order of the buffer contents remains
arbitrary). The application must pad the DATA buffer to a multiple of 16 bytes as no padding or trailer buffer is used.

gss_unwrap_iov may be called with an IOV list just like one which would be provided to gss_wrap_iov. DATA buffers
will be decrypted in-place if they were encrypted, and SIGN_ONLY buffers will not be modified.

Alternatively, gss_unwrap_iov may be called with a single STREAM buffer, zero or more SIGN_ONLY buffers, and
a single DATA buffer. The STREAM buffer is interpreted as a complete wrap token. The STREAM buffer will be
modified in-place to decrypt its contents. The DATA buffer will be initialized to point to the decrypted data within the
STREAM buffer, unless it has the GSS_C_BUFFER_FLAG_ALLOCATE flag set, in which case it will be initialized
with a copy of the decrypted data. Here is an example (token and token_len are assumed to be a pre-existing pointer
and length for a modifiable region of data):

OM_uint32 major, minor;
gss_iov_buffer_desc iov[2];

iov[0].type = GSS_IOV_BUFFER_TYPE_STREAM;
iov[0].buffer.value = token;
iov[0].buffer.length = token_len;
iov[1].type = GSS_IOV_BUFFER_TYPE_DATA;
major = gss_unwrap_iov(&minor, ctx, NULL, NULL, iov, 2);
if (GSS_ERROR(major))

handle_error(major, minor);

/* Decrypted data is in iov[1].buffer, pointing to a subregion of

* token. */

1.7 IOV MIC tokens

The following extensions (declared in <gssapi/gssapi_ext.h>) can be used in release 1.12 or later to construct
and verify MIC tokens using an IOV list:

6 Chapter 1. Developing with GSSAPI

http://tools.ietf.org/html/rfc4757.html

Kerberos Application Developer Guide, Release 1.14

OM_uint32 gss_get_mic_iov(OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
gss_qop_t qop_req,
gss_iov_buffer_desc *iov,
int iov_count);

OM_uint32 gss_get_mic_iov_length(OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
gss_qop_t qop_req,
gss_iov_buffer_desc *iov,
iov_count);

OM_uint32 gss_verify_mic_iov(OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
gss_qop_t *qop_state,
gss_iov_buffer_desc *iov,
int iov_count);

The caller of gss_get_mic_iov provides an array of gss_iov_buffer_desc structures, each containing a type and a
gss_buffer_desc structure. Valid types include:

• GSS_C_BUFFER_TYPE_DATA and GSS_C_BUFFER_TYPE_SIGN_ONLY: The corresponding buffer
for each of these types will be signed for the MIC token, in the order provided.

• GSS_C_BUFFER_TYPE_MIC_TOKEN: The GSSAPI MIC token.

The type of the MIC_TOKEN buffer may be combined with GSS_C_BUFFER_FLAG_ALLOCATE to re-
quest that gss_get_mic_iov allocate the buffer contents. If gss_get_mic_iov allocates the buffer, it sets the
GSS_C_BUFFER_FLAG_ALLOCATED flag on the buffer type. gss_release_iov_buffer can be used to release
all allocated buffers within an iov list and unset their allocated flags. Here is an example of how gss_get_mic_iov can
be used with allocation requested (ctx is assumed to be a previously established gss_ctx_id_t):

OM_uint32 major, minor;
gss_iov_buffer_desc iov[3];

iov[0].type = GSS_IOV_BUFFER_TYPE_DATA;
iov[0].buffer.value = "sign1";
iov[0].buffer.length = 5;
iov[1].type = GSS_IOV_BUFFER_TYPE_SIGN_ONLY;
iov[1].buffer.value = "sign2";
iov[1].buffer.length = 5;
iov[2].type = GSS_IOV_BUFFER_TYPE_MIC_TOKEN | GSS_IOV_BUFFER_FLAG_ALLOCATE;

major = gss_get_mic_iov(&minor, ctx, GSS_C_QOP_DEFAULT, iov, 3);
if (GSS_ERROR(major))

handle_error(major, minor);

/* Transmit or otherwise use iov[2].buffer. */

(void)gss_release_iov_buffer(&minor, iov, 3);

If the caller does not choose to request buffer allocation by gss_get_mic_iov, it should first call
gss_get_mic_iov_length to query the length of the MIC_TOKEN buffer. Here is an example of using
gss_get_mic_iov_length and gss_get_mic_iov:

OM_uint32 major, minor;
gss_iov_buffer_desc iov[2];
char data[1024];

1.7. IOV MIC tokens 7

Kerberos Application Developer Guide, Release 1.14

iov[0].type = GSS_IOV_BUFFER_TYPE_MIC_TOKEN;
iov[1].type = GSS_IOV_BUFFER_TYPE_DATA;
iov[1].buffer.value = "message";
iov[1].buffer.length = 7;

major = gss_wrap_iov_length(&minor, ctx, 1, GSS_C_QOP_DEFAULT,
NULL, iov, 2);

if (GSS_ERROR(major))
handle_error(major, minor);

if (iov[0].buffer.length > sizeof(data))
handle_out_of_space_error();

iov[0].buffer.value = data;

major = gss_wrap_iov(&minor, ctx, 1, GSS_C_QOP_DEFAULT, NULL,
iov, 2);

if (GSS_ERROR(major))
handle_error(major, minor);

8 Chapter 1. Developing with GSSAPI

CHAPTER

TWO

DIFFERENCES BETWEEN HEIMDAL AND MIT KERBEROS API

krb5_auth_con_getaddrs() H5l: If either of the pointers to local_addr and remote_addr is not NULL, it is freed first and then reallocated before being populated with the content of corresponding address from authentication context.
krb5_auth_con_setaddrs() H5l: If either address is NULL, the previous address remains in place
krb5_auth_con_setports() H5l: Not implemented as of version 1.3.3
krb5_auth_con_setrecvsubkey() H5l: If either port is NULL, the previous port remains in place
krb5_auth_con_setsendsubkey() H5l: Not implemented as of version 1.3.3
krb5_cc_set_config() MIT: Before version 1.10 it was assumed that the last argument data is ALWAYS non-zero.
krb5_cccol_last_change_time() H5l takes 3 arguments: krb5_context context, const char *type, krb5_timestamp *change_time MIT takes two arguments: krb5_context context, krb5_timestamp *change_time
krb5_set_default_realm() H5l: Caches the computed default realm context field. If the second argument is NULL, it tries to retrieve it from libdefaults or DNS. MIT: Computes the default realm each time if it wasn’t explicitly set in the context

9

Kerberos Application Developer Guide, Release 1.14

10 Chapter 2. Differences between Heimdal and MIT Kerberos API

CHAPTER

THREE

INITIAL CREDENTIALS

Software that performs tasks such as logging users into a computer when they type their Kerberos password needs to
get initial credentials (usually ticket granting tickets) from Kerberos. Such software shares some behavior with the
kinit(1) program.

Whenever a program grants access to a resource (such as a local login session on a desktop computer) based on a user
successfully getting initial Kerberos credentials, it must verify those credentials against a secure shared secret (e.g.,
a host keytab) to ensure that the user credentials actually originate from a legitimate KDC. Failure to perform this
verification is a critical vulnerability, because a malicious user can execute the “Zanarotti attack”: the user constructs
a fake response that appears to come from the legitimate KDC, but whose contents come from an attacker-controlled
KDC.

Some applications read a Kerberos password over the network (ideally over a secure channel), which they then verify
against the KDC. While this technique may be the only practical way to integrate Kerberos into some existing legacy
systems, its use is contrary to the original design goals of Kerberos.

The function krb5_get_init_creds_password() will get initial credentials for a client using a password. An
application that needs to verify the credentials can call krb5_verify_init_creds(). Here is an example of
code to obtain and verify TGT credentials, given strings princname and password for the client principal name and
password:

krb5_error_code ret;
krb5_creds creds;
krb5_principal client_princ = NULL;

memset(&creds, 0, sizeof(creds));
ret = krb5_parse_name(context, princname, &client_princ);
if (ret)

goto cleanup;
ret = krb5_get_init_creds_password(context, &creds, client_princ,

password, NULL, NULL, 0, NULL, NULL);
if (ret)

goto cleanup;
ret = krb5_verify_init_creds(context, &creds, NULL, NULL, NULL, NULL);

cleanup:
krb5_free_principal(context, client_princ);
krb5_free_cred_contents(context, &creds);
return ret;

11

Kerberos Application Developer Guide, Release 1.14

3.1 Options for get_init_creds

The function krb5_get_init_creds_password() takes an options parameter (which can be a null
pointer). Use the function krb5_get_init_creds_opt_alloc() to allocate an options structure, and
krb5_get_init_creds_opt_free() to free it. For example:

krb5_error_code ret;
krb5_get_init_creds_opt *opt = NULL;
krb5_creds creds;

memset(&creds, 0, sizeof(creds));
ret = krb5_get_init_creds_opt_alloc(context, &opt);
if (ret)

goto cleanup;
krb5_get_init_creds_opt_set_tkt_life(opt, 24 * 60 * 60);
ret = krb5_get_init_creds_password(context, &creds, client_princ,

password, NULL, NULL, 0, NULL, opt);
if (ret)

goto cleanup;

cleanup:
krb5_get_init_creds_opt_free(context, opt);
krb5_free_cred_contents(context, &creds);
return ret;

3.2 Getting anonymous credentials

As of release 1.8, it is possible to obtain fully anonymous or partially anonymous (realm-exposed) credentials, if
the KDC supports it. The MIT KDC supports issuing fully anonymous credentials as of release 1.8 if configured
appropriately (see anonymous_pkinit), but does not support issuing realm-exposed anonymous credentials at this time.

To obtain fully anonymous credentials, call krb5_get_init_creds_opt_set_anonymous() on the options
structure to set the anonymous flag, and specify a client principal with the KDC’s realm and a single empty data compo-
nent (the principal obtained by parsing @realmname). Authentication will take place using anonymous PKINIT; if suc-
cessful, the client principal of the resulting tickets will be WELLKNOWN/ANONYMOUS@WELLKNOWN:ANONYMOUS.
Here is an example:

krb5_get_init_creds_opt_set_anonymous(opt, 1);
ret = krb5_build_principal(context, &client_princ, strlen(myrealm),

myrealm, "", (char *)NULL);
if (ret)

goto cleanup;
ret = krb5_get_init_creds_password(context, &creds, client_princ,

password, NULL, NULL, 0, NULL, opt);
if (ret)

goto cleanup;

To obtain realm-exposed anonymous credentials, set the anonymous flag on the options structure as above, but specify
a normal client principal in order to prove membership in the realm. Authentication will take place as it normally
does; if successful, the client principal of the resulting tickets will be WELLKNOWN/ANONYMOUS@realmname.

12 Chapter 3. Initial credentials

Kerberos Application Developer Guide, Release 1.14

3.3 User interaction

Authenticating a user usually requires the entry of secret information, such as a password. A password can be supplied
directly to krb5_get_init_creds_password() via the password parameter, or the application can supply
prompter and/or responder callbacks instead. If callbacks are used, the user can also be queried for other secret
information such as a PIN, informed of impending password expiration, or prompted to change a password which has
expired.

3.3.1 Prompter callback

A prompter callback can be specified via the prompter and data parameters to
krb5_get_init_creds_password(). The prompter will be invoked each time the krb5 library has a
question to ask or information to present. When the prompter callback is invoked, the banner argument (if not null) is
intended to be displayed to the user, and the questions to be answered are specified in the prompts array. Each prompt
contains a text question in the prompt field, a hidden bit to indicate whether the answer should be hidden from display,
and a storage area for the answer in the reply field. The callback should fill in each question’s reply->data with
the answer, up to a maximum number of reply->length bytes, and then reset reply->length to the length of
the answer.

A prompter callback can call krb5_get_prompt_types() to get an array of type constants corre-
sponding to the prompts, to get programmatic information about the semantic meaning of the questions.
krb5_get_prompt_types() may return a null pointer if no prompt type information is available.

Text-based applications can use a built-in text prompter implementation by supplying krb5_prompter_posix()
as the prompter parameter and a null pointer as the data parameter. For example:

ret = krb5_get_init_creds_password(context, &creds, client_princ,
NULL, krb5_prompter_posix, NULL, 0,
NULL, NULL);

3.3.2 Responder callback

A responder callback can be specified through the init_creds options using the
krb5_get_init_creds_opt_set_responder() function. Responder callbacks can present a more
sophisticated user interface for authentication secrets. The responder callback is usually invoked only once per
authentication, with a list of questions produced by all of the allowed preauthentication mechanisms.

When the responder callback is invoked, the rctx argument can be accessed to obtain the list of questions and to
answer them. The krb5_responder_list_questions() function retrieves an array of question types. For
each question type, the krb5_responder_get_challenge() function retrieves additional information about
the question, if applicable, and the krb5_responder_set_answer() function sets the answer.

Responder question types, challenges, and answers are UTF-8 strings. The question type is a well-known string; the
meaning of the challenge and answer depend on the question type. If an application does not understand a question
type, it cannot interpret the challenge or provide an answer. Failing to answer a question typically results in the
prompter callback being used as a fallback.

Password question

The KRB5_RESPONDER_QUESTION_PASSWORD (or "password") question type requests the user’s password.
This question does not have a challenge, and the response is simply the password string.

3.3. User interaction 13

Kerberos Application Developer Guide, Release 1.14

One-time password question

The KRB5_RESPONDER_QUESTION_OTP (or "otp") question type requests a choice among one-time password
tokens and the PIN and value for the chosen token. The challenge and answer are JSON-encoded strings, but an
application can use convenience functions to avoid doing any JSON processing itself.

The krb5_responder_otp_get_challenge() function decodes the challenge into a
krb5_responder_otp_challenge structure. The krb5_responder_otp_set_answer() function selects
one of the token information elements from the challenge and supplies the value and pin for that token.

PKINIT password or PIN question

The KRB5_RESPONDER_QUESTION_PKINIT (or "pkinit") question type requests PINs for hardware devices
and/or passwords for encrypted credentials which are stored on disk, potentially also supplying information about
the state of the hardware devices. The challenge and answer are JSON-encoded strings, but an application can use
convenience functions to avoid doing any JSON processing itself.

The krb5_responder_pkinit_get_challenge() function decodes the challenges into a
krb5_responder_pkinit_challenge structure. The krb5_responder_pkinit_set_answer() function
can be used to supply the PIN or password for a particular client credential, and can be called multiple times.

Example

Here is an example of using a responder callback:

static krb5_error_code
my_responder(krb5_context context, void *data,

krb5_responder_context rctx)
{

krb5_error_code ret;
krb5_responder_otp_challenge *chl;

if (krb5_responder_get_challenge(context, rctx,
KRB5_RESPONDER_QUESTION_PASSWORD)) {

ret = krb5_responder_set_answer(context, rctx,
KRB5_RESPONDER_QUESTION_PASSWORD,
"open sesame");

if (ret)
return ret;

}
ret = krb5_responder_otp_get_challenge(context, rctx, &chl);
if (ret == 0 && chl != NULL) {

ret = krb5_responder_otp_set_answer(context, rctx, 0, "1234",
NULL);

krb5_responder_otp_challenge_free(context, rctx, chl);
if (ret)

return ret;
}
return 0;

}

static krb5_error_code
get_creds(krb5_context context, krb5_principal client_princ)
{

krb5_error_code ret;
krb5_get_init_creds_opt *opt = NULL;

14 Chapter 3. Initial credentials

Kerberos Application Developer Guide, Release 1.14

krb5_creds creds;

memset(&creds, 0, sizeof(creds));
ret = krb5_get_init_creds_opt_alloc(context, &opt);
if (ret)

goto cleanup;
ret = krb5_get_init_creds_opt_set_responder(context, opt, my_responder,

NULL);
if (ret)

goto cleanup;
ret = krb5_get_init_creds_password(context, &creds, client_princ,

NULL, NULL, NULL, 0, NULL, opt);

cleanup:
krb5_get_init_creds_opt_free(context, opt);
krb5_free_cred_contents(context, &creds);
return ret;

}

3.4 Verifying initial credentials

Use the function krb5_verify_init_creds() to verify initial credentials. It takes an options structure (which
can be a null pointer). Use krb5_verify_init_creds_opt_init() to initialize the caller-allocated options
structure, and krb5_verify_init_creds_opt_set_ap_req_nofail() to set the “nofail” option. For ex-
ample:

krb5_verify_init_creds_opt vopt;

krb5_verify_init_creds_opt_init(&vopt);
krb5_verify_init_creds_opt_set_ap_req_nofail(&vopt, 1);
ret = krb5_verify_init_creds(context, &creds, NULL, NULL, NULL, &vopt);

The confusingly named “nofail” option, when set, means that the verification must actually succeed in order for
krb5_verify_init_creds() to indicate success. The default state of this option (cleared) means that if there
is no key material available to verify the user credentials, the verification will succeed anyway. (The default can be
changed by a configuration file setting.)

This accommodates a use case where a large number of unkeyed shared desktop workstations need to allow users to
log in using Kerberos. The security risks from this practice are mitigated by the absence of valuable state on the shared
workstations—any valuable resources that the users would access reside on networked servers.

3.4. Verifying initial credentials 15

Kerberos Application Developer Guide, Release 1.14

16 Chapter 3. Initial credentials

CHAPTER

FOUR

PRINCIPAL MANIPULATION AND PARSING

Kerberos principal structure

krb5_principal_data

krb5_principal

Create and free principal

krb5_build_principal()

krb5_build_principal_alloc_va()

krb5_build_principal_ext()

krb5_copy_principal()

krb5_free_principal()

krb5_cc_get_principal()

Comparing

krb5_principal_compare()

krb5_principal_compare_flags()

krb5_principal_compare_any_realm()

krb5_sname_match()

krb5_sname_to_principal()

Parsing:

krb5_parse_name()

krb5_parse_name_flags()

krb5_unparse_name()

krb5_unparse_name_flags()

Utilities:

krb5_is_config_principal()

krb5_kuserok()

krb5_set_password()

krb5_set_password_using_ccache()

krb5_set_principal_realm()

17

Kerberos Application Developer Guide, Release 1.14

krb5_realm_compare()

18 Chapter 4. Principal manipulation and parsing

CHAPTER

FIVE

COMPLETE REFERENCE - API AND DATATYPES

5.1 krb5 API

5.1.1 Frequently used public interfaces

5.1.2 Rarely used public interfaces

5.1.3 Public interfaces that should not be called directly

5.1.4 Legacy convenience interfaces

5.1.5 Deprecated public interfaces

5.2 krb5 types and structures

5.2.1 Public

krb5_int32

krb5_int32

krb5_int32 is a signed 32-bit integer type

krb5_ui_4

krb5_ui_4

krb5_ui_4 is an unsigned 32-bit integer type.

5.2.2 Internal

5.3 krb5 simple macros

5.3.1 Public

5.3.2 Deprecated macros

19

Kerberos Application Developer Guide, Release 1.14

20 Chapter 5. Complete reference - API and datatypes

INDEX

K
krb5_int32 (C type), 19
krb5_ui_4 (C type), 19

R
RFC

RFC 2743, 1
RFC 2744, 1
RFC 4757, 6

21

	Developing with GSSAPI
	Name types
	Initiator credentials
	Acceptor names
	Importing and exporting credentials
	AEAD message wrapping
	IOV message wrapping
	IOV MIC tokens

	Differences between Heimdal and MIT Kerberos API
	Initial credentials
	Options for get_init_creds
	Getting anonymous credentials
	User interaction
	Verifying initial credentials

	Principal manipulation and parsing
	Complete reference - API and datatypes
	krb5 API
	krb5 types and structures
	krb5 simple macros

	Index

