
sundialsTB v2.4.0, a matlab Interface to sundials

Radu Serban

Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

July 30, 2015

UCRL-SM-212121

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

Contents

1 Introduction 1

2 Installation 1

2.1 Compilation and installation of sundialsTB . 1
2.2 Configuring Matlab’s startup . 2
2.3 Testing the installation . 2

3 matlab Interface to cvodes 3

3.1 Interface functions . 4
3.2 Function types . 25

4 matlab Interface to idas 41

4.1 Interface functions . 42
4.2 Function types . 64

5 matlab Interface to kinsol 80

5.1 Interface functions . 81
5.2 Function types . 88

6 Supporting modules 94

6.1 nvector functions . 95
6.2 Parallel utilities . 102

A Implementation of CVodeMonitor.m 104

B Implementation of IDAMonitor.m 120

References 137

Index 138

1 Introduction

sundials [2], SUite of Nonlinear and DIfferential/ALgebraic equation Solvers, is a family of software
tools for integration of ODE and DAE initial value problems and for the solution of nonlinear systems
of equations. It consists of cvode, ida, and kinsol, and variants of these with sensitivity analysis
capabilities.

sundialsTB is a collection of matlab functions which provide interfaces to the sundials solvers.
The core of each matlab interface in sundialsTB is a single mex file which interfaces to the

various user-callable functions for that solver. However, this mex file should not be called directly,
but rather through the user-callable functions provided for each matlab interface.

A major design principle for sundialsTB was to provide an interface that is, as much as possible,
equally familiar to both sundials users and matlab users. Moreover, we tried to keep the num-
ber of user-callable functions to a minimum. For example, the cvodes matlab interface contains
only 12 such functions, 2 of which relate to forward sensitivity analysis and 4 more interface solely
to the adjoint sensitivity module in cvodes. A user who is only interested in integration of ODEs
and not in sensitivity analysis therefore needs to call at most 6 functions. In tune with the mat-

lab odeset function, optional solver inputs in sundialsTB are specified through a single function;
e.g. CvodeSetOptions for cvodes (a similar function is used to specify optional inputs for forward
sensitivity analysis). However, unlike the ODE solvers in matlab, we have kept the more flexible
sundials model in which a separate “solve” function (CVode for cvodes) must be called to return the
solution at a desired output time. Solver statistics, as well as optional outputs (such as solution and
solution derivatives at additional times) can be obtained at any time with calls to separate functions
(CVodeGetStats and CVodeGet for cvodes).

This document provides a complete documentation for the sundialsTB functions. For additional
details on the methods and underlying sundials software consult also the coresponding sundials

user guides [3, 4, 1].

Requirements. For parallel support, sundialsTB depends on mpiTB with lam v > 7.1.1 (for MPI-
2 spawning feature). The required software packages can be obtained from the following addresses.

sundials http://www.llnl.gov/CASC/sundials

mpiTB http://atc.ugr.es/javier-bin/mpitb eng

lam http://www.lam-mpi.org/

2 Installation

The following steps are required to install and setup sundialsTB:

2.1 Compilation and installation of sundialsTB

As of version 2.3.0, sundialsTB is distributed only with the complete sundials package.
In the sequel, we assume that the sundials package was unpacked under the directory srcdir. The

sundialsTB files are therefore in srcdir/sundialsTB.
Compilation and installation of the sundialsTB toolbox is done by running the matlab script

install STB.m which is present in the sundialsTB top directory.

1. Launch matlab in sundialsTB

% cd srcdir/sundialsTB

% matlab

2. Run the matlab script install STB

Note that parallel support will be compiled into the MEX files only if $LAMHOME is defined
and $MPITB ROOT is defined and srcdir/src/nvec par exists.

1

After the MEX files are generated, you will be asked if you wish to install the sundialsTB

toolbox. If you answer yes, you will be then asked for the installation directory (called in the
sequel instdir). To install sundialsTB for all matlab users (not usual), assuming matlab is
installed under /usr/local/matlab7, specify instdir = /usr/local/matlab7/toolbox. To in-
stall sundialsTB for just one user (usual configuration), install sundialsTB under a directory
of your choice (typically under your matlab working directory). In other words, specify instdir

= /home/user/matlab.

2.2 Configuring Matlab’s startup

After a successful installation, a sundialsTB.m startup script is generated in instdir/sundialsTB.
This file must be called by matlab at initialization.

If sundialsTB was installed for all matlab users (not usual), add the sundialsTB startup to
the system-wide startup file (by linking or copying):

% cd /usr/local/matlab7/toolbox/local

% ln -s ../sundialsTB/startup_STB.m .

and add these lines to your original local startup.m

% SUNDIALS Toolbox startup M-file, if it exists.

if exist(’startup_STB’,’file’)

startup_STB

end

If sundialsTB was installed for just one user (usual configuration) and assuming you do not need
to keep any previously existing startup.m, link or copy the startup STB.m script to your working
’matlab’ directory:

% cd ~/matlab

% ln -s sundialsTB/startup_STB.m startup.m

If you already have a startup.m, use the method described above, first linking (or copying)
startup STB.m to the destination subdirectory and then editing the file /matlab/startup.m to
run startup STB.m.

2.3 Testing the installation

If everything went fine, you should now be able to try one of the cvodes, idas, or kinsol examples
(in matlab, type ’help cvodes’, ’help idas’, or ’help kinsol’ to see a list of all examples available). For
example, go to the cvodes serial example directory:

% cd instdir/sundialsTB/cvode/examples_ser

and then launch matlab and execute mcvsRoberts dns.

2

3 matlab Interface to cvodes

The matlab interface to cvodes provides access to all functionality of the cvodes solver, including
IVP simulation and sensitvity analysis (both forward and adjoint).

The interface consists of several user-callable functions. In addition, the user must provide several
required and optional user-supplied functions which define the problem to be solved. The user-callable
functions are listed in Tables 1, 2, and 3 for IVP solution, forward sensitivity analysis (FSA), and
adjoint sensitivity analysis (ASA), respectively. For completness, some functions appear in more than
one table. The types of user-supplied functions are listed in Table 4. All these functions are fully
documented later in this section. For more in depth details, consult also the cvodes user guide [3].

To illustrate the use of the cvodes matlab interface, several example problems are provided with
sundialsTB, both for serial and parallel computations. Most of them are matlab translations of
example problems provided with cvodes.

Table 1: cvodes matlab interface functions for ODE integration

CVodeSetOptions create an options structure for an ODE problem. 4
CVodeQuadSetOptions create an options structure for quadrature integration. 9

CVodeInit allocate and initialize memory for cvodes. 11
CVodeQuadInit allocate and initialize memory for quadrature integration. 12

CVodeReInit reinitialize memory for cvodes. 14
CVodeQuadReInit reinitialize memory for quadrature integration. 15

CVode integrate the ODE problem. 17

CVodeGetStats return statistics for the cvodes solver. 19
CVodeGet extract data from cvodes memory. 22

CVodeFree deallocate memory for the cvodes solver. 24

CVodeMonitor monitoring function. 104

Table 2: cvodes matlab interface functions for FSA

CVodeSetOptions create an options structure for an ODE problem. 4
CVodeQuadSetOptions create an options structure for quadrature integration. 9
CVodeSensSetOptions create an options structure for FSA. 10

CVodeInit allocate and initialize memory for cvodes. 11
CVodeQuadInit allocate and initialize memory for quadrature integration. 12
CVodeSensInit allocate and initialize memory for FSA. 12

CVodeReInit reinitialize memory for cvodes. 14
CVodeQuadReInit reinitialize memory for quadrature integration. 15
CVodeSensReInit reinitialize memory for FSA. 15

CVodeSensToggleOff temporarily deactivates FSA. 19

CVode integrate the ODE problem. 17

CVodeGetStats return statistics for the cvodes solver. 19
CVodeGet extract data from cvodes memory. 22

CVodeFree deallocate memory for the cvodes solver. 24

CVodeMonitor monitoring function. 104

3

Table 3: cvodes matlab interface functions for ASA

CVodeSetOptions create an options structure for an ODE problem. 4
CVodeQuadSetOptions create an options structure for quadrature integration. 9

CVodeInit allocate and initialize memory for the forward problem. 11
CVodeQuadInit allocate and initialize memory for forward quadrature integration. 12

CVodeQuadReInit reinitialize memory for forward quadrature integration. 15
CVodeReInit reinitialize memory for the forward problem. 14

CVodeAdjInit allocate and initialize memory for ASA. 13
CVodeInitB allocate and initialize a backward problem. 13

CVodeAdjReInit reinitialize memory for ASA. 16
CVodeReInitB reinitialize a backward problem. 16

CVode integrate the forward ODE problem. 17
CVodeB integrate the backward problems. 18

CVodeGetStats return statistics for the integration of the forward problem. 19
CVodeGetStatsB return statistics for the integration of a backward problem. 21

CVodeGet extract data from cvodes memory. 22

CVodeFree deallocate memory for the cvodes solver. 24

CVodeMonitor monitoring function for forward problem. 104
CVodeMonitorB monitoring function for backward problems. 119

3.1 Interface functions

CVodeSetOptions

Purpose

CVodeSetOptions creates an options structure for CVODES.

Synopsis

function options = CVodeSetOptions(varargin)

Description

CVodeSetOptions creates an options structure for CVODES.

Usage: OPTIONS = CVodeSetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...)

OPTIONS = CVodeSetOptions(OLDOPTIONS,’NAME1’,VALUE1,...)

OPTIONS = CVodeSetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...) creates

a CVODES options structure OPTIONS in which the named properties have

the specified values. Any unspecified properties have default values.

It is sufficient to type only the leading characters that uniquely

identify the property. Case is ignored for property names.

OPTIONS = CVodeSetOptions(OLDOPTIONS,’NAME1’,VALUE1,...) alters an

existing options structure OLDOPTIONS.

CVodeSetOptions with no input arguments displays all property names

4

Table 4: cvodes matlab function types

F
or

w
ar

d
p
ro

b
le

m
s

CVRhsFn RHS function 25
CVRootFn root-finding function 26

CVQuadRhsFn quadrature RHS function 26
CVSensRhsFn sensitivity RHS function 25

CVDenseJacFn dense Jacobian function 27
CVBandJacFn banded Jacobian function 28

CVJacTimesVecFn Jacobian times vector function 28
CVPrecSetupFn preconditioner setup function 29
CVPrecSolveFn preconditioner solve function 30

CVGlocalFn RHS approximation function (BBDPre) 32
CVGcommFn communication function (BBDPre) 31
CVMonitorFn monitoring function 33

B
ac

k
w

ar
d

p
ro

b
le

m
s

CVRhsFnB RHS function 34
CVQuadRhsFnB quadrature RHS function 34
CVDenseJacFnB dense Jacobian function 35
CVBandJacFnB banded Jacobian function 35

CVJacTimesVecFnB Jacobian times vector function 36
CVPrecSetupFnB preconditioner setup function 37
CVPrecSolveFnB preconditioner solve function 38

CVGlocalFnB RHS approximation function (BBDPre) 39
CVGcommFnB communication function (BBDPre) 38
CVMonitorFnB monitoring function 40

and their possible values.

CVodeSetOptions properties

(See also the CVODES User Guide)

UserData - User data passed unmodified to all functions [empty]

If UserData is not empty, all user provided functions will be

passed the problem data as their last input argument. For example,

the RHS function must be defined as YD = ODEFUN(T,Y,DATA).

LMM - Linear Multistep Method [’Adams’ | ’BDF’]

This property specifies whether the Adams method is to be used instead

of the default Backward Differentiation Formulas (BDF) method.

The Adams method is recommended for non-stiff problems, while BDF is

recommended for stiff problems.

NonlinearSolver - Type of nonlinear solver used [Functional | Newton]

The ’Functional’ nonlinear solver is best suited for non-stiff

problems, in conjunction with the ’Adams’ linear multistep method,

while ’Newton’ is better suited for stiff problems, using the ’BDF’

method.

RelTol - Relative tolerance [positive scalar | 1e-4]

RelTol defaults to 1e-4 and is applied to all components of the solution

vector. See AbsTol.

AbsTol - Absolute tolerance [positive scalar or vector | 1e-6]

The relative and absolute tolerances define a vector of error weights

with components

ewt(i) = 1/(RelTol*|y(i)| + AbsTol) if AbsTol is a scalar

5

ewt(i) = 1/(RelTol*|y(i)| + AbsTol(i)) if AbsTol is a vector

This vector is used in all error and convergence tests, which

use a weighted RMS norm on all error-like vectors v:

WRMSnorm(v) = sqrt((1/N) sum(i=1..N) (v(i)*ewt(i))^2),

where N is the problem dimension.

MaxNumSteps - Maximum number of steps [positive integer | 500]

CVode will return with an error after taking MaxNumSteps internal steps

in its attempt to reach the next output time.

InitialStep - Suggested initial stepsize [positive scalar]

By default, CVode estimates an initial stepsize h0 at the initial time

t0 as the solution of

WRMSnorm(h0^2 ydd / 2) = 1

where ydd is an estimated second derivative of y(t0).

MaxStep - Maximum stepsize [positive scalar | inf]

Defines an upper bound on the integration step size.

MinStep - Minimum stepsize [positive scalar | 0.0]

Defines a lower bound on the integration step size.

MaxOrder - Maximum method order [1-12 for Adams, 1-5 for BDF | 5]

Defines an upper bound on the linear multistep method order.

StopTime - Stopping time [scalar]

Defines a value for the independent variable past which the solution

is not to proceed.

RootsFn - Rootfinding function [function]

To detect events (roots of functions), set this property to the event

function. See CVRootFn.

NumRoots - Number of root functions [integer | 0]

Set NumRoots to the number of functions for which roots are monitored.

If NumRoots is 0, rootfinding is disabled.

StabilityLimDet - Stability limit detection algorithm [false | true]

Flag used to turn on or off the stability limit detection algorithm

within CVODES. This property can be used only with the BDF method.

In this case, if the order is 3 or greater and if the stability limit

is detected, the method order is reduced.

LinearSolver - Linear solver type [Dense|Diag|Band|GMRES|BiCGStab|TFQMR]

Specifies the type of linear solver to be used for the Newton nonlinear

solver (see NonlinearSolver). Valid choices are: Dense (direct, dense

Jacobian), Band (direct, banded Jacobian), Diag (direct, diagonal Jacobian),

GMRES (iterative, scaled preconditioned GMRES), BiCGStab (iterative, scaled

preconditioned stabilized BiCG), TFQMR (iterative, scaled transpose-free QMR).

The GMRES, BiCGStab, and TFQMR are matrix-free linear solvers.

JacobianFn - Jacobian function [function]

This propeerty is overloaded. Set this value to a function that returns

Jacobian information consistent with the linear solver used (see Linsolver).

If not specified, CVODES uses difference quotient approximations.

For the Dense linear solver, JacobianFn must be of type CVDenseJacFn and

must return a dense Jacobian matrix. For the Band linear solver, JacobianFn

must be of type CVBandJacFn and must return a banded Jacobian matrix.

For the iterative linear solvers, GMRES, BiCGStab, and TFQMR, JacobianFn must

be of type CVJacTimesVecFn and must return a Jacobian-vector product. This

property is not used for the Diag linear solver.

If these options are for a backward problem, the corresponding funciton types

are CVDenseJacFnB for the Dense linear solver, CVBandJacFnB for he band linear

solver, and CVJacTimesVecFnB for the iterative linear solvers.

6

KrylovMaxDim - Maximum number of Krylov subspace vectors [integer | 5]

Specifies the maximum number of vectors in the Krylov subspace. This property

is used only if an iterative linear solver, GMRES, BiCGStab, or TFQMR is used

(see LinSolver).

GramSchmidtType - Gram-Schmidt orthogonalization [Classical | Modified]

Specifies the type of Gram-Schmidt orthogonalization (classical or modified).

This property is used only if the GMRES linear solver is used (see LinSolver).

PrecType - Preconditioner type [Left | Right | Both | None]

Specifies the type of user preconditioning to be done if an iterative linear

solver, GMRES, BiCGStab, or TFQMR is used (see LinSolver). PrecType must be

one of the following: ’None’, ’Left’, ’Right’, or ’Both’, corresponding to no

preconditioning, left preconditioning only, right preconditioning only, and

both left and right preconditioning, respectively.

PrecModule - Preconditioner module [BandPre | BBDPre | UserDefined]

If PrecModule = ’UserDefined’, then the user must provide at least a

preconditioner solve function (see PrecSolveFn)

CVODES provides the following two general-purpose preconditioner modules:

BandPre provide a band matrix preconditioner based on difference quotients

of the ODE right-hand side function. The user must specify the lower and

upper half-bandwidths through the properties LowerBwidth and UpperBwidth,

respectively.

BBDPre can be only used with parallel vectors. It provide a preconditioner

matrix that is block-diagonal with banded blocks. The blocking corresponds

to the distribution of the dependent variable vector y among the processors.

Each preconditioner block is generated from the Jacobian of the local part

(on the current processor) of a given function g(t,y) approximating

f(t,y) (see GlocalFn). The blocks are generated by a difference quotient

scheme on each processor independently. This scheme utilizes an assumed

banded structure with given half-bandwidths, mldq and mudq (specified through

LowerBwidthDQ and UpperBwidthDQ, respectively). However, the banded Jacobian

block kept by the scheme has half-bandwiths ml and mu (specified through

LowerBwidth and UpperBwidth), which may be smaller.

PrecSetupFn - Preconditioner setup function [function]

If PrecType is not ’None’, PrecSetupFn specifies an optional function which,

together with PrecSolve, defines left and right preconditioner matrices

(either of which can be trivial), such that the product P1*P2 is an

aproximation to the Newton matrix. PrecSetupFn must be of type CVPrecSetupFn

or CVPrecSetupFnB for forward and backward problems, respectively.

PrecSolveFn - Preconditioner solve function [function]

If PrecType is not ’None’, PrecSolveFn specifies a required function which

must solve a linear system Pz = r, for given r. PrecSolveFn must be of type

CVPrecSolveFn or CVPrecSolveFnB for forward and backward problems, respectively.

GlocalFn - Local right-hand side approximation funciton for BBDPre [function]

If PrecModule is BBDPre, GlocalFn specifies a required function that

evaluates a local approximation to the ODE right-hand side. GlocalFn must

be of type CVGlocFn or CVGlocFnB for forward and backward problems, respectively.

GcommFn - Inter-process communication function for BBDPre [function]

If PrecModule is BBDPre, GcommFn specifies an optional function

to perform any inter-process communication required for the evaluation of

GlocalFn. GcommFn must be of type CVGcommFn or CVGcommFnB for forward and

backward problems, respectively.

LowerBwidth - Jacobian/preconditioner lower bandwidth [integer | 0]

This property is overloaded. If the Band linear solver is used (see LinSolver),

it specifies the lower half-bandwidth of the band Jacobian approximation.

7

If one of the three iterative linear solvers, GMRES, BiCGStab, or TFQMR is used

(see LinSolver) and if the BBDPre preconditioner module in CVODES is used

(see PrecModule), it specifies the lower half-bandwidth of the retained

banded approximation of the local Jacobian block. If the BandPre preconditioner

module (see PrecModule) is used, it specifies the lower half-bandwidth of

the band preconditioner matrix. LowerBwidth defaults to 0 (no sub-diagonals).

UpperBwidth - Jacobian/preconditioner upper bandwidth [integer | 0]

This property is overloaded. If the Band linear solver is used (see LinSolver),

it specifies the upper half-bandwidth of the band Jacobian approximation.

If one of the three iterative linear solvers, GMRES, BiCGStab, or TFQMR is used

(see LinSolver) and if the BBDPre preconditioner module in CVODES is used

(see PrecModule), it specifies the upper half-bandwidth of the retained

banded approximation of the local Jacobian block. If the BandPre

preconditioner module (see PrecModule) is used, it specifies the upper

half-bandwidth of the band preconditioner matrix. UpperBwidth defaults to

0 (no super-diagonals).

LowerBwidthDQ - BBDPre preconditioner DQ lower bandwidth [integer | 0]

Specifies the lower half-bandwidth used in the difference-quotient Jacobian

approximation for the BBDPre preconditioner (see PrecModule).

UpperBwidthDQ - BBDPre preconditioner DQ upper bandwidth [integer | 0]

Specifies the upper half-bandwidth used in the difference-quotient Jacobian

approximation for the BBDPre preconditioner (see PrecModule).

MonitorFn - User-provied monitoring function [function]

Specifies a function that is called after each successful integration step.

This function must have type CVMonitorFn or CVMonitorFnB, depending on

whether these options are for a forward or a backward problem, respectively.

Sample monitoring functions CVodeMonitor and CvodeMonitorB are provided

with CVODES.

MonitorData - User-provied data for the monitoring function [struct]

Specifies a data structure that is passed to the MonitorFn function every

time it is called.

SensDependent - Backward problem depending on sensitivities [false | true]

Specifies whether the backward problem right-hand side depends on

forward sensitivites. If TRUE, the right-hand side function provided for

this backward problem must have the appropriate type (see CVRhsFnB).

ErrorMessages - Post error/warning messages [true | false]

Note that any errors in CVodeInit will result in a Matlab error, thus

stoping execution. Only subsequent calls to CVODES functions will respect

the value specified for ’ErrorMessages’.

NOTES:

The properties listed above that can only be used for forward problems

are: StopTime, RootsFn, and NumRoots.

The property SensDependent is relevant only for backward problems.

See also

CVodeInit, CVodeReInit, CVodeInitB, CVodeReInitB

CVRhsFn, CVRootFn,

8

CVDenseJacFn, CVBandJacFn, CVJacTimesVecFn

CVPrecSetupFn, CVPrecSolveFn

CVGlocalFn, CVGcommFn

CVMonitorFn

CVRhsFnB,

CVDenseJacFnB, CVBandJacFnB, CVJacTimesVecFnB

CVPrecSetupFnB, CVPrecSolveFnB

CVGlocalFnB, CVGcommFnB

CVMonitorFnB

CVodeQuadSetOptions

Purpose

CVodeQuadSetOptions creates an options structure for quadrature integration with CVODES.

Synopsis

function options = CVodeQuadSetOptions(varargin)

Description

CVodeQuadSetOptions creates an options structure for quadrature integration with CVODES.

Usage: OPTIONS = CVodeQuadSetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...)

OPTIONS = CVodeQuadSetOptions(OLDOPTIONS,’NAME1’,VALUE1,...)

OPTIONS = CVodeQuadSetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...) creates

a CVODES options structure OPTIONS in which the named properties have

the specified values. Any unspecified properties have default values.

It is sufficient to type only the leading characters that uniquely

identify the property. Case is ignored for property names.

OPTIONS = CVodeQuadSetOptions(OLDOPTIONS,’NAME1’,VALUE1,...) alters an

existing options structure OLDOPTIONS.

CVodeQuadSetOptions with no input arguments displays all property names

and their possible values.

CVodeQuadSetOptions properties

(See also the CVODES User Guide)

ErrControl - Error control strategy for quadrature variables [false | true]

Specifies whether quadrature variables are included in the error test.

RelTol - Relative tolerance for quadrature variables [scalar 1e-4]

Specifies the relative tolerance for quadrature variables. This parameter is

used only if ErrControl = true.

AbsTol - Absolute tolerance for quadrature variables [scalar or vector 1e-6]

Specifies the absolute tolerance for quadrature variables. This parameter is

used only if ErrControl = true.

SensDependent - Backward problem depending on sensitivities [false | true]

Specifies whether the backward problem quadrature right-hand side depends

on forward sensitivites. If TRUE, the right-hand side function provided for

9

this backward problem must have the appropriate type (see CVQuadRhsFnB).

See also

CVodeQuadInit, CVodeQuadReInit.

CVodeQuadInitB, CVodeQuadReInitB

CVodeSensSetOptions

Purpose

CVodeSensSetOptions creates an options structure for FSA with CVODES.

Synopsis

function options = CVodeSensSetOptions(varargin)

Description

CVodeSensSetOptions creates an options structure for FSA with CVODES.

Usage: OPTIONS = CVodeSensSetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...)

OPTIONS = CVodeSensSetOptions(OLDOPTIONS,’NAME1’,VALUE1,...)

OPTIONS = CVodeSensSetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...) creates

a CVODES options structure OPTIONS in which the named properties have

the specified values. Any unspecified properties have default values.

It is sufficient to type only the leading characters that uniquely

identify the property. Case is ignored for property names.

OPTIONS = CVodeSensSetOptions(OLDOPTIONS,’NAME1’,VALUE1,...) alters an

existing options structure OLDOPTIONS.

CVodeSensSetOptions with no input arguments displays all property names

and their possible values.

CVodeSensSetOptions properties

(See also the CVODES User Guide)

method - FSA solution method [’Simultaneous’ | ’Staggered’]

Specifies the FSA method for treating the nonlinear system solution for

sensitivity variables. In the simultaneous case, the nonlinear systems

for states and all sensitivities are solved simultaneously. In the

Staggered case, the nonlinear system for states is solved first and then

the nonlinear systems for all sensitivities are solved at the same time.

ParamField - Problem parameters [string]

Specifies the name of the field in the user data structure (specified through

the ’UserData’ field with CVodeSetOptions) in which the nominal values of the problem

parameters are stored. This property is used only if CVODES will use difference

quotient approximations to the sensitivity right-hand sides (see CVSensRhsFn).

ParamList - Parameters with respect to which FSA is performed [integer vector]

Specifies a list of Ns parameters with respect to which sensitivities are to

be computed. This property is used only if CVODES will use difference-quotient

approximations to the sensitivity right-hand sides. Its length must be Ns,

10

consistent with the number of columns of yS0 (see CVodeSensInit).

ParamScales - Order of magnitude for problem parameters [vector]

Provides order of magnitude information for the parameters with respect to

which sensitivities are computed. This information is used if CVODES

approximates the sensitivity right-hand sides or if CVODES estimates integration

tolerances for the sensitivity variables (see RelTol and AbsTol).

RelTol - Relative tolerance for sensitivity variables [positive scalar]

Specifies the scalar relative tolerance for the sensitivity variables.

See also AbsTol.

AbsTol - Absolute tolerance for sensitivity variables [row-vector or matrix]

Specifies the absolute tolerance for sensitivity variables. AbsTol must be

either a row vector of dimension Ns, in which case each of its components is

used as a scalar absolute tolerance for the coresponding sensitivity vector,

or a N x Ns matrix, in which case each of its columns is used as a vector

of absolute tolerances for the corresponding sensitivity vector.

By default, CVODES estimates the integration tolerances for sensitivity

variables, based on those for the states and on the order of magnitude

information for the problem parameters specified through ParamScales.

ErrControl - Error control strategy for sensitivity variables [false | true]

Specifies whether sensitivity variables are included in the error control test.

Note that sensitivity variables are always included in the nonlinear system

convergence test.

DQtype - Type of DQ approx. of the sensi. RHS [Centered | Forward]

Specifies whether to use centered (second-order) or forward (first-order)

difference quotient approximations of the sensitivity eqation right-hand

sides. This property is used only if a user-defined sensitivity right-hand

side function was not provided.

DQparam - Cut-off parameter for the DQ approx. of the sensi. RHS [scalar | 0.0]

Specifies the value which controls the selection of the difference-quotient

scheme used in evaluating the sensitivity right-hand sides (switch between

simultaneous or separate evaluations of the two components in the sensitivity

right-hand side). The default value 0.0 indicates the use of simultaenous approximation

exclusively (centered or forward, depending on the value of DQtype.

For DQparam >= 1, CVODES uses a simultaneous approximation if the estimated

DQ perturbations for states and parameters are within a factor of DQparam,

and separate approximations otherwise. Note that a value DQparam < 1

will inhibit switching! This property is used only if a user-defined sensitivity

right-hand side function was not provided.

See also

CVodeSensInit, CVodeSensReInit

CVodeInit

Purpose

CVodeInit allocates and initializes memory for CVODES.

Synopsis

function status = CVodeInit(fct, lmm, nls, t0, y0, options)

Description

11

CVodeInit allocates and initializes memory for CVODES.

Usage: CVodeInit (ODEFUN, LMM, NLS, T0, Y0 [, OPTIONS])

ODEFUN is a function defining the ODE right-hand side: y’ = f(t,y).

This function must return a vector containing the current

value of the righ-hand side.

LMM is the Linear Multistep Method (’Adams’ or ’BDF’)

NLS is the type of nonlinear solver used (’Functional’ or ’Newton’)

T0 is the initial value of t.

Y0 is the initial condition vector y(t0).

OPTIONS is an (optional) set of integration options, created with

the CVodeSetOptions function.

See also: CVodeSetOptions, CVRhsFn

NOTES:

1) The ’Functional’ nonlinear solver is best suited for non-stiff

problems, in conjunction with the ’Adams’ linear multistep method,

while ’Newton’ is better suited for stiff problems, using the ’BDF’

method.

2) When using the ’Newton’ nonlinear solver, a linear solver is also

required. The default one is ’Dense’, indicating the use of direct

dense linear algebra (LU factorization). A different linear solver

can be specified through the option ’LinearSolver’ to CVodeSetOptions.

CVodeQuadInit

Purpose

CVodeQuadInit allocates and initializes memory for quadrature integration.

Synopsis

function status = CVodeQuadInit(fctQ, yQ0, options)

Description

CVodeQuadInit allocates and initializes memory for quadrature integration.

Usage: CVodeQuadInit (QFUN, YQ0 [, OPTIONS])

QFUN is a function defining the righ-hand sides of the quadrature

ODEs yQ’ = fQ(t,y).

YQ0 is the initial conditions vector yQ(t0).

OPTIONS is an (optional) set of QUAD options, created with

the CVodeSetQuadOptions function.

See also: CVodeSetQuadOptions, CVQuadRhsFn

CVodeSensInit

12

Purpose

CVodeSensInit allocates and initializes memory for FSA with CVODES.

Synopsis

function status = CVodeSensInit(Ns,fctS,yS0,options)

Description

CVodeSensInit allocates and initializes memory for FSA with CVODES.

Usage: CVodeSensInit (NS, SFUN, YS0 [, OPTIONS])

NS is the number of parameters with respect to which sensitivities

are desired

SFUN is a function defining the righ-hand sides of the sensitivity

ODEs yS’ = fS(t,y,yS).

YS0 Initial conditions for sensitivity variables.

YS0 must be a matrix with N rows and Ns columns, where N is the problem

dimension and Ns the number of sensitivity systems.

OPTIONS is an (optional) set of FSA options, created with

the CVodeSetFSAOptions function.

See also CVodeSensSetOptions, CVodeInit, CVSensRhsFn

CVodeAdjInit

Purpose

CVodeAdjInit allocates and initializes memory for ASA with CVODES.

Synopsis

function status = CVodeAdjInit(steps, interp)

Description

CVodeAdjInit allocates and initializes memory for ASA with CVODES.

Usage: CVodeAdjInit(STEPS, INTEPR)

STEPS specifies the (maximum) number of integration steps between two

consecutive check points.

INTERP Specifies the type of interpolation used for estimating the forward

solution during the backward integration phase. INTERP should be

’Hermite’, indicating cubic Hermite interpolation, or ’Polynomial’,

indicating variable order polynomial interpolation.

CVodeInitB

Purpose

CVodeInitB allocates and initializes backward memory for CVODES.

Synopsis

function [idxB, status] = CVodeInitB(fctB, lmmB, nlsB, tB0, yB0, optionsB)

Description

13

CVodeInitB allocates and initializes backward memory for CVODES.

Usage: IDXB = CVodeInitB (FCTB, LMMB, NLSB, TB0, YB0 [, OPTIONSB])

FCTB is a function defining the adjoint ODE right-hand side.

This function must return a vector containing the current

value of the adjoint ODE righ-hand side.

LMMB is the Linear Multistep Method (’Adams’ or ’BDF’)

NLSB is the type of nonlinear solver used (’Functional’ or ’Newton’)

TB0 is the final value of t.

YB0 is the final condition vector yB(tB0).

OPTIONSB is an (optional) set of integration options, created with

the CVodeSetOptions function.

CVodeInitB returns the index IDXB associated with this backward

problem. This index must be passed as an argument to any subsequent

functions related to this backward problem.

See also: CVodeSetOptions, CVodeInit, CVRhsFnB

CVodeQuadInitB

Purpose

CVodeQuadInitB allocates and initializes memory for backward quadrature integration.

Synopsis

function status = CVodeQuadInitB(idxB, fctQB, yQB0, optionsB)

Description

CVodeQuadInitB allocates and initializes memory for backward quadrature integration.

Usage: CVodeQuadInitB (IDXB, QBFUN, YQB0 [, OPTIONS])

IDXB is the index of the backward problem, returned by

CVodeInitB.

QBFUN is a function defining the righ-hand sides of the

backward ODEs yQB’ = fQB(t,y,yB).

YQB0 is the final conditions vector yQB(tB0).

OPTIONS is an (optional) set of QUAD options, created with

the CVodeSetQuadOptions function.

See also: CVodeInitB, CVodeSetQuadOptions, CVQuadRhsFnB

CVodeReInit

Purpose

CVodeReInit reinitializes memory for CVODES

Synopsis

function status = CVodeReInit(t0, y0, options)

Description

14

CVodeReInit reinitializes memory for CVODES

where a prior call to CVodeInit has been made with the same

problem size N. CVodeReInit performs the same input checking

and initializations that CVodeInit does, but it does no

memory allocation, assuming that the existing internal memory

is sufficient for the new problem.

Usage: CVodeReInit (T0, Y0 [, OPTIONS])

T0 is the initial value of t.

Y0 is the initial condition vector y(t0).

OPTIONS is an (optional) set of integration options, created with

the CVodeSetOptions function.

See also: CVodeSetOptions, CVodeInit

CVodeQuadReInit

Purpose

CVodeQuadReInit reinitializes CVODES’s quadrature-related memory

Synopsis

function status = CVodeQuadReInit(yQ0, options)

Description

CVodeQuadReInit reinitializes CVODES’s quadrature-related memory

assuming it has already been allocated in prior calls to CVodeInit

and CVodeQuadInit.

Usage: CVodeQuadReInit (YQ0 [, OPTIONS])

YQ0 Initial conditions for quadrature variables yQ(t0).

OPTIONS is an (optional) set of QUAD options, created with

the CVodeSetQuadOptions function.

See also: CVodeSetQuadOptions, CVodeQuadInit

CVodeSensReInit

Purpose

CVodeSensReInit reinitializes CVODES’s FSA-related memory

Synopsis

function status = CVodeSensReInit(yS0, options)

Description

15

CVodeSensReInit reinitializes CVODES’s FSA-related memory

assuming it has already been allocated in prior calls to CVodeInit

and CVodeSensInit.

The number of sensitivities Ns is assumed to be unchanged since the

previous call to CVodeSensInit.

Usage: CVodeSensReInit (YS0 [, OPTIONS])

YS0 Initial conditions for sensitivity variables.

YS0 must be a matrix with N rows and Ns columns, where N is the problem

dimension and Ns the number of sensitivity systems.

OPTIONS is an (optional) set of FSA options, created with

the CVodeSensSetOptions function.

See also: CVodeSensSetOptions, CVodeReInit, CVodeSensInit

CVodeAdjReInit

Purpose

CVodeAdjReInit re-initializes memory for ASA with CVODES.

Synopsis

function status = CVodeAdjReInit()

Description

CVodeAdjReInit re-initializes memory for ASA with CVODES.

Usage: CVodeAdjReInit

CVodeReInitB

Purpose

CVodeReInitB re-initializes backward memory for CVODES.

Synopsis

function status = CVodeReInitB(idxB, tB0, yB0, optionsB)

Description

CVodeReInitB re-initializes backward memory for CVODES.

where a prior call to CVodeInitB has been made with the same

problem size NB. CVodeReInitB performs the same input checking

and initializations that CVodeInitB does, but it does no

memory allocation, assuming that the existing internal memory

is sufficient for the new problem.

Usage: CVodeReInitB (IDXB, TB0, YB0 [, OPTIONSB])

IDXB is the index of the backward problem, returned by

16

CVodeInitB.

TB0 is the final value of t.

YB0 is the final condition vector yB(tB0).

OPTIONSB is an (optional) set of integration options, created with

the CVodeSetOptions function.

See also: CVodeSetOptions, CVodeInitB

CVodeQuadReInitB

Purpose

CVodeQuadReInitB reinitializes memory for backward quadrature integration.

Synopsis

function status = CVodeQuadReInitB(idxB, yQB0, optionsB)

Description

CVodeQuadReInitB reinitializes memory for backward quadrature integration.

Usage: CVodeQuadReInitB (IDXB, YS0 [, OPTIONS])

IDXB is the index of the backward problem, returned by

CVodeInitB.

YQB0 is the final conditions vector yQB(tB0).

OPTIONS is an (optional) set of QUAD options, created with

the CVodeSetQuadOptions function.

See also: CVodeSetQuadOptions, CVodeReInitB, CVodeQuadInitB

CVode

Purpose

CVode integrates the ODE.

Synopsis

function [varargout] = CVode(tout, itask)

Description

CVode integrates the ODE.

Usage: [STATUS, T, Y] = CVode (TOUT, ITASK)

[STATUS, T, Y, YS] = CVode (TOUT, ITASK)

[STATUS, T, Y, YQ] = CVode (TOUT, ITASK)

[STATUS, T, Y, YQ, YS] = CVode (TOUT, ITASK)

If ITASK is ’Normal’, then the solver integrates from its current internal

T value to a point at or beyond TOUT, then interpolates to T = TOUT and returns

Y(TOUT). If ITASK is ’OneStep’, then the solver takes one internal time step

17

and returns in Y the solution at the new internal time. In this case, TOUT

is used only during the first call to CVode to determine the direction of

integration and the rough scale of the problem. In either case, the time

reached by the solver is returned in T.

If quadratures were computed (see CVodeQuadInit), CVode will return their

values at T in the vector YQ.

If sensitivity calculations were enabled (see CVodeSensInit), CVode will

return their values at T in the matrix YS. Each row in the matrix YS

represents the sensitivity vector with respect to one of the problem parameters.

In ITASK =’ Normal’ mode, to obtain solutions at specific times T0,T1,...,TFINAL

(all increasing or all decreasing) use TOUT = [T0 T1 ... TFINAL]. In this case

the output arguments Y and YQ are matrices, each column representing the solution

vector at the corresponding time returned in the vector T. If computed, the

sensitivities are eturned in the 3-dimensional array YS, with YS(:,:,I) representing

the sensitivity vectors at the time T(I).

On return, STATUS is one of the following:

0: successful CVode return.

1: CVode succeded and returned at tstop.

2: CVode succeeded and found one or more roots.

-1: an error occurred (see printed message).

See also CVodeSetOptions, CVodeGetStats

CVodeB

Purpose

CVodeB integrates all backwards ODEs currently defined.

Synopsis

function [varargout] = CVodeB(tout,itask)

Description

CVodeB integrates all backwards ODEs currently defined.

Usage: [STATUS, T, YB] = CVodeB (TOUT, ITASK)

[STATUS, T, YB, YQB] = CVodeB (TOUT, ITASK)

If ITASK is ’Normal’, then the solver integrates from its current internal

T value to a point at or beyond TOUT, then interpolates to T = TOUT and returns

YB(TOUT). If ITASK is ’OneStep’, then the solver takes one internal time step

and returns in YB the solution at the new internal time. In this case, TOUT

is used only during the first call to CVodeB to determine the direction of

integration and the rough scale of the problem. In either case, the time

reached by the solver is returned in T.

If quadratures were computed (see CVodeQuadInitB), CVodeB will return their

values at T in the vector YQB.

18

In ITASK =’ Normal’ mode, to obtain solutions at specific times T0,T1,...,TFINAL

(all increasing or all decreasing) use TOUT = [T0 T1 ... TFINAL]. In this case

the output arguments YB and YQB are matrices, each column representing the solution

vector at the corresponding time returned in the vector T.

If more than one backward problem was defined, the return arguments are cell

arrays, with TIDXB, YBIDXB, and YQBIDXB corresponding to the backward

problem with index IDXB (as returned by CVodeInitB).

On return, STATUS is one of the following:

0: successful CVodeB return.

1: CVodeB succeded and return at a tstop value (internally set).

-1: an error occurred (see printed message).

See also CVodeSetOptions, CVodeGetStatsB

CVodeSensToggleOff

Purpose

CVodeSensToggleOff deactivates sensitivity calculations.

Synopsis

function status = CVodeSensToggleOff()

Description

CVodeSensToggleOff deactivates sensitivity calculations.

It does NOT deallocate sensitivity-related memory so that

sensitivity computations can be later toggled ON (through

CVodeSensReInit).

Usage: CVodeSensToggleOff

See also: CVodeSensInit, CVodeSensReInit

CVodeGetStats

Purpose

CVodeGetStats returns run statistics for the CVODES solver.

Synopsis

function [si, status] = CVodeGetStats()

Description

CVodeGetStats returns run statistics for the CVODES solver.

Usage: STATS = CVodeGetStats

19

Fields in the structure STATS

o nst - number of integration steps

o nfe - number of right-hand side function evaluations

o nsetups - number of linear solver setup calls

o netf - number of error test failures

o nni - number of nonlinear solver iterations

o ncfn - number of convergence test failures

o qlast - last method order used

o qcur - current method order

o h0used - actual initial step size used

o hlast - last step size used

o hcur - current step size

o tcur - current time reached by the integrator

o RootInfo - strucutre with rootfinding information

o QuadInfo - structure with quadrature integration statistics

o LSInfo - structure with linear solver statistics

o FSAInfo - structure with forward sensitivity solver statistics

If rootfinding was requested, the structure RootInfo has the following fields

o nge - number of calls to the rootfinding function

o roots - array of integers (a value of 1 in the i-th component means that the

i-th rootfinding function has a root (upon a return with status=2 from

CVode).

If quadratures were present, the structure QuadInfo has the following fields

o nfQe - number of quadrature integrand function evaluations

o netfQ - number of error test failures for quadrature variables

The structure LSinfo has different fields, depending on the linear solver used.

Fields in LSinfo for the ’Dense’ linear solver

o name - ’Dense’

o njeD - number of Jacobian evaluations

o nfeD - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’Diag’ linear solver

o name - ’Diag’

o nfeDI - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’Band’ linear solver

o name - ’Band’

o njeB - number of Jacobian evaluations

o nfeB - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’GMRES’ and ’BiCGStab’ linear solvers

20

o name - ’GMRES’ or ’BiCGStab’

o nli - number of linear solver iterations

o npe - number of preconditioner setups

o nps - number of preconditioner solve function calls

o ncfl - number of linear system convergence test failures

o njeSG - number of Jacobian-vector product evaluations

o nfeSG - number of right-hand side function evaluations for difference-quotient

Jacobian-vector product approximation

If forward sensitivities were computed, the structure FSAInfo has the

following fields

o nfSe - number of sensitivity right-hand side evaluations

o nfeS - number of right-hand side evaluations for difference-quotient

sensitivity right-hand side approximation

o nsetupsS - number of linear solver setups triggered by sensitivity variables

o netfS - number of error test failures for sensitivity variables

o nniS - number of nonlinear solver iterations for sensitivity variables

o ncfnS - number of convergence test failures due to sensitivity variables

CVodeGetStatsB

Purpose

CVodeGetStatsB returns run statistics for the backward CVODES solver.

Synopsis

function [si, status] = CVodeGetStatsB(idxB)

Description

CVodeGetStatsB returns run statistics for the backward CVODES solver.

Usage: STATS = CVodeGetStatsB(IDXB)

IDXB is the index of the backward problem, returned by

CVodeInitB.

Fields in the structure STATS

o nst - number of integration steps

o nfe - number of right-hand side function evaluations

o nsetups - number of linear solver setup calls

o netf - number of error test failures

o nni - number of nonlinear solver iterations

o ncfn - number of convergence test failures

o qlast - last method order used

o qcur - current method order

o h0used - actual initial step size used

o hlast - last step size used

o hcur - current step size

o tcur - current time reached by the integrator

21

o QuadInfo - structure with quadrature integration statistics

o LSInfo - structure with linear solver statistics

The structure LSinfo has different fields, depending on the linear solver used.

If quadratures were present, the structure QuadInfo has the following fields

o nfQe - number of quadrature integrand function evaluations

o netfQ - number of error test failures for quadrature variables

Fields in LSinfo for the ’Dense’ linear solver

o name - ’Dense’

o njeD - number of Jacobian evaluations

o nfeD - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’Diag’ linear solver

o name - ’Diag’

o nfeDI - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’Band’ linear solver

o name - ’Band’

o njeB - number of Jacobian evaluations

o nfeB - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’GMRES’ and ’BiCGStab’ linear solvers

o name - ’GMRES’ or ’BiCGStab’

o nli - number of linear solver iterations

o npe - number of preconditioner setups

o nps - number of preconditioner solve function calls

o ncfl - number of linear system convergence test failures

o njeSG - number of Jacobian-vector product evaluations

o nfeSG - number of right-hand side function evaluations for difference-quotient

Jacobian-vector product approximation

CVodeGet

Purpose

CVodeGet extracts data from the CVODES solver memory.

Synopsis

function [output, status] = CVodeGet(key, varargin)

Description

22

CVodeGet extracts data from the CVODES solver memory.

Usage: RET = CVodeGet (KEY [, P1 [, P2] ...])

CVodeGet returns internal CVODES information based on KEY. For some values

of KEY, additional arguments may be required and/or more than one output is

returned.

KEY is a string and should be one of:

o DerivSolution - Returns a vector containing the K-th order derivative

of the solution at time T. The time T and order K must be passed through

the input arguments P1 and P2, respectively:

DKY = CVodeGet(’DerivSolution’, T, K)

o ErrorWeights - Returns a vector containing the current error weights.

EWT = CVodeGet(’ErrorWeights’)

o CheckPointsInfo - Returns an array of structures with check point information.

CK = CVodeGet(’CheckPointInfo)

CVodeSet

Purpose

CVodeSet changes optional input values during the integration.

Synopsis

function status = CVodeSet(varargin)

Description

CVodeSet changes optional input values during the integration.

Usage: CVodeSet(’NAME1’,VALUE1,’NAME2’,VALUE2,...)

CVodeSet can be used to change some of the optional inputs during

the integration, i.e., without need for a solver reinitialization.

The property names accepted by CVodeSet are a subset of those valid

for CVodeSetOptions. Any unspecified properties are left unchanged.

CVodeSet with no input arguments displays all property names.

CVodeSet properties

(See also the CVODES User Guide)

UserData - problem data passed unmodified to all user functions.

Set VALUE to be the new user data.

RelTol - Relative tolerance

Set VALUE to the new relative tolerance

AbsTol - absolute tolerance

Set VALUE to be either the new scalar absolute tolerance or

a vector of absolute tolerances, one for each solution component.

StopTime - Stopping time

Set VALUE to be a new value for the independent variable past which

the solution is not to proceed.

23

CVodeSetB

Purpose

CVodeSetB changes optional input values during the integration.

Synopsis

function status = CVodeSetB(idxB, varargin)

Description

CVodeSetB changes optional input values during the integration.

Usage: CVodeSetB(IDXB, ’NAME1’,VALUE1,’NAME2’,VALUE2,...)

CVodeSetB can be used to change some of the optional inputs for

the backward problem identified by IDXB during the backward

integration, i.e., without need for a solver reinitialization.

The property names accepted by CVodeSet are a subset of those valid

for CVodeSetOptions. Any unspecified properties are left unchanged.

CVodeSetB with no input arguments displays all property names.

CVodeSetB properties

(See also the CVODES User Guide)

UserData - problem data passed unmodified to all user functions.

Set VALUE to be the new user data.

RelTol - Relative tolerance

Set VALUE to the new relative tolerance

AbsTol - absolute tolerance

Set VALUE to be either the new scalar absolute tolerance or

a vector of absolute tolerances, one for each solution component.

CVodeFree

Purpose

CVodeFree deallocates memory for the CVODES solver.

Synopsis

function CVodeFree()

Description

CVodeFree deallocates memory for the CVODES solver.

Usage: CVodeFree

24

3.2 Function types

CVRhsFn

Purpose

CVRhsFn - type for user provided RHS function

Synopsis

This is a script file.

Description

CVRhsFn - type for user provided RHS function

The function ODEFUN must be defined as

FUNCTION [YD, FLAG] = ODEFUN(T,Y)

and must return a vector YD corresponding to f(t,y).

If a user data structure DATA was specified in CVodeInit, then

ODEFUN must be defined as

FUNCTION [YD, FLAG, NEW_DATA] = ODEFUN(T,Y,DATA)

If the local modifications to the user data structure are needed

in other user-provided functions then, besides setting the vector YD,

the ODEFUN function must also set NEW_DATA. Otherwise, it should set

NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function ODEFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also CVodeInit

CVSensRhsFn

Purpose

CVSensRhsFn - type for user provided sensitivity RHS function.

Synopsis

This is a script file.

Description

CVSensRhsFn - type for user provided sensitivity RHS function.

The function ODESFUN must be defined as

FUNCTION [YSD, FLAG] = ODESFUN(T,Y,YD,YS)

and must return a matrix YSD corresponding to fS(t,y,yS).

If a user data structure DATA was specified in CVodeInit, then

ODESFUN must be defined as

FUNCTION [YSD, FLAG, NEW_DATA] = ODESFUN(T,Y,YD,YS,DATA)

25

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the matrix YSD,

the ODESFUN function must also set NEW_DATA. Otherwise, it should

set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function ODESFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also CVodeSetFSAOptions

NOTE: ODESFUN is specified through the property FSARhsFn to

CVodeSetFSAOptions.

CVQuadRhsFn

Purpose

CVQuadRhsFn - type for user provided quadrature RHS function.

Synopsis

This is a script file.

Description

CVQuadRhsFn - type for user provided quadrature RHS function.

The function ODEQFUN must be defined as

FUNCTION [YQD, FLAG] = ODEQFUN(T,Y)

and must return a vector YQD corresponding to fQ(t,y), the integrand

for the integral to be evaluated.

If a user data structure DATA was specified in CVodeInit, then

ODEQFUN must be defined as

FUNCTION [YQD, FLAG, NEW_DATA] = ODEQFUN(T,Y,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the vector YQD,

the ODEQFUN function must also set NEW_DATA. Otherwise, it should set

NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function ODEQFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also CVodeQuadInit

CVRootFn

Purpose

CVRootFn - type for user provided root-finding function.

Synopsis

This is a script file.

Description

26

CVRootFn - type for user provided root-finding function.

The function ROOTFUN must be defined as

FUNCTION [G, FLAG] = ROOTFUN(T,Y)

and must return a vector G corresponding to g(t,y).

If a user data structure DATA was specified in CVodeInit, then

ROOTFUN must be defined as

FUNCTION [G, FLAG, NEW_DATA] = ROOTFUN(T,Y,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the vector G,

the ROOTFUN function must also set NEW_DATA. Otherwise, it should

set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function ROOTFUN must set FLAG=0 if successful, or FLAG~=0 if

a failure occurred.

See also CVodeSetOptions

NOTE: ROOTFUN is specified through the RootsFn property in

CVodeSetOptions and is used only if the property NumRoots is a

positive integer.

CVDenseJacFn

Purpose

CVDenseJacFn - type for user provided dense Jacobian function.

Synopsis

This is a script file.

Description

CVDenseJacFn - type for user provided dense Jacobian function.

The function DJACFUN must be defined as

FUNCTION [J, FLAG] = DJACFUN(T, Y, FY)

and must return a matrix J corresponding to the Jacobian of f(t,y).

The input argument FY contains the current value of f(t,y).

If a user data structure DATA was specified in CVodeInit, then

DJACFUN must be defined as

FUNCTION [J, FLAG, NEW_DATA] = DJACFUN(T, Y, FY, DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the matrix J,

the DJACFUN function must also set NEW_DATA. Otherwise, it should

set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function DJACFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also CVodeSetOptions

27

NOTE: DJACFUN is specified through the property JacobianFn to

CVodeSetOptions and is used only if the property LinearSolver

was set to ’Dense’.

CVBandJacFn

Purpose

CVBandJacFn - type for user provided banded Jacobian function.

Synopsis

This is a script file.

Description

CVBandJacFn - type for user provided banded Jacobian function.

The function BJACFUN must be defined as

FUNCTION [J, FLAG] = BJACFUN(T, Y, FY)

and must return a matrix J corresponding to the banded Jacobian of f(t,y).

The input argument FY contains the current value of f(t,y).

If a user data structure DATA was specified in CVodeInit, then

BJACFUN must be defined as

FUNCTION [J, FLAG, NEW_DATA] = BJACFUN(T, Y, FY, DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the matrix J,

the BJACFUN function must also set NEW_DATA. Otherwise, it should

set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function BJACFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also CVodeSetOptions

See the CVODES user guide for more informaiton on the structure of

a banded Jacobian.

NOTE: BJACFUN is specified through the property JacobianFn to

CVodeSetOptions and is used only if the property LinearSolver

was set to ’Band’.

CVJacTimesVecFn

Purpose

CVJacTimesVecFn - type for user provided Jacobian times vector function.

Synopsis

This is a script file.

Description

28

CVJacTimesVecFn - type for user provided Jacobian times vector function.

The function JTVFUN must be defined as

FUNCTION [JV, FLAG] = JTVFUN(T,Y,FY,V)

and must return a vector JV corresponding to the product of the

Jacobian of f(t,y) with the vector v.

The input argument FY contains the current value of f(t,y).

If a user data structure DATA was specified in CVodeInit, then

JTVFUN must be defined as

FUNCTION [JV, FLAG, NEW_DATA] = JTVFUN(T,Y,FY,V,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the vector JV,

the JTVFUN function must also set NEW_DATA. Otherwise, it should set

NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function JTVFUN must set FLAG=0 if successful, or FLAG~=0 if

a failure occurred.

See also CVodeSetOptions

NOTE: JTVFUN is specified through the property JacobianFn to

CVodeSetOptions and is used only if the property LinearSolver

was set to ’GMRES’, ’BiCGStab’, or ’TFQMR’.

CVPrecSetupFn

Purpose

CVPrecSetupFn - type for user provided preconditioner setup function.

Synopsis

This is a script file.

Description

CVPrecSetupFn - type for user provided preconditioner setup function.

The user-supplied preconditioner setup function PSETFUN and

the user-supplied preconditioner solve function PSOLFUN

together must define left and right preconditoner matrices

P1 and P2 (either of which may be trivial), such that the

product P1*P2 is an approximation to the Newton matrix

M = I - gamma*J. Here J is the system Jacobian J = df/dy,

and gamma is a scalar proportional to the integration step

size h. The solution of systems P z = r, with P = P1 or P2,

is to be carried out by the PrecSolve function, and PSETFUN

is to do any necessary setup operations.

The user-supplied preconditioner setup function PSETFUN

is to evaluate and preprocess any Jacobian-related data

needed by the preconditioner solve function PSOLFUN.

This might include forming a crude approximate Jacobian,

29

and performing an LU factorization on the resulting

approximation to M. This function will not be called in

advance of every call to PSOLFUN, but instead will be called

only as often as necessary to achieve convergence within the

Newton iteration. If the PSOLFUN function needs no

preparation, the PSETFUN function need not be provided.

For greater efficiency, the PSETFUN function may save

Jacobian-related data and reuse it, rather than generating it

from scratch. In this case, it should use the input flag JOK

to decide whether to recompute the data, and set the output

flag JCUR accordingly.

Each call to the PSETFUN function is preceded by a call to

ODEFUN with the same (t,y) arguments. Thus the PSETFUN

function can use any auxiliary data that is computed and

saved by the ODEFUN function and made accessible to PSETFUN.

The function PSETFUN must be defined as

FUNCTION [JCUR, FLAG] = PSETFUN(T,Y,FY,JOK,GAMMA)

and must return a logical flag JCUR (true if Jacobian information

was recomputed and false if saved data was reused). If PSETFUN

was successful, it must return FLAG=0. For a recoverable error (in

which case the setup will be retried) it must set FLAG to a positive

integer value. If an unrecoverable error occurs, it must set FLAG

to a negative value, in which case the integration will be halted.

The input argument FY contains the current value of f(t,y).

If the input logical flag JOK is false, it means that

Jacobian-related data must be recomputed from scratch. If it is true,

it means that Jacobian data, if saved from the previous PSETFUN call

can be reused (with the current value of GAMMA).

If a user data structure DATA was specified in CVodeInit, then

PSETFUN must be defined as

FUNCTION [JCUR, FLAG, NEW_DATA] = PSETFUN(T,Y,FY,JOK,GAMMA,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the flags JCUR

and FLAG, the PSETFUN function must also set NEW_DATA. Otherwise, it

should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead

to unnecessary copying).

See also CVPrecSolveFn, CVodeSetOptions

NOTE: PSETFUN is specified through the property PrecSetupFn to

CVodeSetOptions and is used only if the property LinearSolver was

set to ’GMRES’, ’BiCGStab’, or ’TFQMR’ and if the property PrecType

is not ’None’.

CVPrecSolveFn

30

Purpose

CVPrecSolveFn - type for user provided preconditioner solve function.

Synopsis

This is a script file.

Description

CVPrecSolveFn - type for user provided preconditioner solve function.

The user-supplied preconditioner solve function PSOLFN

is to solve a linear system P z = r in which the matrix P is

one of the preconditioner matrices P1 or P2, depending on the

type of preconditioning chosen.

The function PSOLFUN must be defined as

FUNCTION [Z, FLAG] = PSOLFUN(T,Y,FY,R)

and must return a vector Z containing the solution of Pz=r.

If PSOLFUN was successful, it must return FLAG=0. For a recoverable

error (in which case the step will be retried) it must set FLAG to a

positive value. If an unrecoverable error occurs, it must set FLAG

to a negative value, in which case the integration will be halted.

The input argument FY contains the current value of f(t,y).

If a user data structure DATA was specified in CVodeInit, then

PSOLFUN must be defined as

FUNCTION [Z, FLAG, NEW_DATA] = PSOLFUN(T,Y,FY,R,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the vector Z and

the flag FLAG, the PSOLFUN function must also set NEW_DATA. Otherwise,

it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would

lead to unnecessary copying).

See also CVPrecSetupFn, CVodeSetOptions

NOTE: PSOLFUN is specified through the property PrecSolveFn to

CVodeSetOptions and is used only if the property LinearSolver was

set to ’GMRES’, ’BiCGStab’, or ’TFQMR’ and if the property PrecType

is not ’None’.

CVGcommFn

Purpose

CVGcommFn - type for user provided communication function (BBDPre).

Synopsis

This is a script file.

Description

31

CVGcommFn - type for user provided communication function (BBDPre).

The function GCOMFUN must be defined as

FUNCTION FLAG = GCOMFUN(T, Y)

and can be used to perform all interprocess communication necessary

to evaluate the approximate right-hand side function for the BBDPre

preconditioner module.

If a user data structure DATA was specified in CVodeInit, then

GCOMFUN must be defined as

FUNCTION [FLAG, NEW_DATA] = GCOMFUN(T, Y, DATA)

If the local modifications to the user data structure are needed

in other user-provided functions then the GCOMFUN function must also

set NEW_DATA. Otherwise, it should set NEW_DATA=[] (do not set

NEW_DATA = DATA as it would lead to unnecessary copying).

The function GCOMFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also CVGlocalFn, CVodeSetOptions

NOTES:

GCOMFUN is specified through the GcommFn property in CVodeSetOptions

and is used only if the property PrecModule is set to ’BBDPre’.

Each call to GCOMFUN is preceded by a call to the RHS function

ODEFUN with the same arguments T and Y. Thus GCOMFUN can omit

any communication done by ODEFUN if relevant to the evaluation

of G by GLOCFUN. If all necessary communication was done by ODEFUN,

GCOMFUN need not be provided.

CVGlocalFn

Purpose

CVGlocalFn - type for user provided RHS approximation function (BBDPre).

Synopsis

This is a script file.

Description

CVGlocalFn - type for user provided RHS approximation function (BBDPre).

The function GLOCFUN must be defined as

FUNCTION [GLOC, FLAG] = GLOCFUN(T,Y)

and must return a vector GLOC corresponding to an approximation to f(t,y)

which will be used in the BBDPRE preconditioner module. The case where

G is mathematically identical to F is allowed.

If a user data structure DATA was specified in CVodeInit, then

GLOCFUN must be defined as

FUNCTION [GLOC, FLAG, NEW_DATA] = GLOCFUN(T,Y,DATA)

If the local modifications to the user data structure are needed

32

in other user-provided functions then, besides setting the vector G,

the GLOCFUN function must also set NEW_DATA. Otherwise, it should set

NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function GLOCFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also CVGcommFn, CVodeSetOptions

NOTE: GLOCFUN is specified through the GlocalFn property in CVodeSetOptions

and is used only if the property PrecModule is set to ’BBDPre’.

CVMonitorFn

Purpose

CVMonitorFn - type for user provided monitoring function for forward problems.

Synopsis

This is a script file.

Description

CVMonitorFn - type for user provided monitoring function for forward problems.

The function MONFUN must be defined as

FUNCTION [] = MONFUN(CALL, T, Y, YQ, YS)

It is called after every internal CVode step and can be used to

monitor the progress of the solver. MONFUN is called with CALL=0

from CVodeInit at which time it should initialize itself and it

is called with CALL=2 from CVodeFree. Otherwise, CALL=1.

It receives as arguments the current time T, solution vector Y,

and, if they were computed, quadrature vector YQ, and forward

sensitivity matrix YS. If YQ and/or YS were not computed they

are empty here.

If additional data is needed inside MONFUN, it must be defined

as

FUNCTION NEW_MONDATA = MONFUN(CALL, T, Y, YQ, YS, MONDATA)

If the local modifications to the user data structure need to be

saved (e.g. for future calls to MONFUN), then MONFUN must set

NEW_MONDATA. Otherwise, it should set NEW_MONDATA=[]

(do not set NEW_MONDATA = DATA as it would lead to unnecessary copying).

A sample monitoring function, CVodeMonitor, is provided with CVODES.

See also CVodeSetOptions, CVodeMonitor

NOTES:

33

MONFUN is specified through the MonitorFn property in CVodeSetOptions.

If this property is not set, or if it is empty, MONFUN is not used.

MONDATA is specified through the MonitorData property in CVodeSetOptions.

See CVodeMonitor for an implementation example.

CVRhsFnB

Purpose

CVRhsFnB - type for user provided RHS function for backward problems.

Synopsis

This is a script file.

Description

CVRhsFnB - type for user provided RHS function for backward problems.

The function ODEFUNB must be defined either as

FUNCTION [YBD, FLAG] = ODEFUNB(T,Y,YB)

or as

FUNCTION [YBD, FLAG, NEW_DATA] = ODEFUNB(T,Y,YB,DATA)

depending on whether a user data structure DATA was specified in

CVodeInit. In either case, it must return the vector YBD

corresponding to fB(t,y,yB).

The function ODEFUNB must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also CVodeInitB

CVQuadRhsFnB

Purpose

CVQuadRhsFnB - type for user provided quadrature RHS function for backward problems

Synopsis

This is a script file.

Description

CVQuadRhsFnB - type for user provided quadrature RHS function for backward problems

The function ODEQFUNB must be defined either as

FUNCTION [YQBD, FLAG] = ODEQFUNB(T,Y,YB)

or as

FUNCTION [YQBD, FLAG, NEW_DATA] = ODEQFUNB(T,Y,YB,DATA)

depending on whether a user data structure DATA was specified in

CVodeInit. In either case, it must return the vector YQBD

34

corresponding to fQB(t,y,yB), the integrand for the integral to be

evaluated on the backward phase.

The function ODEQFUNB must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also CVodeQuadInitB

CVDenseJacFnB

Purpose

CVDenseJacFnB - type for user provided dense Jacobian function for backward problems.

Synopsis

This is a script file.

Description

CVDenseJacFnB - type for user provided dense Jacobian function for backward problems.

The function DJACFUNB must be defined either as

FUNCTION [JB, FLAG] = DJACFUNB(T, Y, YB, FYB)

or as

FUNCTION [JB, FLAG, NEW_DATA] = DJACFUNB(T, Y, YB, FYB, DATA)

depending on whether a user data structure DATA was specified in

CVodeInit. In either case, it must return the matrix JB, the

Jacobian of fB(t,y,yB), with respect to yB. The input argument

FYB contains the current value of f(t,y,yB).

The function DJACFUNB must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also CVodeSetOptions

NOTE: DJACFUNB is specified through the property JacobianFn to

CVodeSetOptions and is used only if the property LinearSolver

was set to ’Dense’.

CVBandJacFnB

Purpose

CVBandJacFnB - type for user provided banded Jacobian function for backward problems.

Synopsis

This is a script file.

Description

35

CVBandJacFnB - type for user provided banded Jacobian function for backward problems.

The function BJACFUNB must be defined either as

FUNCTION [JB, FLAG] = BJACFUNB(T, Y, YB, FYB)

or as

FUNCTION [JB, FLAG, NEW_DATA] = BJACFUNB(T, Y, YB, FYB, DATA)

depending on whether a user data structure DATA was specified in

CVodeInit. In either case, it must return the matrix JB, the

Jacobian of fB(t,y,yB), with respect to yB. The input argument

FYB contains the current value of f(t,y,yB).

The function BJACFUNB must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also CVodeSetOptions

See the CVODES user guide for more informaiton on the structure of

a banded Jacobian.

NOTE: BJACFUNB is specified through the property JacobianFn to

CVodeSetOptions and is used only if the property LinearSolver

was set to ’Band’.

CVJacTimesVecFnB

Purpose

CVJacTimesVecFnB - type for user provided Jacobian times vector function for backward problems.

Synopsis

This is a script file.

Description

CVJacTimesVecFnB - type for user provided Jacobian times vector function for backward problems.

The function JTVFUNB must be defined either as

FUNCTION [JVB, FLAG] = JTVFUNB(T,Y,YB,FYB,VB)

or as

FUNCTION [JVB, FLAG, NEW_DATA] = JTVFUNB(T,Y,YB,FYB,VB,DATA)

depending on whether a user data structure DATA was specified in

CVodeInit. In either case, it must return the vector JVB, the

product of the Jacobian of fB(t,y,yB) with respect to yB and a vector

vB. The input argument FYB contains the current value of f(t,y,yB).

The function JTVFUNB must set FLAG=0 if successful, or FLAG~=0 if

a failure occurred.

See also CVodeSetOptions

NOTE: JTVFUNB is specified through the property JacobianFn to

CVodeSetOptions and is used only if the property LinearSolver

was set to ’GMRES’, ’BiCGStab’, or ’TFQMR’.

36

CVPrecSetupFnB

Purpose

CVPrecSetupFnB - type for user provided preconditioner setup function for backward problems.

Synopsis

This is a script file.

Description

CVPrecSetupFnB - type for user provided preconditioner setup function for backward problems.

The user-supplied preconditioner setup function PSETFUN and

the user-supplied preconditioner solve function PSOLFUN

together must define left and right preconditoner matrices

P1 and P2 (either of which may be trivial), such that the

product P1*P2 is an approximation to the Newton matrix

M = I - gamma*J. Here J is the system Jacobian J = df/dy,

and gamma is a scalar proportional to the integration step

size h. The solution of systems P z = r, with P = P1 or P2,

is to be carried out by the PrecSolve function, and PSETFUN

is to do any necessary setup operations.

The user-supplied preconditioner setup function PSETFUN

is to evaluate and preprocess any Jacobian-related data

needed by the preconditioner solve function PSOLFUN.

This might include forming a crude approximate Jacobian,

and performing an LU factorization on the resulting

approximation to M. This function will not be called in

advance of every call to PSOLFUN, but instead will be called

only as often as necessary to achieve convergence within the

Newton iteration. If the PSOLFUN function needs no

preparation, the PSETFUN function need not be provided.

For greater efficiency, the PSETFUN function may save

Jacobian-related data and reuse it, rather than generating it

from scratch. In this case, it should use the input flag JOK

to decide whether to recompute the data, and set the output

flag JCUR accordingly.

Each call to the PSETFUN function is preceded by a call to

ODEFUN with the same (t,y) arguments. Thus the PSETFUN

function can use any auxiliary data that is computed and

saved by the ODEFUN function and made accessible to PSETFUN.

The function PSETFUNB must be defined either as

FUNCTION [JCURB, FLAG] = PSETFUNB(T,Y,YB,FYB,JOK,GAMMAB)

or as

FUNCTION [JCURB, FLAG, NEW_DATA] = PSETFUNB(T,Y,YB,FYB,JOK,GAMMAB,DATA)

depending on whether a user data structure DATA was specified in

CVodeInit. In either case, it must return the flags JCURB and FLAG.

37

See also CVPrecSolveFnB, CVodeSetOptions

NOTE: PSETFUNB is specified through the property PrecSetupFn to

CVodeSetOptions and is used only if the property LinearSolver was

set to ’GMRES’, ’BiCGStab’, or ’TFQMR’ and if the property PrecType

is not ’None’.

CVPrecSolveFnB

Purpose

CVPrecSolveFnB - type for user provided preconditioner solve function for backward problems.

Synopsis

This is a script file.

Description

CVPrecSolveFnB - type for user provided preconditioner solve function for backward problems.

The user-supplied preconditioner solve function PSOLFN

is to solve a linear system P z = r in which the matrix P is

one of the preconditioner matrices P1 or P2, depending on the

type of preconditioning chosen.

The function PSOLFUNB must be defined either as

FUNCTION [ZB, FLAG] = PSOLFUNB(T,Y,YB,FYB,RB)

or as

FUNCTION [ZB, FLAG, NEW_DATA] = PSOLFUNB(T,Y,YB,FYB,RB,DATA)

depending on whether a user data structure DATA was specified in

CVodeInit. In either case, it must return the vector ZB and the

flag FLAG.

See also CVPrecSetupFnB, CVodeSetOptions

NOTE: PSOLFUNB is specified through the property PrecSolveFn to

CVodeSetOptions and is used only if the property LinearSolver was

set to ’GMRES’, ’BiCGStab’, or ’TFQMR’ and if the property PrecType

is not ’None’.

CVGcommFnB

Purpose

CVGcommFn - type for user provided communication function (BBDPre) for backward problems.

Synopsis

This is a script file.

Description

38

CVGcommFn - type for user provided communication function (BBDPre) for backward problems.

The function GCOMFUNB must be defined either as

FUNCTION FLAG = GCOMFUNB(T, Y, YB)

or as

FUNCTION [FLAG, NEW_DATA] = GCOMFUNB(T, Y, YB, DATA)

depending on whether a user data structure DATA was specified in

CVodeInit.

The function GCOMFUNB must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also CVGlocalFnB, CVodeSetOptions

NOTES:

GCOMFUNB is specified through the GcommFn property in CVodeSetOptions

and is used only if the property PrecModule is set to ’BBDPre’.

Each call to GCOMFUNB is preceded by a call to the RHS function

ODEFUNB with the same arguments T, Y, and YB. Thus GCOMFUNB can

omit any communication done by ODEFUNB if relevant to the evaluation

of G by GLOCFUNB. If all necessary communication was done by ODEFUNB,

GCOMFUNB need not be provided.

CVGlocalFnB

Purpose

CVGlocalFnB - type for user provided RHS approximation function (BBDPre) for backward problems.

Synopsis

This is a script file.

Description

CVGlocalFnB - type for user provided RHS approximation function (BBDPre) for backward problems.

The function GLOCFUNB must be defined either as

FUNCTION [GLOCB, FLAG] = GLOCFUNB(T,Y,YB)

or as

FUNCTION [GLOCB, FLAG, NEW_DATA] = GLOCFUNB(T,Y,YB,DATA)

depending on whether a user data structure DATA was specified in

CVodeInit. In either case, it must return the vector GLOCB

corresponding to an approximation to fB(t,y,yB).

The function GLOCFUNB must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also CVGcommFnB, CVodeSetOptions

NOTE: GLOCFUNB is specified through the GlocalFn property in CVodeSetOptions

and is used only if the property PrecModule is set to ’BBDPre’.

39

CVMonitorFnB

Purpose

CVMonitorFnB - type of user provided monitoring function for backward problems.

Synopsis

This is a script file.

Description

CVMonitorFnB - type of user provided monitoring function for backward problems.

The function MONFUNB must be defined as

FUNCTION [] = MONFUNB(CALL, IDXB, T, Y, YQ)

It is called after every internal CVodeB step and can be used to

monitor the progress of the solver. MONFUNB is called with CALL=0

from CVodeInitB at which time it should initialize itself and it

is called with CALL=2 from CVodeFree. Otherwise, CALL=1.

It receives as arguments the index of the backward problem (as

returned by CVodeInitB), the current time T, solution vector Y,

and, if it was computed, the quadrature vector YQ. If quadratures

were not computed for this backward problem, YQ is empty here.

If additional data is needed inside MONFUNB, it must be defined

as

FUNCTION NEW_MONDATA = MONFUNB(CALL, IDXB, T, Y, YQ, MONDATA)

If the local modifications to the user data structure need to be

saved (e.g. for future calls to MONFUNB), then MONFUNB must set

NEW_MONDATA. Otherwise, it should set NEW_MONDATA=[]

(do not set NEW_MONDATA = DATA as it would lead to unnecessary copying).

A sample monitoring function, CVodeMonitorB, is provided with CVODES.

See also CVodeSetOptions, CVodeMonitorB

NOTES:

MONFUNB is specified through the MonitorFn property in CVodeSetOptions.

If this property is not set, or if it is empty, MONFUNB is not used.

MONDATA is specified through the MonitorData property in CVodeSetOptions.

See CVodeMonitorB for an implementation example.

40

4 matlab Interface to idas

The matlab interface to idas provides access to all functionality of the idas solver, including DAE
simulation and sensitvity analysis (both forward and adjoint).

The interface consists of 9 user-callable functions. The user must provide several required and
optional user-supplied functions which define the problem to be solved. The user-callable functions are
listed in Tables 5, 6, and 7 for IVP solution, forward sensitivity analysis (FSA), and adjoint sensitivity
analysis (ASA), respectively. For completness, some functions appear in more than one table. The
types of user-supplied functions are listed in Table 8. All these functions are fully documented later
in this section. For more in depth details, consult also the idas user guide [4].

To illustrate the use of the idas matlab interface, several example problems are provided with
sundialsTB, both for serial and parallel computations. Most of them are matlab translations of
example problems provided with idas.

Table 5: idas matlab interface functions for DAE integration

IDASetOptions create an options structure for an DAE problem. 42
IDAQuadSetOptions create an options structure for quadrature integration. 46

IDAInit allocate and initialize memory for idas. 49
IDAQuadInit allocate and initialize memory for quadrature integration. 49

IDAReInit reinitialize memory for idas. 52
IDAQuadReInit reinitialize memory for quadrature integration. 52

IDACalcIC compute consistent initial conditions. 54

IDASolve integrate the DAE problem. 56

IDAGetStats return statistics for the idas solver. 58
IDAGet extract data from idas memory. 61

IDAFree deallocate memory for the idas solver. 63

IDAMonitor monitoring function. 120

Table 6: idas matlab interface functions for FSA

IDASetOptions create an options structure for an DAE problem. 42
IDAQuadSetOptions create an options structure for quadrature integration. 46
IDASensSetOptions create an options structure for FSA. 47

IDAInit allocate and initialize memory for idas. 49
IDAQuadInit allocate and initialize memory for quadrature integration. 49
IDASensInit allocate and initialize memory for FSA. 50

IDAReInit reinitialize memory for idas. 52
IDAQuadReInit reinitialize memory for quadrature integration. 52
IDASensReInit reinitialize memory for FSA. 53

IDASensToggleOff temporarily deactivates FSA. 58

IDACalcIC compute consistent initial conditions. 54

IDASolve integrate the DAE problem. 56

IDAGetStats return statistics for the idas solver. 58
IDAGet extract data from idas memory. 61

IDAFree deallocate memory for the idas solver. 63

IDAMonitor monitoring function. 120

41

Table 7: idas matlab interface functions for ASA

IDASetOptions create an options structure for an DAE problem. 42
IDAQuadSetOptions create an options structure for quadrature integration. 46

IDAInit allocate and initialize memory for the forward problem. 49
IDAQuadInit allocate and initialize memory for forward quadrature integration. 49

IDAQuadReInit reinitialize memory for forward quadrature integration. 52
IDAReInit reinitialize memory for the forward problem. 52

IDAAdjInit allocate and initialize memory for ASA. 50
IDAInitB allocate and initialize a backward problem. 51

IDAAdjReInit reinitialize memory for ASA. 53
IDAReInitB reinitialize a backward problem. 53

IDACalcIC compute consistent initial conditions. 54
IDACalcICB compute consistent initial conditions for the backward problem. 56

IDASolve integrate the forward DAE problem. 56
IDASolveB integrate the backward problems. 57

IDAGetStats return statistics for the integration of the forward problem. 58
IDAGetStatsB return statistics for the integration of a backward problem. 60

IDAGet extract data from idas memory. 61

IDAFree deallocate memory for the idas solver. 63

IDAMonitor monitoring function for forward problem. 120
IDAMonitorB monitoring function for backward problems. 135

4.1 Interface functions

IDASetOptions

Purpose

IDASetOptions creates an options structure for IDAS.

Synopsis

function options = IDASetOptions(varargin)

Description

IDASetOptions creates an options structure for IDAS.

Usage: OPTIONS = IDASetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...)

OPTIONS = IDASetOptions(OLDOPTIONS,’NAME1’,VALUE1,...)

OPTIONS = IDASetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...) creates

a IDAS options structure OPTIONS in which the named properties have

the specified values. Any unspecified properties have default values.

It is sufficient to type only the leading characters that uniquely

identify the property. Case is ignored for property names.

OPTIONS = IDASetOptions(OLDOPTIONS,’NAME1’,VALUE1,...) alters an

existing options structure OLDOPTIONS.

42

Table 8: idas matlab function types

F
or

w
ar

d
p
ro

b
le

m
s

IDARhsFn residual function 64
IDARootFn root-finding function 65

IDAQuadRhsFn quadrature RHS function 65
IDASensRhsFn sensitivity RHS function 64

IDADenseJacFn dense Jacobian function 66
IDABandJacFn banded Jacobian function 67

IDAJacTimesVecFn Jacobian times vector function 67
IDAPrecSetupFn preconditioner setup function 68
IDAPrecSolveFn preconditioner solve function 69

IDAGlocalFn residual approximation function (BBDPre) 71
IDAGcommFn communication function (BBDPre) 70
IDAMonitorFn monitoring function 71

B
ac

k
w

ar
d

p
ro

b
le

m
s

IDARhsFnB residual function 73
IDAQuadRhsFnB quadrature RHS function 73
IDADenseJacFnB dense Jacobian function 74
IDABandJacFnB banded Jacobian function 74

IDAJacTimesVecFnB Jacobian times vector function 75
IDAPrecSetupFnB preconditioner setup function 76
IDAPrecSolveFnB preconditioner solve function 76

IDAGlocalFnB residual approximation function (BBDPre) 77
IDAGcommFnB communication function (BBDPre) 77
IDAMonitorFnB monitoring function 78

IDASetOptions with no input arguments displays all property names

and their possible values.

IDASetOptions properties

(See also the IDAS User Guide)

UserData - User data passed unmodified to all functions [empty]

If UserData is not empty, all user provided functions will be

passed the problem data as their last input argument. For example,

the RES function must be defined as R = DAEFUN(T,YY,TP,DATA).

RelTol - Relative tolerance [positive scalar | 1e-4]

RelTol defaults to 1e-4 and is applied to all components of the solution

vector. See AbsTol.

AbsTol - Absolute tolerance [positive scalar or vector | 1e-6]

The relative and absolute tolerances define a vector of error weights

with components

ewt(i) = 1/(RelTol*|y(i)| + AbsTol) if AbsTol is a scalar

ewt(i) = 1/(RelTol*|y(i)| + AbsTol(i)) if AbsTol is a vector

This vector is used in all error and convergence tests, which

use a weighted RMS norm on all error-like vectors v:

WRMSnorm(v) = sqrt((1/N) sum(i=1..N) (v(i)*ewt(i))^2),

where N is the problem dimension.

MaxNumSteps - Maximum number of steps [positive integer | 500]

IDASolve will return with an error after taking MaxNumSteps internal steps

in its attempt to reach the next output time.

43

InitialStep - Suggested initial stepsize [positive scalar]

By default, IDASolve estimates an initial stepsize h0 at the initial time

t0 as the solution of

WRMSnorm(h0^2 ydd / 2) = 1

where ydd is an estimated second derivative of y(t0).

MaxStep - Maximum stepsize [positive scalar | inf]

Defines an upper bound on the integration step size.

MaxOrder - Maximum method order [1-5 for BDF | 5]

Defines an upper bound on the linear multistep method order.

StopTime - Stopping time [scalar]

Defines a value for the independent variable past which the solution

is not to proceed.

RootsFn - Rootfinding function [function]

To detect events (roots of functions), set this property to the event

function. See IDARootFn.

NumRoots - Number of root functions [integer | 0]

Set NumRoots to the number of functions for which roots are monitored.

If NumRoots is 0, rootfinding is disabled.

SuppressAlgVars - Suppres algebraic vars. from error test [on | off]

VariableTypes - Alg./diff. variables [vector]

ConstraintTypes - Simple bound constraints [vector]

LinearSolver - Linear solver type [Dense|Band|GMRES|BiCGStab|TFQMR]

Specifies the type of linear solver to be used for the Newton nonlinear

solver. Valid choices are: Dense (direct, dense Jacobian), Band (direct,

banded Jacobian), GMRES (iterative, scaled preconditioned GMRES),

BiCGStab (iterative, scaled preconditioned stabilized BiCG), TFQMR

(iterative, scaled transpose-free QMR).

The GMRES, BiCGStab, and TFQMR are matrix-free linear solvers.

JacobianFn - Jacobian function [function]

This propeerty is overloaded. Set this value to a function that returns

Jacobian information consistent with the linear solver used (see Linsolver).

If not specified, IDAS uses difference quotient approximations.

For the Dense linear solver, JacobianFn must be of type IDADenseJacFn and

must return a dense Jacobian matrix. For the Band linear solver, JacobianFn

must be of type IDABandJacFn and must return a banded Jacobian matrix.

For the iterative linear solvers, GMRES, BiCGStab, and TFQMR, JacobianFn must

be of type IDAJacTimesVecFn and must return a Jacobian-vector product.

KrylovMaxDim - Maximum number of Krylov subspace vectors [integer | 5]

Specifies the maximum number of vectors in the Krylov subspace. This property

is used only if an iterative linear solver, GMRES, BiCGStab, or TFQMR is used

(see LinSolver).

GramSchmidtType - Gram-Schmidt orthogonalization [Classical | Modified]

Specifies the type of Gram-Schmidt orthogonalization (classical or modified).

This property is used only if the GMRES linear solver is used (see LinSolver).

PrecModule - Preconditioner module [BBDPre | UserDefined]

If PrecModule = ’UserDefined’, then the user must provide at least a

preconditioner solve function (see PrecSolveFn)

IDAS provides one general-purpose preconditioner module, BBDPre, which can

be only used with parallel vectors. It provide a preconditioner matrix that

is block-diagonal with banded blocks. The blocking corresponds to the

distribution of the dependent variable vector y among the processors.

Each preconditioner block is generated from the Jacobian of the local part

44

(on the current processor) of a given function g(t,y,yp) approximating

f(t,y,yp) (see GlocalFn). The blocks are generated by a difference quotient

scheme on each processor independently. This scheme utilizes an assumed

banded structure with given half-bandwidths, mldq and mudq (specified through

LowerBwidthDQ and UpperBwidthDQ, respectively). However, the banded Jacobian

block kept by the scheme has half-bandwiths ml and mu (specified through

LowerBwidth and UpperBwidth), which may be smaller.

PrecSetupFn - Preconditioner setup function [function]

If PrecType is not ’None’, PrecSetupFn specifies an optional function which,

together with PrecSolve, defines the preconditioner matrix, which must be an

aproximation to the Newton matrix. PrecSetupFn must be of type IDAPrecSetupFn.

PrecSolveFn - Preconditioner solve function [function]

If PrecType is not ’None’, PrecSolveFn specifies a required function which

must solve a linear system Pz = r, for given r. PrecSolveFn must be of type

IDAPrecSolveFn.

GlocalFn - Local residual approximation function for BBDPre [function]

If PrecModule is BBDPre, GlocalFn specifies a required function that

evaluates a local approximation to the DAE residual. GlocalFn must

be of type IDAGlocFn.

GcommFn - Inter-process communication function for BBDPre [function]

If PrecModule is BBDPre, GcommFn specifies an optional function

to perform any inter-process communication required for the evaluation of

GlocalFn. GcommFn must be of type IDAGcommFn.

LowerBwidth - Jacobian/preconditioner lower bandwidth [integer | 0]

This property is overloaded. If the Band linear solver is used (see LinSolver),

it specifies the lower half-bandwidth of the band Jacobian approximation.

If one of the three iterative linear solvers, GMRES, BiCGStab, or TFQMR is used

(see LinSolver) and if the BBDPre preconditioner module in IDAS is used

(see PrecModule), it specifies the lower half-bandwidth of the retained

banded approximation of the local Jacobian block.

LowerBwidth defaults to 0 (no sub-diagonals).

UpperBwidth - Jacobian/preconditioner upper bandwidth [integer | 0]

This property is overloaded. If the Band linear solver is used (see LinSolver),

it specifies the upper half-bandwidth of the band Jacobian approximation.

If one of the three iterative linear solvers, GMRES, BiCGStab, or TFQMR is used

(see LinSolver) and if the BBDPre preconditioner module in IDAS is used

(see PrecModule), it specifies the upper half-bandwidth of the retained

banded approximation of the local Jacobian block.

UpperBwidth defaults to 0 (no super-diagonals).

LowerBwidthDQ - BBDPre preconditioner DQ lower bandwidth [integer | 0]

Specifies the lower half-bandwidth used in the difference-quotient Jacobian

approximation for the BBDPre preconditioner (see PrecModule).

UpperBwidthDQ - BBDPre preconditioner DQ upper bandwidth [integer | 0]

Specifies the upper half-bandwidth used in the difference-quotient Jacobian

approximation for the BBDPre preconditioner (see PrecModule).

MonitorFn - User-provied monitoring function [function]

Specifies a function that is called after each successful integration step.

This function must have type IDAMonitorFn or IDAMonitorFnB, depending on

whether these options are for a forward or a backward problem, respectively.

Sample monitoring functions IDAMonitor and IDAMonitorB are provided

with IDAS.

MonitorData - User-provied data for the monitoring function [struct]

Specifies a data structure that is passed to the MonitorFn function every time

45

it is called.

SensDependent - Backward problem depending on sensitivities [false | true]

Specifies whether the backward problem right-hand side depends on

forward sensitivites. If TRUE, the residual function provided for

this backward problem must have the appropriate type (see IDAResFnB).

ErrorMessages - Post error/warning messages [true | false]

Note that any errors in IDAInit will result in a Matlab error, thus

stoping execution. Only subsequent calls to IDAS functions will respect

the value specified for ’ErrorMessages’.

NOTES:

The properties listed above that can only be used for forward problems

are: ConstraintTypes, StopTime, RootsFn, and NumRoots.

The property SensDependent is relevant only for backward problems.

See also

IDAInit, IDAReInit, IDAInitB, IDAReInitB

IDAResFn, IDARootFn

IDADenseJacFn, IDABandJacFn, IDAJacTimesVecFn

IDAPrecSetupFn, IDAPrecSolveFn

IDAGlocalFn, IDAGcommFn

IDAMonitorFn

IDAResFnB

IDADenseJacFnB, IDABandJacFnB, IDAJacTimesVecFnB

IDAPrecSetupFnB, IDAPrecSolveFnB

IDAGlocalFnB, IDAGcommFnB

IDAMonitorFnB

IDAQuadSetOptions

Purpose

IDAQuadSetOptions creates an options structure for IDAS.

Synopsis

function options = IDAQuadSetOptions(varargin)

Description

IDAQuadSetOptions creates an options structure for IDAS.

Usage: OPTIONS = IDAQuadSetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...)

OPTIONS = IDAQuadSetOptions(OLDOPTIONS,’NAME1’,VALUE1,...)

OPTIONS = IDAQuadSetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...) creates

an IDAS options structure OPTIONS in which the named properties have

the specified values. Any unspecified properties have default values.

It is sufficient to type only the leading characters that uniquely

identify the property. Case is ignored for property names.

46

OPTIONS = IDAQuadSetOptions(OLDOPTIONS,’NAME1’,VALUE1,...) alters an

existing options structure OLDOPTIONS.

IDAQuadSetOptions with no input arguments displays all property names

and their possible values.

IDAQuadSetOptions properties

(See also the IDAS User Guide)

ErrControl - Error control strategy for quadrature variables [on | off]

Specifies whether quadrature variables are included in the error test.

RelTol - Relative tolerance for quadrature variables [scalar 1e-4]

Specifies the relative tolerance for quadrature variables. This parameter is

used only if QuadErrCon=on.

AbsTol - Absolute tolerance for quadrature variables [scalar or vector 1e-6]

Specifies the absolute tolerance for quadrature variables. This parameter is

used only if QuadErrCon=on.

SensDependent - Backward problem depending on sensitivities [false | true]

Specifies whether the backward problem quadrature right-hand side depends

on forward sensitivites. If TRUE, the right-hand side function provided for

this backward problem must have the appropriate type (see IDAQuadRhsFnB).

See also

IDAQuadInit, IDAQuadReInit.

IDAQuadInitB, IDAQuadReInitB

IDASensSetOptions

Purpose

IDASensSetOptions creates an options structure for FSA with IDAS.

Synopsis

function options = IDASensSetOptions(varargin)

Description

IDASensSetOptions creates an options structure for FSA with IDAS.

Usage: OPTIONS = IDASensSetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...)

OPTIONS = IDASensSetOptions(OLDOPTIONS,’NAME1’,VALUE1,...)

OPTIONS = IDASensSetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...) creates

a IDAS options structure OPTIONS in which the named properties have

the specified values. Any unspecified properties have default values.

It is sufficient to type only the leading characters that uniquely

identify the property. Case is ignored for property names.

OPTIONS = IDASensSetOptions(OLDOPTIONS,’NAME1’,VALUE1,...) alters an

existing options structure OLDOPTIONS.

47

IDASensSetOptions with no input arguments displays all property names

and their possible values.

IDASensSetOptions properties

(See also the IDAS User Guide)

method - FSA solution method [’Simultaneous’ | ’Staggered’]

Specifies the FSA method for treating the nonlinear system solution for

sensitivity variables. In the simultaneous case, the nonlinear systems

for states and all sensitivities are solved simultaneously. In the

Staggered case, the nonlinear system for states is solved first and then

the nonlinear systems for all sensitivities are solved at the same time.

ParamField - Problem parameters [string]

Specifies the name of the field in the user data structure (specified through

the ’UserData’ field with IDASetOptions) in which the nominal values of the problem

parameters are stored. This property is used only if IDAS will use difference

quotient approximations to the sensitivity residuals (see IDASensResFn).

ParamList - Parameters with respect to which FSA is performed [integer vector]

Specifies a list of Ns parameters with respect to which sensitivities are to

be computed. This property is used only if IDAS will use difference-quotient

approximations to the sensitivity residuals. Its length must be Ns,

consistent with the number of columns of yS0 (see IDASensInit).

ParamScales - Order of magnitude for problem parameters [vector]

Provides order of magnitude information for the parameters with respect to

which sensitivities are computed. This information is used if IDAS

approximates the sensitivity residuals or if IDAS estimates integration

tolerances for the sensitivity variables (see RelTol and AbsTol).

RelTol - Relative tolerance for sensitivity variables [positive scalar]

Specifies the scalar relative tolerance for the sensitivity variables.

See also AbsTol.

AbsTol - Absolute tolerance for sensitivity variables [row-vector or matrix]

Specifies the absolute tolerance for sensitivity variables. AbsTol must be

either a row vector of dimension Ns, in which case each of its components is

used as a scalar absolute tolerance for the coresponding sensitivity vector,

or a N x Ns matrix, in which case each of its columns is used as a vector

of absolute tolerances for the corresponding sensitivity vector.

By default, IDAS estimates the integration tolerances for sensitivity

variables, based on those for the states and on the order of magnitude

information for the problem parameters specified through ParamScales.

ErrControl - Error control strategy for sensitivity variables [false | true]

Specifies whether sensitivity variables are included in the error control test.

Note that sensitivity variables are always included in the nonlinear system

convergence test.

DQtype - Type of DQ approx. of the sensi. RHS [Centered | Forward]

Specifies whether to use centered (second-order) or forward (first-order)

difference quotient approximations of the sensitivity eqation residuals.

This property is used only if a user-defined sensitivity residual function

was not provided.

DQparam - Cut-off parameter for the DQ approx. of the sensi. RES [scalar | 0.0]

Specifies the value which controls the selection of the difference-quotient

scheme used in evaluating the sensitivity residuals (switch between

simultaneous or separate evaluations of the two components in the sensitivity

right-hand side). The default value 0.0 indicates the use of simultaenous approximation

exclusively (centered or forward, depending on the value of DQtype.

48

For DQparam >= 1, IDAS uses a simultaneous approximation if the estimated

DQ perturbations for states and parameters are within a factor of DQparam,

and separate approximations otherwise. Note that a value DQparam < 1

will inhibit switching! This property is used only if a user-defined sensitivity

residual function was not provided.

See also

IDASensInit, IDASensReInit

IDAInit

Purpose

IDAInit allocates and initializes memory for IDAS.

Synopsis

function status = IDAInit(fct,t0,yy0,yp0,options)

Description

IDAInit allocates and initializes memory for IDAS.

Usage: IDAInit (DAEFUN, T0, YY0, YP0 [, OPTIONS])

DAEFUN is a function defining the DAE residual: f(t,yy,yp).

This function must return a vector containing the current

value of the residual.

T0 is the initial value of t.

YY0 is the initial condition vector y(t0).

YP0 is the initial condition vector y’(t0).

OPTIONS is an (optional) set of integration options, created with

the IDASetOptions function.

See also: IDASetOptions, IDAResFn

IDAQuadInit

Purpose

IDAQuadInit allocates and initializes memory for quadrature integration.

Synopsis

function status = IDAQuadInit(fctQ, yQ0, options)

Description

IDAQuadInit allocates and initializes memory for quadrature integration.

Usage: IDAQuadInit (QFUN, YQ0 [, OPTIONS])

QFUN is a function defining the righ-hand sides of the quadrature

ODEs yQ’ = fQ(t,y).

YQ0 is the initial conditions vector yQ(t0).

OPTIONS is an (optional) set of QUAD options, created with

the IDASetQuadOptions function.

See also: IDASetQuadOptions, IDAQuadRhsFn

49

IDASensInit

Purpose

IDASensInit allocates and initializes memory for FSA with IDAS.

Synopsis

function status = IDASensInit(Ns,fctS,yyS0,ypS0,options)

Description

IDASensInit allocates and initializes memory for FSA with IDAS.

Usage: IDASensInit (NS, SFUN, YYS0, YPS0 [, OPTIONS])

NS is the number of parameters with respect to which sensitivities

are desired

SFUN is a function defining the residual of the sensitivity DAEs

fS(t,y,yp,yS,ypS).

YYS0, YPS0 Initial conditions for sensitivity variables.

YYS0 and YPS0 must be matrices with N rows and Ns columns, where N is

the problem dimension and Ns the number of sensitivity systems.

OPTIONS is an (optional) set of FSA options, created with

the IDASetFSAOptions function.

See also IDASensSetOptions, IDAInit, IDASensResFn

IDAAdjInit

Purpose

IDAAdjInit allocates and initializes memory for ASA with IDAS.

Synopsis

function status = IDAAdjInit(steps, interp)

Description

IDAAdjInit allocates and initializes memory for ASA with IDAS.

Usage: IDAAdjInit(STEPS, INTEPR)

STEPS specifies the (maximum) number of integration steps between two

consecutive check points.

INTERP Specifies the type of interpolation used for estimating the forward

solution during the backward integration phase. INTERP should be

’Hermite’, indicating cubic Hermite interpolation, or ’Polynomial’,

indicating variable order polynomial interpolation.

50

IDAInitB

Purpose

IDAInitB allocates and initializes backward memory for CVODES.

Synopsis

function [idxB, status] = IDAInitB(fctB, tB0, yyB0, ypB0, optionsB)

Description

IDAInitB allocates and initializes backward memory for CVODES.

Usage: IDXB = IDAInitB (DAEFUNB, TB0, YYB0, YPB0 [, OPTIONSB])

DAEFUNB is a function defining the adjoint DAE: F(t,y,y’,yB,yB’)=0

This function must return a vector containing the current

value of the adjoint DAE residual.

TB0 is the final value of t.

YYB0 is the final condition vector yB(tB0).

YPB0 is the final condition vector yB’(tB0).

OPTIONSB is an (optional) set of integration options, created with

the IDASetOptions function.

IDAInitB returns the index IDXB associated with this backward

problem. This index must be passed as an argument to any subsequent

functions related to this backward problem.

See also: IDASetOptions, IDAResFnB

IDAQuadInitB

Purpose

IDAQuadInitB allocates and initializes memory for backward quadrature integration.

Synopsis

function status = IDAQuadInitB(idxB, fctQB, yQB0, optionsB)

Description

IDAQuadInitB allocates and initializes memory for backward quadrature integration.

Usage: IDAQuadInitB (IDXB, QBFUN, YQB0 [, OPTIONS])

IDXB is the index of the backward problem, returned by

IDAInitB.

QBFUN is a function defining the righ-hand sides of the

backward ODEs yQB’ = fQB(t,y,yB).

YQB0 is the final conditions vector yQB(tB0).

OPTIONS is an (optional) set of QUAD options, created with

the IDASetQuadOptions function.

See also: IDAInitB, IDASetQuadOptions, IDAQuadRhsFnB

51

IDAReInit

Purpose

IDAReInit reinitializes memory for IDAS.

Synopsis

function status = IDAReInit(t0,yy0,yp0,options)

Description

IDAReInit reinitializes memory for IDAS.

where a prior call to IDAInit has been made with the same

problem size N. IDAReInit performs the same input checking

and initializations that IDAInit does, but it does no

memory allocation, assuming that the existing internal memory

is sufficient for the new problem.

Usage: IDAReInit (T0, YY0, YP0 [, OPTIONS])

T0 is the initial value of t.

YY0 is the initial condition vector y(t0).

YP0 is the initial condition vector y’(t0).

OPTIONS is an (optional) set of integration options, created with

the IDASetOptions function.

See also: IDASetOptions, IDAInit

IDAQuadReInit

Purpose

IDAQuadReInit reinitializes IDAS’s quadrature-related memory

Synopsis

function status = IDAQuadReInit(yQ0, options)

Description

IDAQuadReInit reinitializes IDAS’s quadrature-related memory

assuming it has already been allocated in prior calls to IDAInit

and IDAQuadInit.

Usage: IDAQuadReInit (YQ0 [, OPTIONS])

YQ0 Initial conditions for quadrature variables yQ(t0).

OPTIONS is an (optional) set of QUAD options, created with

the IDASetQuadOptions function.

See also: IDASetQuadOptions, IDAQuadInit

52

IDASensReInit

Purpose

IDASensReInit reinitializes IDAS’s FSA-related memory

Synopsis

function status = IDASensReInit(yyS0,ypS0,options)

Description

IDASensReInit reinitializes IDAS’s FSA-related memory

assuming it has already been allocated in prior calls to IDAInit

and IDASensInit.

The number of sensitivities Ns is assumed to be unchanged since the

previous call to IDASensInit.

Usage: IDASensReInit (YYS0, YPS0 [, OPTIONS])

YYS0, YPS0 Initial conditions for sensitivity variables.

YYS0 and YPS0 must be matrices with N rows and Ns columns, where N is

the problem dimension and Ns the number of sensitivity systems.

OPTIONS is an (optional) set of FSA options, created with

the IDASetFSAOptions function.

See also: IDASensSetOptions, IDAReInit, IDASensInit

IDAAdjReInit

Purpose

IDAAdjReInit re-initializes memory for ASA with CVODES.

Synopsis

function status = IDAAdjReInit()

Description

IDAAdjReInit re-initializes memory for ASA with CVODES.

Usage: IDAAdjReInit

IDAReInitB

Purpose

IDAReInitB allocates and initializes backward memory for IDAS.

Synopsis

function status = IDAReInitB(idxB,tB0,yyB0,ypB0,optionsB)

Description

53

IDAReInitB allocates and initializes backward memory for IDAS.

where a prior call to IDAInitB has been made with the same

problem size NB. IDAReInitB performs the same input checking

and initializations that IDAInitB does, but it does no

memory allocation, assuming that the existing internal memory

is sufficient for the new problem.

Usage: IDAReInitB (IDXB, TB0, YYB0, YPB0 [, OPTIONSB])

IDXB is the index of the backward problem, returned by

IDAInitB.

TB0 is the final value of t.

YYB0 is the final condition vector yB(tB0).

YPB0 is the final condition vector yB’(tB0).

OPTIONSB is an (optional) set of integration options, created with

the IDASetOptions function.

See also: IDASetOptions, IDAInitB

IDAQuadReInitB

Purpose

IDAQuadReInitB reinitializes memory for backward quadrature integration.

Synopsis

function status = IDAQuadReInitB(idxB, yQB0, optionsB)

Description

IDAQuadReInitB reinitializes memory for backward quadrature integration.

Usage: IDAQuadReInitB (IDXB, YS0 [, OPTIONS])

IDXB is the index of the backward problem, returned by

IDAInitB.

YQB0 is the final conditions vector yQB(tB0).

OPTIONS is an (optional) set of QUAD options, created with

the IDASetQuadOptions function.

See also: IDASetQuadOptions, IDAReInitB, IDAQuadInitB

IDACalcIC

Purpose

IDACalcIC computes consistent initial conditions

Synopsis

function [status, varargout] = IDACalcIC(tout,icmeth)

Description

54

IDACalcIC computes consistent initial conditions

Usage: STATUS = IDACalcIC (TOUT, ICMETH)

[STATUS, YY0, YP0] = IDACalcIC (TOUT, ICMETH)

IDACalcIC corrects the guess for initial conditions passed

to IDAInit or IDAReInit so that the algebraic constraints

are satisfied.

The argument TOUT is the first value of t at which a soluton will be

requested (from IDASolve). This is needed here to determine the

direction of integration and rough scale in the independent variable.

If ICMETH is ’FindAlgebraic’, then IDACalcIC attempts to compute

the algebraic components of y and differential components of y’,

given the differential components of y.

This option requires that the vector id was set through IDASetOptions

specifying the differential and algebraic components.

If ICMETH is ’FindAll’, then IDACalcIC attempts to compute all

components of y, given y’. In this case, id is not required.

On return, STATUS is one of the following:

SUCCESS IDACalcIC was successful. The corrected

initial value vectors are in y0 and yp0.

IDA_MEM_NULL The argument ida_mem was NULL.

IDA_ILL_INPUT One of the input arguments was illegal.

See printed message.

IDA_LINIT_FAIL The linear solver’s init routine failed.

IDA_BAD_EWT Some component of the error weight vector

is zero (illegal), either for the input

value of y0 or a corrected value.

IDA_RES_FAIL The user’s residual routine returned

a non-recoverable error flag.

IDA_FIRST_RES_FAIL The user’s residual routine returned

a recoverable error flag on the first call,

but IDACalcIC was unable to recover.

IDA_LSETUP_FAIL The linear solver’s setup routine had a

non-recoverable error.

IDA_LSOLVE_FAIL The linear solver’s solve routine had a

non-recoverable error.

IDA_NO_RECOVERY The user’s residual routine, or the linear

solver’s setup or solve routine had a

recoverable error, but IDACalcIC was

unable to recover.

IDA_CONSTR_FAIL IDACalcIC was unable to find a solution

satisfying the inequality constraints.

IDA_LINESEARCH_FAIL The Linesearch algorithm failed to find a

solution with a step larger than steptol

in weighted RMS norm.

IDA_CONV_FAIL IDACalcIC failed to get convergence of the

Newton iterations.

If the output arguments YY0 and YP0 are present, they will

contain the consistent initial conditions.

55

See also: IDASetOptions, IDAInit, IDAReInit

IDACalcICB

Purpose

IDACalcICB computes consistent initial conditions for the backward phase.

Synopsis

function [status, varargout] = IDACalcICB(tout,icmeth)

Description

IDACalcICB computes consistent initial conditions for the backward phase.

Usage: STATUS = IDACalcICB (TOUTB, ICMETHB)

[STATUS, YY0B, YP0B] = IDACalcIC (TOUTB, ICMETHB)

See also: IDASetOptions, IDAInitB, IDAReInitB

IDASolve

Purpose

IDASolve integrates the DAE.

Synopsis

function [varargout] = IDASolve(tout,itask)

Description

IDASolve integrates the DAE.

Usage: [STATUS, T, Y] = IDASolve (TOUT, ITASK)

[STATUS, T, Y, YQ] = IDASolve (TOUT, ITASK)

[STATUS, T, Y, YS] = IDASolve (TOUT, ITASK)

[STATUS, T, Y, YQ, YS] = IDASolve (TOUT, ITASK)

If ITASK is ’Normal’, then the solver integrates from its current internal

T value to a point at or beyond TOUT, then interpolates to T = TOUT and returns

Y(TOUT). If ITASK is ’OneStep’, then the solver takes one internal time step

and returns in Y the solution at the new internal time. In this case, TOUT

is used only during the first call to IDASolve to determine the direction of

integration and the rough scale of the problem. In either case, the time

reached by the solver is returned in T.

If quadratures were computed (see IDAQuadInit), IDASolve will return their

values at T in the vector YQ.

If sensitivity calculations were enabled (see IDASensInit), IDASolve will

return their values at T in the matrix YS. Each row in the matrix YS

56

represents the sensitivity vector with respect to one of the problem parameters.

In ITASK =’ Normal’ mode, to obtain solutions at specific times T0,T1,...,TFINAL

(all increasing or all decreasing) use TOUT = [T0 T1 ... TFINAL]. In this case

the output arguments Y and YQ are matrices, each column representing the solution

vector at the corresponding time returned in the vector T. If computed, the

sensitivities are eturned in the 3-dimensional array YS, with YS(:,:,I) representing

the sensitivity vectors at the time T(I).

On return, STATUS is one of the following:

0: IDASolve succeeded and no roots were found.

1: IDASolve succeded and returned at tstop.

2: IDASolve succeeded, and found one or more roots.

-1: An error occurred (see printed message).

See also IDASetOptions, IDAGetStats

IDASolveB

Purpose

IDASolveB integrates the backward DAE.

Synopsis

function [varargout] = IDASolveB(tout,itask)

Description

IDASolveB integrates the backward DAE.

Usage: [STATUS, T, YB] = IDASolveB (TOUT, ITASK)

[STATUS, T, YB, YQB] = IDASolveB (TOUT, ITASK)

If ITASK is ’Normal’, then the solver integrates from its current internal

T value to a point at or beyond TOUT, then interpolates to T = TOUT and returns

YB(TOUT). If ITASK is ’OneStep’, then the solver takes one internal time step

and returns in YB the solution at the new internal time. In this case, TOUT

is used only during the first call to IDASolveB to determine the direction of

integration and the rough scale of the problem. In either case, the time

reached by the solver is returned in T.

If quadratures were computed (see IDAQuadInitB), IDASolveB will return their

values at T in the vector YQB.

In ITASK =’ Normal’ mode, to obtain solutions at specific times T0,T1,...,TFINAL

(all increasing or all decreasing) use TOUT = [T0 T1 ... TFINAL]. In this case

the output arguments YB and YQB are matrices, each column representing the solution

vector at the corresponding time returned in the vector T.

If more than one backward problem was defined, the return arguments are cell

arrays, with TIDXB, YBIDXB, and YQBIDXB corresponding to the backward

problem with index IDXB (as returned by IDAInitB).

57

On return, STATUS is one of the following:

0: IDASolveB succeeded.

1: IDASolveB succeded and return at a tstop value (internally set).

-1: An error occurred (see printed message).

See also IDASetOptions, IDAGetStatsB

IDASensToggleOff

Purpose

IDASensToggleOff deactivates sensitivity calculations.

Synopsis

function status = IDASensToggleOff()

Description

IDASensToggleOff deactivates sensitivity calculations.

It does NOT deallocate sensitivity-related memory so that

sensitivity computations can be later toggled ON (through

IDASensReInit).

Usage: IDASensToggleOff

See also: IDASensInit, IDASensReInit

IDAGetStats

Purpose

IDAGetStats returns run statistics for the IDAS solver.

Synopsis

function [si, status] = IDAGetStats()

Description

IDAGetStats returns run statistics for the IDAS solver.

Usage: STATS = IDAGetStats

Fields in the structure STATS

o nst - number of integration steps

o nre - number of residual function evaluations

o nsetups - number of linear solver setup calls

o netf - number of error test failures

o nni - number of nonlinear solver iterations

o ncfn - number of convergence test failures

o qlast - last method order used

o qcur - current method order

58

o h0used - actual initial step size used

o hlast - last step size used

o hcur - current step size

o tcur - current time reached by the integrator

o RootInfo - strucutre with rootfinding information

o QuadInfo - structure with quadrature integration statistics

o LSInfo - structure with linear solver statistics

o FSAInfo - structure with forward sensitivity solver statistics

If rootfinding was requested, the structure RootInfo has the following fields

o nge - number of calls to the rootfinding function

o roots - array of integers (a value of 1 in the i-th component means that the

i-th rootfinding function has a root (upon a return with status=2 from

IDASolve).

If quadratures were present, the structure QuadInfo has the following fields

o nfQe - number of quadrature integrand function evaluations

o netfQ - number of error test failures for quadrature variables

The structure LSinfo has different fields, depending on the linear solver used.

Fields in LSinfo for the ’Dense’ linear solver

o name - ’Dense’

o njeD - number of Jacobian evaluations

o nreD - number of residual function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’Band’ linear solver

o name - ’Band’

o njeB - number of Jacobian evaluations

o nreB - number of residual function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’GMRES’ and ’BiCGStab’ linear solvers

o name - ’GMRES’ or ’BiCGStab’

o nli - number of linear solver iterations

o npe - number of preconditioner setups

o nps - number of preconditioner solve function calls

o ncfl - number of linear system convergence test failures

o njeSG - number of Jacobian-vector product evaluations

o nreSG - number of residual function evaluations for difference-quotient

Jacobian-vector product approximation

If forward sensitivities were computed, the structure FSAInfo has the

following fields

o nrSe - number of sensitivity residual evaluations

o nreS - number of residual evaluations for difference-quotient

sensitivity residual approximation

59

o nsetupsS - number of linear solver setups triggered by sensitivity variables

o netfS - number of error test failures for sensitivity variables

o nniS - number of nonlinear solver iterations for sensitivity variables

o ncfnS - number of convergence test failures due to sensitivity variables

IDAGetStatsB

Purpose

IDAGetStatsB returns run statistics for the backward IDAS solver.

Synopsis

function [si, status] = IDAGetStatsB(idxB)

Description

IDAGetStatsB returns run statistics for the backward IDAS solver.

Usage: STATS = IDAGetStatsB(IDXB)

IDXB is the index of the backward problem, returned by IDAInitB.

Fields in the structure STATS

o nst - number of integration steps

o nre - number of residual function evaluations

o nsetups - number of linear solver setup calls

o netf - number of error test failures

o nni - number of nonlinear solver iterations

o ncfn - number of convergence test failures

o qlast - last method order used

o qcur - current method order

o h0used - actual initial step size used

o hlast - last step size used

o hcur - current step size

o tcur - current time reached by the integrator

o QuadInfo - structure with quadrature integration statistics

o LSInfo - structure with linear solver statistics

The structure LSinfo has different fields, depending on the linear solver used.

If quadratures were present, the structure QuadInfo has the following fields

o nfQe - number of quadrature integrand function evaluations

o netfQ - number of error test failures for quadrature variables

Fields in LSinfo for the ’Dense’ linear solver

o name - ’Dense’

o njeD - number of Jacobian evaluations

o nreD - number of residual function evaluations for difference-quotient

Jacobian approximation

60

Fields in LSinfo for the ’Band’ linear solver

o name - ’Band’

o njeB - number of Jacobian evaluations

o nreB - number of residual function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’GMRES’ and ’BiCGStab’ linear solvers

o name - ’GMRES’ or ’BiCGStab’

o nli - number of linear solver iterations

o npe - number of preconditioner setups

o nps - number of preconditioner solve function calls

o ncfl - number of linear system convergence test failures

o njeSG - number of Jacobian-vector product evaluations

o nreSG - number of residual function evaluations for difference-quotient

Jacobian-vector product approximation

IDAGet

Purpose

IDAGet extracts data from the IDAS solver memory.

Synopsis

function [output, status] = IDAGet(key, varargin)

Description

IDAGet extracts data from the IDAS solver memory.

Usage: RET = IDAGet (KEY [, P1 [, P2] ...])

IDAGet returns internal IDAS information based on KEY. For some values

of KEY, additional arguments may be required and/or more than one output is

returned.

KEY is a string and should be one of:

o DerivSolution - Returns a vector containing the K-th order derivative

of the solution at time T. The time T and order K must be passed through

the input arguments P1 and P2, respectively:

DKY = IDAGet(’DerivSolution’, T, K)

o ErrorWeights - Returns a vector containing the current error weights.

EWT = IDAGet(’ErrorWeights’)

o CheckPointsInfo - Returns an array of structures with check point information.

CK = IDAGet(’CheckPointInfo)

IDASet

Purpose

IDASet changes optional input values during the integration.

Synopsis

function status = IDASet(varargin)

Description

61

IDASet changes optional input values during the integration.

Usage: IDASet(’NAME1’,VALUE1,’NAME2’,VALUE2,...)

IDASet can be used to change some of the optional inputs during

the integration, i.e., without need for a solver reinitialization.

The property names accepted by IDASet are a subset of those valid

for IDASetOptions. Any unspecified properties are left unchanged.

IDASet with no input arguments displays all property names.

IDASet properties

(See also the IDAS User Guide)

UserData - problem data passed unmodified to all user functions.

Set VALUE to be the new user data.

RelTol - Relative tolerance

Set VALUE to the new relative tolerance

AbsTol - absolute tolerance

Set VALUE to be either the new scalar absolute tolerance or

a vector of absolute tolerances, one for each solution component.

StopTime - Stopping time

Set VALUE to be a new value for the independent variable past which

the solution is not to proceed.

IDASetB

Purpose

IDASetB changes optional input values during the integration.

Synopsis

function status = IDASetB(idxB, varargin)

Description

IDASetB changes optional input values during the integration.

Usage: IDASetB(IDXB, ’NAME1’,VALUE1,’NAME2’,VALUE2,...)

IDASetB can be used to change some of the optional inputs for

the backward problem identified by IDXB during the backward

integration, i.e., without need for a solver reinitialization.

The property names accepted by IDASet are a subset of those valid

for IDASetOptions. Any unspecified properties are left unchanged.

IDASetB with no input arguments displays all property names.

IDASetB properties

(See also the IDAS User Guide)

UserData - problem data passed unmodified to all user functions.

Set VALUE to be the new user data.

62

RelTol - Relative tolerance

Set VALUE to the new relative tolerance

AbsTol - absolute tolerance

Set VALUE to be either the new scalar absolute tolerance or

a vector of absolute tolerances, one for each solution component.

IDAFree

Purpose

IDAFree deallocates memory for the IDAS solver.

Synopsis

function [] = IDAFree()

Description

IDAFree deallocates memory for the IDAS solver.

Usage: IDAFree

63

4.2 Function types

IDAResFn

Purpose

IDAResFn - type for residual function

Synopsis

This is a script file.

Description

IDAResFn - type for residual function

The function DAEFUN must be defined as

FUNCTION [R, FLAG] = DAEFUN(T, YY, YP)

and must return a vector R corresponding to f(t,yy,yp).

If a user data structure DATA was specified in IDAInit, then

DAEFUN must be defined as

FUNCTION [R, FLAG, NEW_DATA] = DAEFUN(T, YY, YP, DATA)

If the local modifications to the user data structure are needed

in other user-provided functions then, besides setting the vector YD,

the DAEFUN function must also set NEW_DATA. Otherwise, it should set

NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function DAEFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also IDAInit

IDASensResFn

Purpose

IDASensRhsFn - type for user provided sensitivity RHS function.

Synopsis

This is a script file.

Description

IDASensRhsFn - type for user provided sensitivity RHS function.

The function DAESFUN must be defined as

FUNCTION [RS, FLAG] = DAESFUN(T,YY,YP,YYS,YPS)

and must return a matrix RS corresponding to fS(t,yy,yp,yyS,ypS).

If a user data structure DATA was specified in IDAInit, then

DAESFUN must be defined as

FUNCTION [RS, FLAG, NEW_DATA] = DAESFUN(T,YY,YP,YYS,YPS,DATA)

64

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the matrix YSD,

the ODESFUN function must also set NEW_DATA. Otherwise, it should

set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function DAESFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also IDASetFSAOptions

NOTE: DAESFUN is specified through the property FSAResFn to

IDASetFSAOptions.

IDAQuadRhsFn

Purpose

IDAQuadRhsFn - type for user provided quadrature RHS function.

Synopsis

This is a script file.

Description

IDAQuadRhsFn - type for user provided quadrature RHS function.

The function QFUN must be defined as

FUNCTION [YQD, FLAG] = QFUN(T, YY, YP)

and must return a vector YQD corresponding to fQ(t,yy,yp), the

integrand for the integral to be evaluated.

If a user data structure DATA was specified in IDAInit, then

QFUN must be defined as

FUNCTION [YQD, FLAG, NEW_DATA] = QFUN(T, YY, YP, DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the vector YQD,

the QFUN function must also set NEW_DATA. Otherwise, it should set

NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function QFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also IDAQuadInit

IDARootFn

Purpose

IDARootFn - type for user provided root-finding function.

Synopsis

This is a script file.

Description

65

IDARootFn - type for user provided root-finding function.

The function ROOTFUN must be defined as

FUNCTION [G, FLAG] = ROOTFUN(T,YY,YP)

and must return a vector G corresponding to g(t,yy,yp).

If a user data structure DATA was specified in IDAInit, then

ROOTFUN must be defined as

FUNCTION [G, FLAG, NEW_DATA] = ROOTFUN(T,YY,YP,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the vector G,

the ROOTFUN function must also set NEW_DATA. Otherwise, it should

set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function ROOTFUN must set FLAG=0 if successful, or FLAG~=0 if

a failure occurred.

See also IDASetOptions

NOTE: ROOTFUN is specified through the RootsFn property in

IDASetOptions and is used only if the property NumRoots is a

positive integer.

IDADenseJacFn

Purpose

IDADenseJacFn - type for dense Jacobian function.

Synopsis

This is a script file.

Description

IDADenseJacFn - type for dense Jacobian function.

The function DJACFUN must be defined as

FUNCTION [J, FLAG] = DJACFUN(T, YY, YP, RR, CJ)

and must return a matrix J corresponding to the Jacobian

(df/dyy + cj*df/dyp).

The input argument RR contains the current value of f(t,yy,yp).

If a user data structure DATA was specified in IDAInit, then

DJACFUN must be defined as

FUNCTION [J, FLAG, NEW_DATA] = DJACFUN(T, YY, YP, RR, CJ, DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the matrix J,

the DJACFUN function must also set NEW_DATA. Otherwise, it should

set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function DJACFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

66

See also IDASetOptions

NOTE: DJACFUN is specified through the property JacobianFn to

IDASetOptions and is used only if the property LinearSolver

was set to ’Dense’.

IDABandJacFn

Purpose

IDABandJacFn - type for banded Jacobian function.

Synopsis

This is a script file.

Description

IDABandJacFn - type for banded Jacobian function.

The function BJACFUN must be defined as

FUNCTION [J, FLAG] = BJACFUN(T, YY, YP, RR, CJ)

and must return a matrix J corresponding to the banded Jacobian

(df/dyy + cj*df/dyp).

The input argument RR contains the current value of f(t,yy,yp).

If a user data structure DATA was specified in IDAInit, then

BJACFUN must be defined as

FUNCTION [J, FLAG, NEW_DATA] = BJACFUN(T, YY, YP, RR, CJ, DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the matrix J,

the BJACFUN function must also set NEW_DATA. Otherwise, it should

set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function BJACFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also IDASetOptions

See the IDAS user guide for more information on the structure of

a banded Jacobian.

NOTE: BJACFUN is specified through the property JacobianFn to

IDASetOptions and is used only if the property LinearSolver

was set to ’Band’.

IDAJacTimesVecFn

Purpose

IDAJacTimesVecFn - type for Jacobian times vector function.

Synopsis

This is a script file.

Description

67

IDAJacTimesVecFn - type for Jacobian times vector function.

The function JTVFUN must be defined as

FUNCTION [JV, FLAG] = JTVFUN(T,YY,YP,RR,V,CJ)

and must return a vector JV corresponding to the product of the

Jacobian (df/dyy + cj * df/dyp) with the vector v.

The input argument RR contains the current value of f(t,yy,yp).

If a user data structure DATA was specified in IDAInit, then

JTVFUN must be defined as

FUNCTION [JV, FLAG, NEW_DATA] = JTVFUN(T,YY,YP,RR,V,CJ,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the vector JV,

the JTVFUN function must also set NEW_DATA. Otherwise, it should set

NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function JTVFUN must set FLAG=0 if successful, or FLAG~=0 if

a failure occurred.

See also IDASetOptions

NOTE: JTVFUN is specified through the property JacobianFn to

IDASetOptions and is used only if the property LinearSolver

was set to ’GMRES’, ’BiCGStab’, or ’TFQMR’.

IDAPrecSetupFn

Purpose

IDAPrecSetupFn - type for preconditioner setup function.

Synopsis

This is a script file.

Description

IDAPrecSetupFn - type for preconditioner setup function.

The user-supplied preconditioner setup function PSETFUN and

the user-supplied preconditioner solve function PSOLFUN

together must define a preconditoner matrix P which is an

approximation to the Newton matrix M = J_yy - cj*J_yp.

Here J_yy = df/dyy, J_yp = df/dyp, and cj is a scalar proportional

to the integration step size h. The solution of systems P z = r,

is to be carried out by the PrecSolve function, and PSETFUN

is to do any necessary setup operations.

The user-supplied preconditioner setup function PSETFUN

is to evaluate and preprocess any Jacobian-related data

needed by the preconditioner solve function PSOLFUN.

This might include forming a crude approximate Jacobian,

and performing an LU factorization on the resulting

approximation to M. This function will not be called in

68

advance of every call to PSOLFUN, but instead will be called

only as often as necessary to achieve convergence within the

Newton iteration. If the PSOLFUN function needs no

preparation, the PSETFUN function need not be provided.

Each call to the PSETFUN function is preceded by a call to

DAEFUN with the same (t,yy,yp) arguments. Thus the PSETFUN

function can use any auxiliary data that is computed and

saved by the DAEFUN function and made accessible to PSETFUN.

The function PSETFUN must be defined as

FUNCTION FLAG = PSETFUN(T,YY,YP,RR,CJ)

If successful, it must return FLAG=0. For a recoverable error (in

which case the setup will be retried) it must set FLAG to a positive

integer value. If an unrecoverable error occurs, it must set FLAG

to a negative value, in which case the integration will be halted.

The input argument RR contains the current value of f(t,yy,yp).

If a user data structure DATA was specified in IDASetUserData, then

PSETFUN must be defined as

FUNCTION [FLAG,NEW_DATA] = PSETFUN(T,YY,YP,RR,CJ,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the flag

FLAG, the PSETFUN function must also set NEW_DATA. Otherwise, it

should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead

to unnecessary copying).

See also IDAPrecSolveFn, IDASetOptions

NOTE: PSETFUN and PSETFUNB are specified through the property

PrecSetupFn to IDASetOptions and are used only if the property

LinearSolver was set to ’GMRES’, ’BiCGStab’, or ’TFQMR’.

IDAPrecSolveFn

Purpose

IDAPrecSolveFn - type for preconditioner solve function.

Synopsis

This is a script file.

Description

IDAPrecSolveFn - type for preconditioner solve function.

The user-supplied preconditioner solve function PSOLFUN

is to solve a linear system P z = r, where P is the

preconditioner matrix.

The function PSOLFUN must be defined as

FUNCTION [Z, FLAG] = PSOLFUN(T,YY,YP,RR,R)

and must return a vector Z containing the solution of Pz=r.

69

If PSOLFUN was successful, it must return FLAG=0. For a recoverable

error (in which case the step will be retried) it must set FLAG to a

positive value. If an unrecoverable error occurs, it must set FLAG

to a negative value, in which case the integration will be halted.

The input argument RR contains the current value of f(t,yy,yp).

If a user data structure DATA was specified in IDAInit, then

PSOLFUN must be defined as

FUNCTION [Z, FLAG, NEW_DATA] = PSOLFUN(T,YY,YP,RR,R,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the vector Z and

the flag FLAG, the PSOLFUN function must also set NEW_DATA. Otherwise,

it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would

lead to unnecessary copying).

See also IDAPrecSetupFn, IDASetOptions

NOTE: PSOLFUN and PSOLFUNB are specified through the property

PrecSolveFn to IDASetOptions and are used only if the property

LinearSolver was set to ’GMRES’, ’BiCGStab’, or ’TFQMR’.

IDAGcommFn

Purpose

IDAGcommFn - type for communication function (BBDPre).

Synopsis

This is a script file.

Description

IDAGcommFn - type for communication function (BBDPre).

The function GCOMFUN must be defined as

FUNCTION FLAG = GCOMFUN(T, YY, YP)

and can be used to perform all interprocess communication necessary

to evaluate the approximate residual function for the BBDPre

preconditioner module.

If a user data structure DATA was specified in IDAInit, then

GCOMFUN must be defined as

FUNCTION [FLAG, NEW_DATA] = GCOMFUN(T, YY, YP, DATA)

If the local modifications to the user data structure are needed

in other user-provided functions then the GCOMFUN function must also

set NEW_DATA. Otherwise, it should set NEW_DATA=[] (do not set

NEW_DATA = DATA as it would lead to unnecessary copying).

The function GCOMFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also IDAGlocalFn, IDASetOptions

70

NOTES:

GCOMFUN is specified through the GcommFn property in IDASetOptions

and is used only if the property PrecModule is set to ’BBDPre’.

Each call to GCOMFUN is preceded by a call to the residual function

DAEFUN with the same arguments T, YY, and YP.

Thus GCOMFUN can omit any communication done by DAEFUN if relevant

to the evaluation of G by GLOCFUN. If all necessary communication

was done by DAEFUN, GCOMFUN need not be provided.

IDAGlocalFn

Purpose

IDAGlocalFn - type for RES approximation function (BBDPre).

Synopsis

This is a script file.

Description

IDAGlocalFn - type for RES approximation function (BBDPre).

The function GLOCFUN must be defined as

FUNCTION [GLOC, FLAG] = GLOCFUN(T,YY,YP)

and must return a vector GLOC corresponding to an approximation to f(t,yy,yp)

which will be used in the BBDPRE preconditioner module. The case where

G is mathematically identical to F is allowed.

If a user data structure DATA was specified in IDAInit, then

GLOCFUN must be defined as

FUNCTION [GLOC, FLAG, NEW_DATA] = GLOCFUN(T,YY,YP,DATA)

If the local modifications to the user data structure are needed

in other user-provided functions then, besides setting the vector G,

the GLOCFUN function must also set NEW_DATA. Otherwise, it should set

NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function GLOCFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also IDAGcommFn, IDASetOptions

NOTE: GLOCFUN and GLOCFUNB are specified through the GlocalFn property

in IDASetOptions and are used only if the property PrecModule

is set to ’BBDPre’.

IDAMonitorFn

Purpose

IDAMonitorFn - type for monitoring function.

Synopsis

This is a script file.

Description

71

IDAMonitorFn - type for monitoring function.

The function MONFUN must be defined as

FUNCTION [] = MONFUN(CALL, T, YY, YP, YQ, YYS, YPS)

To enable monitoring using a given monitor function MONFUN,

use IDASetOptions to set the property ’MonitorFn" to ’MONFUN’

(or to @MONFUN).

MONFUN is called with the following input arguments:

o CALL indicates the phase during the integration process at which

MONFUN is called:

CALL=1 : MONFUN was called at the initial time; this can be either

after IDAInit or after IDAReInit.

(typically, MONFUN should perform its own initialization)

CALL=2 : MONFUN was called right before a solver reinitializtion.

(typically, MONFUN should decide whether to initialize

itself or else to continue monitoring)

CALL=3 : MONFUN was called during solver finalization.

(typically, MONFUN should finalize monitoring)

CALL=0 : MONFUN was called after the solver took a successful

internal step.

(typically, MONFUN should collect and/or display data)

o T is the current integration time

o YY and YP are vectors containing the solution and solution

derivative at time T

o YQ is a vector containing the quadrature variables at time T

o YYS and YPS are matrices containing the forward sensitivities

and their derivatives, respectively, at time T.

If additional data is needed inside a MONFUN function, then it must

be defined as

FUNCTION NEW_MONDATA = MONFUN(CALL, T, YY, YP, YQ, YYS, YPS, MONDATA)

In this case, the MONFUN function is passed the additional argument

MONDATA, the same as that specified through the property ’MonitorData’

in IDASetOptions. If the local modifications to the monitor data structure

need to be saved (e.g. for future calls to MONFUN), then MONFUN must set

NEW_MONDATA. Otherwise, it should set NEW_MONDATA=[] (do not set

NEW_MONDATA = DATA as it would lead to unnecessary copying).

NOTES:

1. MONFUN is specified through the MonitorFn property in IDASetOptions.

If this property is not set, or if it is empty, MONFUN is not used.

MONDATA is specified through the MonitorData property in IDASetOptions.

2. If quadrature integration is not enabled, YQ is empty. Similarly, if

forward sensitivity analysis is not enabled, YYS and YPS are empty.

72

3. When CALL = 2 or 3, all arguments YY, YP, YQ, YYS, and YPS are empty.

Moreover, when CALL = 3, T = 0.0

4. If MONFUN is used on the backward integration phase, YYS and YPS are

always empty.

See also IDASetOptions, IDAMonitor

IDAResFnB

Purpose

IDAResFnb - type for residual function for backward problems

Synopsis

This is a script file.

Description

IDAResFnb - type for residual function for backward problems

The function DAEFUNB must be defined either as

FUNCTION [RB, FLAG] = DAEFUNB(T, YY, YP, YYB, YPB)

or as

FUNCTION [RB, FLAG, NEW_DATA] = DAEFUNB(T, YY, YP, YYB, YPB, DATA)

depending on whether a user data structure DATA was specified in

IDAInit. In either case, it must return the vector RB

corresponding to fB(t,yy,yp,yyB,ypB).

The function DAEFUNB must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also IDAInitB, IDARhsFn

IDAQuadRhsFnB

Purpose

IDAQuadRhsFnB - type for quadrature RHS function for backward problems

Synopsis

This is a script file.

Description

IDAQuadRhsFnB - type for quadrature RHS function for backward problems

The function QFUNB must be defined either as

FUNCTION [YQBD, FLAG] = QFUNB(T, YY, YP, YYB, YPB)

or as

73

FUNCTION [YQBD, FLAG, NEW_DATA] = QFUNB(T, YY, YP, YYB, YPB, DATA)

depending on whether a user data structure DATA was specified in

IDAInit. In either case, it must return the vector YQBD

corresponding to fQB(t,yy,yp,yyB,ypB), the integrand for the integral to be

evaluated on the backward phase.

The function QFUNB must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also IDAQuadInitB

IDADenseJacFnB

Purpose

IDADenseJacFnb - type for dense Jacobian function for backward problems.

Synopsis

This is a script file.

Description

IDADenseJacFnb - type for dense Jacobian function for backward problems.

The function DJACFUNB must be defined either as

FUNCTION [JB, FLAG] = DJACFUNB(T, YY, YP, YYB, YPB, RRB, CJB)

or as

FUNCTION [JB,FLAG,NEW_DATA] = DJACFUNB(T,YY,YP,YYB,YPB,RRB,CJB,DATA)

depending on whether a user data structure DATA was specified in

IDAInit. In either case, it must return the matrix JB, the

Jacobian (dfB/dyyB + cjb*dfB/dypB). The input argument RRB contains

the current value of f(t,yy,yp,yyB,ypB).

The function DJACFUNB must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also IDADenseJacFn, IDASetOptions

NOTE: DJACFUNB is specified through the property JacobianFn to

IDASetOptions and is used only if the property LinearSolver was

set to ’Dense’.

IDABandJacFnB

Purpose

IDABandJacFnB - type for banded Jacobian function for backward problems.

Synopsis

This is a script file.

Description

74

IDABandJacFnB - type for banded Jacobian function for backward problems.

The function BJACFUNB must be defined either as

FUNCTION [JB, FLAG] = BJACFUNB(T, YY, YP, YYB, YPB, RRB, CJB)

or as

FUNCTION [JB,FLAG,NEW_DATA] = BJACFUNB(T,YY,YP,YYB,YPB,RRB,CJB)

depending on whether a user data structure DATA was specified in

IDAInit. In either case, it must return the matrix JB, the

Jacobian (dfB/dyyB + cjB*dfB/dypB)of fB(t,y,yB). The input argument

RRB contains the current value of f(t,yy,yp,yyB,ypB).

The function BJACFUNB must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also IDASetOptions

See the IDAS user guide for more information on the structure of

a banded Jacobian.

NOTE: BJACFUNB is specified through the property JacobianFn to

IDASetOptions and is used only if the property LinearSolver

was set to ’Band’.

IDAJacTimesVecFnB

Purpose

IDAJacTimesVecFn - type for Jacobian times vector function for backward problems.

Synopsis

This is a script file.

Description

IDAJacTimesVecFn - type for Jacobian times vector function for backward problems.

The function JTVFUNB must be defined either as

FUNCTION [JVB,FLAG] = JTVFUNB(T,YY,YP,YYB,YPB,RRB,VB,CJB)

or as

FUNCTION [JVB,FLAG,NEW_DATA] = JTVFUNB(T,YY,YP,YYB,YPB,RRB,VB,CJB,DATA)

depending on whether a user data structure DATA was specified in

IDAInit. In either case, it must return the vector JVB, the

product of the Jacobian (dfB/dyyB + cj * dfB/dypB) and a vector

vB. The input argument RRB contains the current value of f(t,yy,yp,yyB,ypB).

The function JTVFUNB must set FLAG=0 if successful, or FLAG~=0 if

a failure occurred.

See also IDASetOptions

NOTE: JTVFUNB is specified through the property JacobianFn to IDASetOptions

and is used only if the property LinearSolver was set to ’GMRES’, ’BiCGStab’,

or ’TFQMR’.

75

IDAPrecSetupFnB

Purpose

IDAPrecSetupFnB - type for preconditioner setup function for backward problems.

Synopsis

This is a script file.

Description

IDAPrecSetupFnB - type for preconditioner setup function for backward problems.

The function PSETFUNB must be defined either as

FUNCTION FLAG = PSETFUNB(T,YY,YP,YYB,YPB,RRB,CJB)

or as

FUNCTION [FLAG,NEW_DATA] = PSETFUNB(T,YY,YP,YYB,YPB,RRB,CJB,DATA)

depending on whether a user data structure DATA was specified in

IDASetUserData.

See also IDAPrecSolveFnB, IDAPrecSetupFn, IDASetOptions

NOTE: PSETFUN and PSETFUNB are specified through the property

PrecSetupFn to IDASetOptions and are used only if the property

LinearSolver was set to ’GMRES’, ’BiCGStab’, or ’TFQMR’.

IDAPrecSolveFnB

Purpose

IDAPrecSolveFnB - type for preconditioner solve function.

Synopsis

This is a script file.

Description

IDAPrecSolveFnB - type for preconditioner solve function.

The user-supplied preconditioner solve function PSOLFUNB

is to solve a linear system P z = r, where P is the

preconditioner matrix.

The function PSOLFUNB must be defined either as

FUNCTION [ZB,FLAG] = PSOLFUNB(T,YY,YP,YYB,YPB,RRB,RB)

or as

FUNCTION [ZB,FLAG,NEW_DATA] = PSOLFUNB(T,YY,YP,YYB,YPB,RRB,RB,DATA)

depending on whether a user data structure DATA was specified in

IDAInit. In either case, it must return the vector ZB and the

flag FLAG.

See also IDAPrecSetupFnB, IDAPrecSolveFn, IDASetOptions

NOTE: PSOLFUN and PSOLFUNB are specified through the property

PrecSolveFn to IDASetOptions and are used only if the property

LinearSolver was set to ’GMRES’, ’BiCGStab’, or ’TFQMR’.

76

IDAGcommFnB

Purpose

IDAGcommFnB - type for communication function (BBDPre) for backward problems.

Synopsis

This is a script file.

Description

IDAGcommFnB - type for communication function (BBDPre) for backward problems.

The function GCOMFUNB must be defined either as

FUNCTION FLAG = GCOMFUNB(T, YY, YP, YYB, YPB)

or as

FUNCTION [FLAG, NEW_DATA] = GCOMFUNB(T, YY, YP, YYB, YPB, DATA)

depending on whether a user data structure DATA was specified in

IDAInit.

The function GCOMFUNB must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also IDAGlocalFnB, IDAGcommFn, IDASetOptions

NOTES:

GCOMFUNB is specified through the GcommFn property in IDASetOptions

and is used only if the property PrecModule is set to ’BBDPre’.

Each call to GCOMFUNB is preceded by a call to the residual function

DAEFUN with the same arguments T, YY, YP and YYB and YPB.

Thus GCOMFUNB can omit any communication done by DAEFUNB if relevant

to the evaluation of G by GLOCFUNB. If all necessary communication

was done by DAEFUNB, GCOMFUNB need not be provided.

IDAGlocalFnB

Purpose

IDAGlocalFnB - type for RES approximation function (BBDPre) for backward problems.

Synopsis

This is a script file.

Description

IDAGlocalFnB - type for RES approximation function (BBDPre) for backward problems.

The function GLOCFUNB must be defined either as

FUNCTION [GLOCB, FLAG] = GLOCFUNB(T,YY,YP,YYB,YPB)

or as

77

FUNCTION [GLOCB, FLAG, NEW_DATA] = GLOCFUNB(T,YY,YP,YYB,YPB,DATA)

depending on whether a user data structure DATA was specified in

IDAInit. In either case, it must return the vector GLOCB

corresponding to an approximation to fB(t,yy,yp,yyB,ypB).

The function GLOCFUNB must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also IDAGcommFnB, IDAGlocalFn, IDASetOptions

NOTE: GLOCFUN and GLOCFUNB are specified through the GlocalFn property

in IDASetOptions and are used only if the property PrecModule

is set to ’BBDPre’.

IDAMonitorFnB

Purpose

IDAMonitorFnB - type of monitoring function for backward problems.

Synopsis

This is a script file.

Description

IDAMonitorFnB - type of monitoring function for backward problems.

The function MONFUNB must be defined as

FUNCTION [] = MONFUNB(CALL, IDXB, T, Y, YQ)

It is called after every internal IDASolveB step and can be used to

monitor the progress of the solver. MONFUNB is called with CALL=0

from IDAInitB at which time it should initialize itself and it

is called with CALL=2 from IDAFree. Otherwise, CALL=1.

It receives as arguments the index of the backward problem (as

returned by IDAInitB), the current time T, solution vector Y,

and, if it was computed, the quadrature vector YQ. If quadratures

were not computed for this backward problem, YQ is empty here.

If additional data is needed inside MONFUNB, it must be defined

as

FUNCTION NEW_MONDATA = MONFUNB(CALL, IDXB, T, Y, YQ, MONDATA)

If the local modifications to the user data structure need to be

saved (e.g. for future calls to MONFUNB), then MONFUNB must set

NEW_MONDATA. Otherwise, it should set NEW_MONDATA=[]

(do not set NEW_MONDATA = DATA as it would lead to unnecessary copying).

A sample monitoring function, IDAMonitorB, is provided with CVODES.

See also IDASetOptions, IDAMonitorB

NOTES:

78

MONFUNB is specified through the MonitorFn property in IDASetOptions.

If this property is not set, or if it is empty, MONFUNB is not used.

MONDATA is specified through the MonitorData property in IDASetOptions.

See IDAMonitorB for an implementation example.

79

5 matlab Interface to kinsol

The matlab interface to kinsol provides access to all functionality of the kinsol solver.
The interface consists of 5 user-callable functions. The user must provide several required and

optional user-supplied functions which define the problem to be solved. The user-callable functions
and the types of user-supplied functions are listed in Table 9 and fully documented later in this section.
For more in depth details, consult also the kinsol user guide [1].

To illustrate the use of the kinsol matlab interface, several example problems are provided with
sundialsTB, both for serial and parallel computations. Most of them are matlab translations of
example problems provided with kinsol.

Table 9: kinsol matlab interface functions

F
u
n
ct

io
n
s KINSetOptions creates an options structure for kinsol.

KINInit allocates and initializes memory for kinsol.
KINSol solves the nonlinear problem.

KINGetStats returns statistics for the kinsol solver.
KINFree deallocates memory for the kinsol solver.

F
u
n
ct

io
n

ty
p
es KINSysFn system function

KINDenseJacFn dense Jacobian function
KINBandJacFn banded Jacobian function

KINJacTimesVecFn Jacobian times vector function
KINPrecSetupFn preconditioner setup function
KINPrecSolveFn preconditioner solve function

KINGlocalFn system approximation function (BBDPre)
KINGcommFn communication function (BBDPre)

80

5.1 Interface functions

KINSetOptions

Purpose

KINSetOptions creates an options structure for KINSOL.

Synopsis

function options = KINSetOptions(varargin)

Description

KINSetOptions creates an options structure for KINSOL.

Usage:

options = KINSetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...) creates a KINSOL

options structure options in which the named properties have the

specified values. Any unspecified properties have default values. It is

sufficient to type only the leading characters that uniquely identify the

property. Case is ignored for property names.

options = KINSetOptions(oldoptions,’NAME1’,VALUE1,...) alters an existing

options structure oldoptions.

options = KINSetOptions(oldoptions,newoptions) combines an existing options

structure oldoptions with a new options structure newoptions. Any new

properties overwrite corresponding old properties.

KINSetOptions with no input arguments displays all property names and their

possible values.

KINSetOptions properties

(See also the KINSOL User Guide)

UserData - User data passed unmodified to all functions [empty]

If UserData is not empty, all user provided functions will be

passed the problem data as their last input argument. For example,

the SYS function must be defined as FY = SYSFUN(Y,DATA).

MaxNumIter - maximum number of nonlinear iterations [scalar | 200]

Specifies the maximum number of iterations that the nonlinar solver is allowed

to take.

FuncRelErr - relative residual error [scalar | eps]

Specifies the realative error in computing f(y) when used in difference

quotient approximation of matrix-vector product J(y)*v.

FuncNormTol - residual stopping criteria [scalar | eps^(1/3)]

Specifies the stopping tolerance on ||fscale*ABS(f(y))||_L-infinity

ScaledStepTol - step size stopping criteria [scalar | eps^(2/3)]

Specifies the stopping tolerance on the maximum scaled step length:

|| y_(k+1) - y_k ||

81

|| ------------------ ||_L-infinity

|| |y_(k+1)| + yscale ||

MaxNewtonStep - maximum Newton step size [scalar | 0.0]

Specifies the maximum allowable value of the scaled length of the Newton step.

InitialSetup - initial call to linear solver setup [false | true]

Specifies whether or not KINSol makes an initial call to the linear solver

setup function.

MaxNumSetups - [scalar | 10]

Specifies the maximum number of nonlinear iterations between calls to the

linear solver setup function (i.e. Jacobian/preconditioner evaluation)

MaxNumSubSetups - [scalar | 5]

Specifies the maximum number of nonlinear iterations between checks by the

nonlinear residual monitoring algorithm (specifies length of subintervals).

NOTE: MaxNumSetups should be a multiple of MaxNumSubSetups.

MaxNumBetaFails - maximum number of beta-condition failures [scalar | 10]

Specifies the maximum number of beta-condiiton failures in the line search

algorithm.

EtaForm - Inexact Newton method [Constant | Type2 | Type1]

Specifies the method for computing the eta coefficient used in the calculation

of the linear solver convergence tolerance (used only if strategy=’InexactNEwton’

in the call to KINSol):

lintol = (eta + eps)*||fscale*f(y)||_L2

which is the used to check if the following inequality is satisfied:

||fscale*(f(y)+J(y)*p)||_L2 <= lintol

Valid choices are:

| ||f(y_(k+1))||_L2 - ||f(y_k)+J(y_k)*p_k||_L2 |

EtaForm=’Type1’ eta = --

||f(y_k)||_L2

[||f(y_(k+1))||_L2]^alpha

EtaForm=’Type2’ eta = gamma * [-----------------]

[||f(y_k)||_L2]

EtaForm=’Constant’

Eta - constant value for eta [scalar | 0.1]

Specifies the constant value for eta in the case EtaForm=’Constant’.

EtaAlpha - alpha parameter for eta [scalar | 2.0]

Specifies the parameter alpha in the case EtaForm=’Type2’

EtaGamma - gamma parameter for eta [scalar | 0.9]

Specifies the parameter gamma in the case EtaForm=’Type2’

MinBoundEps - lower bound on eps [false | true]

Specifies whether or not the value of eps is bounded below by 0.01*FuncNormtol.

Constraints - solution constraints [vector]

Specifies additional constraints on the solution components.

Constraints(i) = 0 : no constrain on y(i)

Constraints(i) = 1 : y(i) >= 0

Constraints(i) = -1 : y(i) <= 0

Constraints(i) = 2 : y(i) > 0

Constraints(i) = -2 : y(i) < 0

If Constraints is not specified, no constraints are applied to y.

LinearSolver - Type of linear solver [Dense | Band | GMRES | BiCGStab | TFQMR]

Specifies the type of linear solver to be used for the Newton nonlinear solver.

Valid choices are: Dense (direct, dense Jacobian), GMRES (iterative, scaled

preconditioned GMRES), BiCGStab (iterative, scaled preconditioned stabilized

82

BiCG), TFQMR (iterative, scaled preconditioned transpose-free QMR).

The GMRES, BiCGStab, and TFQMR are matrix-free linear solvers.

JacobianFn - Jacobian function [function]

This propeerty is overloaded. Set this value to a function that returns

Jacobian information consistent with the linear solver used (see Linsolver).

If not specified, KINSOL uses difference quotient approximations.

For the Dense linear solver, JacobianFn must be of type KINDenseJacFn and must

return a dense Jacobian matrix. For the iterative linear solvers, GMRES,

BiCGStab, or TFQMR, JacobianFn must be of type KINJactimesVecFn and must return

a Jacobian-vector product.

KrylovMaxDim - Maximum number of Krylov subspace vectors [scalar | 10]

Specifies the maximum number of vectors in the Krylov subspace. This property

is used only if an iterative linear solver, GMRES, BiCGStab, or TFQMR is used

(see LinSolver).

MaxNumRestarts - Maximum number of GMRES restarts [scalar | 0]

Specifies the maximum number of times the GMRES (see LinearSolver) solver

can be restarted.

PrecModule - Built-in preconditioner module [BBDPre | UserDefined]

If the PrecModule = ’UserDefined’, then the user must provide at least a

preconditioner solve function (see PrecSolveFn)

KINSOL provides a built-in preconditioner module, BBDPre which can only be used

with parallel vectors. It provide a preconditioner matrix that is block-diagonal

with banded blocks. The blocking corresponds to the distribution of the variable

vector among the processors. Each preconditioner block is generated from the

Jacobian of the local part (on the current processor) of a given function g(t,y)

approximating f(y) (see GlocalFn). The blocks are generated by a difference

quotient scheme on each processor independently. This scheme utilizes an assumed

banded structure with given half-bandwidths, mldq and mudq (specified through

LowerBwidthDQ and UpperBwidthDQ, respectively). However, the banded Jacobian

block kept by the scheme has half-bandwiths ml and mu (specified through

LowerBwidth and UpperBwidth), which may be smaller.

PrecSetupFn - Preconditioner setup function [function]

PrecSetupFn specifies an optional function which, together with PrecSolve,

defines a right preconditioner matrix which is an aproximation

to the Newton matrix. PrecSetupFn must be of type KINPrecSetupFn.

PrecSolveFn - Preconditioner solve function [function]

PrecSolveFn specifies an optional function which must solve a linear system

Pz = r, for given r. If PrecSolveFn is not defined, the no preconditioning will

be used. PrecSolveFn must be of type KINPrecSolveFn.

GlocalFn - Local right-hand side approximation funciton for BBDPre [function]

If PrecModule is BBDPre, GlocalFn specifies a required function that

evaluates a local approximation to the system function. GlocalFn must

be of type KINGlocalFn.

GcommFn - Inter-process communication function for BBDPre [function]

If PrecModule is BBDPre, GcommFn specifies an optional function

to perform any inter-process communication required for the evaluation of

GlocalFn. GcommFn must be of type KINGcommFn.

LowerBwidth - Jacobian/preconditioner lower bandwidth [scalar | 0]

This property is overloaded. If the Band linear solver is used (see LinSolver),

it specifies the lower half-bandwidth of the band Jacobian approximation.

If one of the three iterative linear solvers, GMRES, BiCGStab, or TFQMR is used

(see LinSolver) and if the BBDPre preconditioner module in KINSOL is used

(see PrecModule), it specifies the lower half-bandwidth of the retained

banded approximation of the local Jacobian block.

83

LowerBwidth defaults to 0 (no sub-diagonals).

UpperBwidth - Jacobian/preconditioner upper bandwidth [scalar | 0]

This property is overloaded. If the Band linear solver is used (see LinSolver),

it specifies the upper half-bandwidth of the band Jacobian approximation.

If one of the three iterative linear solvers, GMRES, BiCGStab, or TFQMR is used

(see LinSolver) and if the BBDPre preconditioner module in KINSOL is used

(see PrecModule), it specifies the upper half-bandwidth of the retained

banded approximation of the local Jacobian block.

UpperBwidth defaults to 0 (no super-diagonals).

LowerBwidthDQ - BBDPre preconditioner DQ lower bandwidth [scalar | 0]

Specifies the lower half-bandwidth used in the difference-quotient Jacobian

approximation for the BBDPre preconditioner (see PrecModule).

UpperBwidthDQ - BBDPre preconditioner DQ upper bandwidth [scalar | 0]

Specifies the upper half-bandwidth used in the difference-quotient Jacobian

approximation for the BBDPre preconditioner (see PrecModule).

Verbose - verbose output [true | false]

Specifies whether or not KINSOL should output additional information

ErrorMessages - Post error/warning messages [false | true]

Note that any errors in KINInit will result in a Matlab error, thus

stoping execution. Only subsequent calls to KINSOL functions will respect

the value specified for ’ErrorMessages’.

See also

KINDenseJacFn, KINJacTimesVecFn

KINPrecSetupFn, KINPrecSolveFn

KINGlocalFn, KINGcommFn

KINInit

Purpose

KINInit allocates and initializes memory for KINSOL.

Synopsis

function status = KINInit(fct, n, options)

Description

KINInit allocates and initializes memory for KINSOL.

Usage: KINInit (SYSFUN, N [, OPTIONS]);

SYSFUN is a function defining the nonlinear problem f(y) = 0.

This function must return a column vector FY containing the

current value of the residual

N is the (local) problem dimension.

OPTIONS is an (optional) set of integration options, created with

the KINSetOptions function.

See also: KINSetOptions, KINSysFn

84

KINSol

Purpose

KINSol solves the nonlinear problem.

Synopsis

function [status, y] = KINSol(y0, strategy, yscale, fscale)

Description

KINSol solves the nonlinear problem.

Usage: [STATUS, Y] = KINSol(Y0, STRATEGY, YSCALE, FSCALE)

KINSol manages the computational process of computing an approximate

solution of the nonlinear system. If the initial guess (initial value

assigned to vector Y0) doesn’t violate any user-defined constraints,

then KINSol attempts to solve the system f(y)=0. If an iterative linear

solver was specified (see KINSetOptions), KINSol uses a nonlinear Krylov

subspace projection method. The Newton-Krylov iterations are stopped

if either of the following conditions is satisfied:

||f(y)||_L-infinity <= 0.01*fnormtol

||y[i+1] - y[i]||_L-infinity <= scsteptol

However, if the current iterate satisfies the second stopping

criterion, it doesn’t necessarily mean an approximate solution

has been found since the algorithm may have stalled, or the

user-specified step tolerance may be too large.

STRATEGY specifies the global strategy applied to the Newton step if it is

unsatisfactory. Valid choices are ’None’ or ’LineSearch’.

YSCALE is a vector containing diagonal elements of scaling matrix for vector

Y chosen so that the components of YSCALE*Y (as a matrix multiplication) all

have about the same magnitude when Y is close to a root of f(y)

FSCALE is a vector containing diagonal elements of scaling matrix for f(y)

chosen so that the components of FSCALE*f(Y) (as a matrix multiplication)

all have roughly the same magnitude when u is not too near a root of f(y)

On return, status is one of the following:

0: KINSol succeeded

1: The initial y0 already satisfies the stopping criterion given above

2: Stopping tolerance on scaled step length satisfied

-1: An error occurred (see printed error message)

See also KINSetOptions, KINGetstats

KINGetStats

85

Purpose

KINGetStats returns statistics for the main KINSOL solver and the linear

Synopsis

function [si, status] = KINGetStats()

Description

KINGetStats returns statistics for the main KINSOL solver and the linear

solver used.

Usage: STATS = KINGetStats

Fields in the structure STATS

o nfe - total number evaluations of the nonlinear system function SYSFUN

o nni - total number of nonlinear iterations

o nbcf - total number of beta-condition failures

o nbops - total number of backtrack operations (step length adjustments)

performed by the line search algorithm

o fnorm - scaled norm of the nonlinear system function f(y) evaluated at the

current iterate: ||fscale*f(y)||_L2

o step - scaled norm (or length) of the step used during the previous

iteration: ||uscale*p||_L2

o LSInfo - structure with linear solver statistics

The structure LSinfo has different fields, depending on the linear solver used.

Fields in LSinfo for the ’Dense’ linear solver

o name - ’Dense’

o njeD - number of Jacobian evaluations

o nfeD - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’GMRES’ or ’BiCGStab’ linear solver

o name - ’GMRES’ or ’BiCGStab’

o nli - number of linear solver iterations

o npe - number of preconditioner setups

o nps - number of preconditioner solve function calls

o ncfl - number of linear system convergence test failures

KINFree

Purpose

KINFree deallocates memory for the KINSOL solver.

Synopsis

function KINFree()

Description

86

KINFree deallocates memory for the KINSOL solver.

Usage: KINFree

87

5.2 Function types

KINSysFn

Purpose

KINSysFn - type for user provided system function

Synopsis

This is a script file.

Description

KINSysFn - type for user provided system function

The function SYSFUN must be defined as

FUNCTION [FY, FLAG] = SYSFUN(Y)

and must return a vector FY corresponding to f(y).

If a user data structure DATA was specified in KINInit, then

SYSFUN must be defined as

FUNCTION [FY, FLAG, NEW_DATA] = SYSFUN(Y,DATA)

If the local modifications to the user data structure are needed

in other user-provided functions then, besides setting the vector FY,

the SYSFUN function must also set NEW_DATA. Otherwise, it should set

NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function SYSFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also KINInit

NOTE: SYSFUN is specified through the KINInit function.

KINDenseJacFn

Purpose

KINDenseJacFn - type for user provided dense Jacobian function.

Synopsis

This is a script file.

Description

KINDenseJacFn - type for user provided dense Jacobian function.

The function DJACFUN must be defined as

FUNCTION [J, FLAG] = DJACFUN(Y,FY)

and must return a matrix J corresponding to the Jacobian of f(y).

88

The input argument FY contains the current value of f(y).

If a user data structure DATA was specified in KINInit, then

DJACFUN must be defined as

FUNCTION [J, FLAG, NEW_DATA] = DJACFUN(Y,FY,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the matrix J and

the flag FLAG, the DJACFUN function must also set NEW_DATA. Otherwise,

it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead

to unnecessary copying).

The function DJACFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also KINSetOptions

NOTE: DJACFUN is specified through the property JacobianFn to KINSetOptions

and is used only if the property LinearSolver was set to ’Dense’.

KINBandJacFn

Purpose

KINBandJacFn - type for user provided banded Jacobian function.

Synopsis

This is a script file.

Description

KINBandJacFn - type for user provided banded Jacobian function.

The function BJACFUN must be defined as

FUNCTION [J, FLAG] = BJACFUN(Y, FY)

and must return a matrix J corresponding to the banded Jacobian of f(y).

The input argument FY contains the current value of f(y).

If a user data structure DATA was specified in KINInit, then

BJACFUN must be defined as

FUNCTION [J, FLAG, NEW_DATA] = BJACFUN(Y, FY, DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the matrix J and

the flag FLAG, the BJACFUN function must also set NEW_DATA. Otherwise,

it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead

to unnecessary copying).

The function BJACFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also KINSetOptions

NOTE: BJACFUN is specified through the property JacobianFn to KINSetOptions

and is used only if the property LinearSolver was set to ’Band’.

89

KINJacTimesVecFn

Purpose

KINJacTimesVecFn - type for user provided Jacobian times vector function.

Synopsis

This is a script file.

Description

KINJacTimesVecFn - type for user provided Jacobian times vector function.

The function JTVFUN must be defined as

FUNCTION [JV, NEW_Y, FLAG] = JTVFUN(Y, V, NEW_Y)

and must return a vector JV corresponding to the product of the

Jacobian of f(y) with the vector v. On input, NEW_Y indicates if

the iterate has been updated in the interim. JV must be update

or reevaluated, if appropriate, unless NEW_Y=false. This flag must

be reset by the user.

If a user data structure DATA was specified in KINInit, then

JTVFUN must be defined as

FUNCTION [JV, NEW_Y, FLAG, NEW_DATA] = JTVFUN(Y, V, NEW_Y, DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the vector JV, and

flags NEW_Y and FLAG, the JTVFUN function must also set NEW_DATA. Otherwise,

it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

If successful, FLAG should be set to 0. If an error occurs, FLAG should

be set to a nonzero value.

See also KINSetOptions

NOTE: JTVFUN is specified through the property JacobianFn to KINSetOptions

and is used only if the property LinearSolver was set to ’GMRES’ or ’BiCGStab’.

KINPrecSetupFn

Purpose

KINPrecSetupFn - type for user provided preconditioner setup function.

Synopsis

This is a script file.

Description

90

KINPrecSetupFn - type for user provided preconditioner setup function.

The user-supplied preconditioner setup subroutine should compute

the right-preconditioner matrix P used to form the scaled preconditioned

linear system:

(Df*J(y)*(P^-1)*(Dy^-1)) * (Dy*P*x) = Df*(-F(y))

where Dy and Df denote the diagonal scaling matrices whose diagonal elements

are stored in the vectors YSCALE and FSCALE, respectively.

The preconditioner setup routine (referenced by iterative linear

solver modules via pset (type KINSpilsPrecSetupFn)) will not be

called prior to every call made to the psolve function, but will

instead be called only as often as necessary to achieve convergence

of the Newton iteration.

NOTE: If the PRECSOLVE function requires no preparation, then a

preconditioner setup function need not be given.

The function PSETFUN must be defined as

FUNCTION FLAG = PSETFUN(Y, YSCALE, FY, FSCALE)

The input argument FY contains the current value of f(y), while YSCALE

and FSCALE are the scaling vectors for solution and system function,

respectively (as passed to KINSol)

If a user data structure DATA was specified in KINInit, then

PSETFUN must be defined as

FUNCTION [FLAG, NEW_DATA] = PSETFUN(Y, YSCALE, FY, FSCALE, DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the flag FLAG,

the PSETFUN function must also set NEW_DATA. Otherwise, it should

set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead

to unnecessary copying).

If successful, PSETFUN must return FLAG=0. For a recoverable error (in

which case the setup will be retried) it must set FLAG to a positive

integer value. If an unrecoverable error occurs, it must set FLAG

to a negative value, in which case the solver will halt.

See also KINPrecSolveFn, KINSetOptions, KINSol

NOTE: PSETFUN is specified through the property PrecSetupFn to KINSetOptions

and is used only if the property LinearSolver was set to ’GMRES’ or ’BiCGStab’.

KINPrecSolveFn

Purpose

KINPrecSolveFn - type for user provided preconditioner solve function.

Synopsis

This is a script file.

Description

91

KINPrecSolveFn - type for user provided preconditioner solve function.

The user-supplied preconditioner solve function PSOLFN

is to solve a linear system P z = r in which the matrix P is

the preconditioner matrix (possibly set implicitely by PSETFUN)

The function PSOLFUN must be defined as

FUNCTION [Z, FLAG] = PSOLFUN(Y, YSCALE, FY, FSCALE, R)

and must return a vector Z containing the solution of Pz=r.

The input argument FY contains the current value of f(y), while YSCALE

and FSCALE are the scaling vectors for solution and system function,

respectively (as passed to KINSol)

If a user data structure DATA was specified in KINInit, then

PSOLFUN must be defined as

FUNCTION [Z, FLAG, NEW_DATA] = PSOLFUN(Y,YSCALE,FY,FSCALE,R,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the vector Z and

the flag FLAG, the PSOLFUN function must also set NEW_DATA. Otherwise,

it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would

lead to unnecessary copying).

If successful, PSOLFUN must return FLAG=0. For a recoverable error it

must set FLAG to a positive value (in which case the solver will attempt

to correct). If an unrecoverable error occurs, it must set FLAG

to a negative value, in which case the solver will halt.

See also KINPrecSetupFn, KINSetOptions

NOTE: PSOLFUN is specified through the property PrecSolveFn to KINSetOptions

and is used only if the property LinearSolver was set to ’GMRES’ or ’BiCGStab’.

KINGcommFn

Purpose

KINGcommFn - type for user provided communication function (BBDPre).

Synopsis

This is a script file.

Description

KINGcommFn - type for user provided communication function (BBDPre).

The function GCOMFUN must be defined as

FUNCTION FLAG = GCOMFUN(Y)

and can be used to perform all interprocess communication necessary

to evaluate the approximate right-hand side function for the BBDPre

preconditioner module.

If a user data structure DATA was specified in KINInit, then

GCOMFUN must be defined as

FUNCTION [FLAG, NEW_DATA] = GCOMFUN(Y, DATA)

92

If the local modifications to the user data structure are needed

in other user-provided functions then the GCOMFUN function must also

set NEW_DATA. Otherwise, it should set NEW_DATA=[] (do not set

NEW_DATA = DATA as it would lead to unnecessary copying).

The function GCOMFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also KINGlocalFn, KINSetOptions

NOTES:

GCOMFUN is specified through the GcommFn property in KINSetOptions

and is used only if the property PrecModule is set to ’BBDPre’.

Each call to GCOMFUN is preceded by a call to the system function

SYSFUN with the same argument Y. Thus GCOMFUN can omit any communication

done by SYSFUN if relevant to the evaluation of G by GLOCFUN. If all

necessary communication was done by SYSFUN, GCOMFUN need not be provided.

KINGlocalFn

Purpose

KINGlocalFn - type for user provided RHS approximation function (BBDPre).

Synopsis

This is a script file.

Description

KINGlocalFn - type for user provided RHS approximation function (BBDPre).

The function GLOCFUN must be defined as

FUNCTION [G, FLAG] = GLOCFUN(Y)

and must return a vector G corresponding to an approximation to f(y)

which will be used in the BBDPRE preconditioner module. The case where

G is mathematically identical to F is allowed.

If a user data structure DATA was specified in KINInit, then

GLOCFUN must be defined as

FUNCTION [G, FLAG, NEW_DATA] = GLOCFUN(Y, DATA)

If the local modifications to the user data structure are needed

in other user-provided functions then, besides setting the vector G,

the GLOCFUN function must also set NEW_DATA. Otherwise, it should set

NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

The function GLOCFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also KINGcommFn, KINSetOptions

NOTE: GLOCFUN is specified through the GlocalFn property in KINSetOptions

and is used only if the property PrecModule is set to ’BBDPre’.

93

6 Supporting modules

This section describes two additional modules in sundialsTB, nvector and putils. The functions
in nvector perform various operations on vectors. For serial vectors, all of these operations default
to the corresponding matlab functions. For parallel vectors, they can be used either on the local
portion of the distributed vector or on the global vector (in which case they will trigger an MPI
Allreduce operation). The functions in putils are used to run parallel sundialsTB applications.
The user should only call the function mpirun to launch a parallel matlab application. See one of
the paralel sundialsTB examples for usage.

The functions in these two additional modules are listed in Table 10 and described in detail in the
remainder of this section.

Table 10: The nvector and putils functions

n
v
e
c
t
o
r

N VMax returns the largest element of x
N VMaxNorm returns the maximum norm of x

N VMin returns the smallest element of x
N VDotProd returns the dot product of two vectors

N VWrmsNorm returns the weighted root mean square norm of x
N VWL2Norm returns the weighted Euclidean L2 norm of x

N VL1Norm returns the L1 norm of x

p
u
t
il

s mpirun runs parallel examples
mpiruns runs the parallel example on a child matlab process
mpistart lamboot and MPI Init master (if required)

94

6.1 nvector functions

N_VDotProd

Purpose

N_VDotProd returns the dot product of two vectors

Synopsis

function ret = N_VDotProd(x,y,comm)

Description

N_VDotProd returns the dot product of two vectors

Usage: RET = N_VDotProd (X, Y [, COMM])

If COMM is not present, N_VDotProd returns the dot product of the

local portions of X and Y. Otherwise, it returns the global dot

product.

Source Code

1 f unc t i on r e t = N VDotProd (x , y ,comm)
9

10 % Radu Serban <radu@l ln l . gov>

11 % LLNS Copyright Star t
12 % Copyright (c) 2014 , Lawrence Livermore Nat ional Secu r i ty
13 % This work was performed under the au sp i c e s o f the U. S . Department
14 % of Energy by Lawrence Livermore Nat ional Laboratory in part under
15 % Contract W−7405−Eng−48 and in part under Contract DE−AC52−07NA27344 .
16 % Produced at the Lawrence Livermore Nat ional Laboratory .
17 % Al l r i g h t s r e s e rved .
18 % For d e t a i l s , s e e the LICENSE f i l e .
19 % LLNS Copyright End
20 % $Revis ion : 4075 $Date$
21

22

23 i f narg in == 2
24

25 r e t = dot (x , y) ;
26

27 e l s e
28

29 l do t = dot (x , y) ;
30 gdot = 0 . 0 ;
31 MPI Allreduce (ldot , gdot , ’SUM’ ,comm) ;
32 r e t = gdot ;
33

34 end

N_VL1Norm

95

Purpose

N_VL1Norm returns the L1 norm of x

Synopsis

function ret = N_VL1Norm(x,comm)

Description

N_VL1Norm returns the L1 norm of x

Usage: RET = N_VL1Norm (X [, COMM])

If COMM is not present, N_VL1Norm returns the L1 norm of

the local portion of X. Otherwise, it returns the global

L1 norm..

Source Code

1 f unc t i on r e t = N VL1Norm(x ,comm)
9

10 % Radu Serban <radu@l ln l . gov>

11 % LLNS Copyright Star t
12 % Copyright (c) 2014 , Lawrence Livermore Nat ional Secu r i ty
13 % This work was performed under the au sp i c e s o f the U. S . Department
14 % of Energy by Lawrence Livermore Nat ional Laboratory in part under
15 % Contract W−7405−Eng−48 and in part under Contract DE−AC52−07NA27344 .
16 % Produced at the Lawrence Livermore Nat ional Laboratory .
17 % Al l r i g h t s r e s e rved .
18 % For d e t a i l s , s e e the LICENSE f i l e .
19 % LLNS Copyright End
20 % $Revis ion : 4075 $Date$
21

22 i f narg in == 1
23

24 r e t = norm(x , 1) ;
25

26 e l s e
27

28 lnrm = norm(x , 1) ;
29 gnrm = 0 . 0 ;
30 MPI Allreduce (lnrm , gnrm , ’MAX’ ,comm) ;
31 r e t = gnrm ;
32

33 end

N_VMax

Purpose

N_VMax returns the largest element of x

Synopsis

function ret = N_VMax(x,comm)

Description

96

N_VMax returns the largest element of x

Usage: RET = N_VMax (X [, COMM])

If COMM is not present, N_VMax returns the maximum value of

the local portion of X. Otherwise, it returns the global

maximum value.

Source Code

1 f unc t i on r e t = N VMax(x ,comm)
9

10 % Radu Serban <radu@l ln l . gov>

11 % LLNS Copyright Star t
12 % Copyright (c) 2014 , Lawrence Livermore Nat ional Secu r i ty
13 % This work was performed under the au sp i c e s o f the U. S . Department
14 % of Energy by Lawrence Livermore Nat ional Laboratory in part under
15 % Contract W−7405−Eng−48 and in part under Contract DE−AC52−07NA27344 .
16 % Produced at the Lawrence Livermore Nat ional Laboratory .
17 % Al l r i g h t s r e s e rved .
18 % For d e t a i l s , s e e the LICENSE f i l e .
19 % LLNS Copyright End
20 % $Revis ion : 4075 $Date$
21

22 i f narg in == 1
23

24 r e t = max(x) ;
25

26 e l s e
27

28 lmax = max(x) ;
29 gmax = 0 . 0 ;
30 MPI Allreduce (lmax , gmax , ’MAX’ ,comm) ;
31 r e t = gmax ;
32

33 end

N_VMaxNorm

Purpose

N_VMaxNorm returns the L-infinity norm of x

Synopsis

function ret = N_VMaxNorm(x, comm)

Description

N_VMaxNorm returns the L-infinity norm of x

Usage: RET = N_VMaxNorm (X [, COMM])

If COMM is not present, N_VMaxNorm returns the L-infinity norm

of the local portion of X. Otherwise, it returns the global

L-infinity norm..

97

Source Code

1 f unc t i on r e t = N VMaxNorm(x , comm)
9

10 % Radu Serban <radu@l ln l . gov>

11 % LLNS Copyright Star t
12 % Copyright (c) 2014 , Lawrence Livermore Nat ional Secu r i ty
13 % This work was performed under the au sp i c e s o f the U. S . Department
14 % of Energy by Lawrence Livermore Nat ional Laboratory in part under
15 % Contract W−7405−Eng−48 and in part under Contract DE−AC52−07NA27344 .
16 % Produced at the Lawrence Livermore Nat ional Laboratory .
17 % Al l r i g h t s r e s e rved .
18 % For d e t a i l s , s e e the LICENSE f i l e .
19 % LLNS Copyright End
20 % $Revis ion : 4075 $Date$
21

22 i f narg in == 1
23

24 r e t = norm(x , ’ i n f ’) ;
25

26 e l s e
27

28 lnrm = norm(x , ’ i n f ’) ;
29 gnrm = 0 . 0 ;
30 MPI Allreduce (lnrm , gnrm , ’MAX’ ,comm) ;
31 r e t = gnrm ;
32

33 end

N_VMin

Purpose

N_VMin returns the smallest element of x

Synopsis

function ret = N_VMin(x,comm)

Description

N_VMin returns the smallest element of x

Usage: RET = N_VMin (X [, COMM])

If COMM is not present, N_VMin returns the minimum value of

the local portion of X. Otherwise, it returns the global

minimum value.

Source Code

1 f unc t i on r e t = N VMin(x ,comm)
8

9 % Radu Serban <radu@l ln l . gov>

10 % LLNS Copyright Star t
11 % Copyright (c) 2014 , Lawrence Livermore Nat ional Secu r i ty
12 % This work was performed under the au sp i c e s o f the U. S . Department

98

13 % of Energy by Lawrence Livermore Nat ional Laboratory in part under
14 % Contract W−7405−Eng−48 and in part under Contract DE−AC52−07NA27344 .
15 % Produced at the Lawrence Livermore Nat ional Laboratory .
16 % Al l r i g h t s r e s e rved .
17 % For d e t a i l s , s e e the LICENSE f i l e .
18 % LLNS Copyright End
19 % $Revis ion : 4075 $Date$
20

21 i f narg in == 1
22

23 r e t = min (x) ;
24

25 e l s e
26

27 lmin = min (x) ;
28 gmin = 0 . 0 ;
29 MPI Allreduce (lmin , gmin , ’MIN ’ ,comm) ;
30 r e t = gmin ;
31

32 end

N_VWL2Norm

Purpose

N_VWL2Norm returns the weighted Euclidean L2 norm of x

Synopsis

function ret = N_VWL2Norm(x,w,comm)

Description

N_VWL2Norm returns the weighted Euclidean L2 norm of x

with weight vector w:

sqrt [(sum (i = 0 to N-1) (x[i]*w[i])^2)]

Usage: RET = N_VWL2Norm (X, W [, COMM])

If COMM is not present, N_VWL2Norm returns the weighted L2

norm of the local portion of X. Otherwise, it returns the

global weighted L2 norm..

Source Code

1 f unc t i on r e t = N VWL2Norm(x ,w,comm)
11

12 % Radu Serban <radu@l ln l . gov>

13 % LLNS Copyright Star t
14 % Copyright (c) 2014 , Lawrence Livermore Nat ional Secu r i ty
15 % This work was performed under the au sp i c e s o f the U. S . Department
16 % of Energy by Lawrence Livermore Nat ional Laboratory in part under
17 % Contract W−7405−Eng−48 and in part under Contract DE−AC52−07NA27344 .
18 % Produced at the Lawrence Livermore Nat ional Laboratory .
19 % Al l r i g h t s r e s e rved .

99

20 % For d e t a i l s , s e e the LICENSE f i l e .
21 % LLNS Copyright End
22 % $Revis ion : 4075 $Date$
23

24 i f narg in == 2
25

26 r e t = dot (x . ˆ2 ,w. ˆ 2) ;
27 r e t = sq r t (r e t) ;
28

29 e l s e
30

31 lnrm = dot (x . ˆ2 ,w. ˆ 2) ;
32 gnrm = 0 . 0 ;
33 MPI Allreduce (lnrm , gnrm , ’SUM’ ,comm) ;
34

35 r e t = sq r t (gnrm) ;
36

37 end

N_VWrmsNorm

Purpose

N_VWrmsNorm returns the weighted root mean square norm of x

Synopsis

function ret = N_VWrmsNorm(x,w,comm)

Description

N_VWrmsNorm returns the weighted root mean square norm of x

with weight vector w:

sqrt [(sum (i = 0 to N-1) (x[i]*w[i])^2)/N]

Usage: RET = N_VWrmsNorm (X, W [, COMM])

If COMM is not present, N_VWrmsNorm returns the WRMS norm

of the local portion of X. Otherwise, it returns the global

WRMS norm..

Source Code

1 f unc t i on r e t = N VWrmsNorm(x ,w,comm)
11

12 % Radu Serban <radu@l ln l . gov>

13 % LLNS Copyright Star t
14 % Copyright (c) 2014 , Lawrence Livermore Nat ional Secu r i ty
15 % This work was performed under the au sp i c e s o f the U. S . Department
16 % of Energy by Lawrence Livermore Nat ional Laboratory in part under
17 % Contract W−7405−Eng−48 and in part under Contract DE−AC52−07NA27344 .
18 % Produced at the Lawrence Livermore Nat ional Laboratory .
19 % Al l r i g h t s r e s e rved .
20 % For d e t a i l s , s e e the LICENSE f i l e .
21 % LLNS Copyright End

100

22 % $Revis ion : 4075 $Date$
23

24 i f narg in == 2
25

26 r e t = dot (x . ˆ2 ,w. ˆ 2) ;
27 r e t = sq r t (r e t / l ength (x)) ;
28

29 e l s e
30

31 lnrm = dot (x . ˆ2 ,w. ˆ 2) ;
32 gnrm = 0 . 0 ;
33 MPI Allreduce (lnrm , gnrm , ’SUM’ ,comm) ;
34

35 ln = length (x) ;
36 gn = 0 ;
37 MPI Allreduce (ln , gn , ’SUM’ ,comm) ;
38

39 r e t = sq r t (gnrm/gn) ;
40

41 end

101

6.2 Parallel utilities

mpirun

Purpose

MPIRUN runs parallel examples.

Synopsis

function [] = mpirun(fct,npe,dbg)

Description

MPIRUN runs parallel examples.

Usage: MPIRUN (FCT , NPE [, DBG])

FCT - function to be executed on all MATLAB processes.

NPE - number of processes to be used (including the master).

DBG - flag for debugging [true | false]

If true, spawn MATLAB child processes with a visible xterm.

mpiruns

Purpose

MPIRUNS runs the parallel example on a child MATLAB process.

Synopsis

function [] = mpiruns(fct)

Description

MPIRUNS runs the parallel example on a child MATLAB process.

Usage: MPIRUNS (FCT)

This function should not be called directly. It is called

by mpirun on the spawned child processes.

mpistart

Purpose

MPISTART invokes lamboot (if required) and MPI_Init (if required).

Synopsis

function mpistart(nslaves, rpi, hosts)

Description

102

MPISTART invokes lamboot (if required) and MPI_Init (if required).

Usage: MPISTART [(NSLAVES [, RPI [, HOSTS]])]

MPISTART boots LAM and initializes MPI to match a given number of slave

hosts (and rpi) from a given list of hosts. All three args optional.

If they are not defined, HOSTS are taken from a builtin HOSTS list

(edit HOSTS at the beginning of this file to match your cluster)

or from the bhost file if defined through LAMBHOST (in this order).

If not defined, RPI is taken from the builtin variable RPI (edit it

to suit your needs) or from the LAM_MPI_SSI_rpi environment variable

(in this order).

103

A Implementation of CVodeMonitor.m

CVodeMonitor

Purpose

CVodeMonitor is the default CVODES monitoring function.

Synopsis

function [new_data] = CVodeMonitor(call, T, Y, YQ, YS, data)

Description

CVodeMonitor is the default CVODES monitoring function.

To use it, set the Monitor property in CVodeSetOptions to

’CVodeMonitor’ or to @CVodeMonitor and ’MonitorData’ to mondata

(defined as a structure).

With default settings, this function plots the evolution of the step

size, method order, and various counters.

Various properties can be changed from their default values by passing

to CVodeSetOptions, through the property ’MonitorData’, a structure

MONDATA with any of the following fields. If a field is not defined,

the corresponding default value is used.

Fields in MONDATA structure:

o stats [true | false]

If true, report the evolution of the step size and method order.

o cntr [true | false]

If true, report the evolution of the following counters:

nst, nfe, nni, netf, ncfn (see CVodeGetStats)

o mode [’graphical’ | ’text’ | ’both’]

In graphical mode, plot the evolutions of the above quantities.

In text mode, print a table.

o sol [true | false]

If true, plot solution components.

o sensi [true | false]

If true and if FSA is enabled, plot sensitivity components.

o select [array of integers]

To plot only particular solution components, specify their indeces in

the field select. If not defined, but sol=true, all components are plotted.

o updt [integer | 50]

Update frequency. Data is posted in blocks of dimension n.

o skip [integer | 0]

Number of integrations steps to skip in collecting data to post.

o post [true | false]

If false, disable all posting. This option is necessary to disable

monitoring on some processors when running in parallel.

See also CVodeSetOptions, CVMonitorFn

NOTES:

1. The argument mondata is REQUIRED. Even if only the default options

are desired, set mondata=struct; and pass it to CVodeSetOptions.

2. The yQ argument is currently ignored.

104

Source Code

1 f unc t i on [new data] = CVodeMonitor (c a l l , T, Y, YQ, YS, data)
45

46 % Radu Serban <radu@l ln l . gov>

47 % LLNS Copyright Star t
48 % Copyright (c) 2014 , Lawrence Livermore Nat ional Secu r i ty
49 % This work was performed under the au sp i c e s o f the U. S . Department
50 % of Energy by Lawrence Livermore Nat ional Laboratory in part under
51 % Contract W−7405−Eng−48 and in part under Contract DE−AC52−07NA27344 .
52 % Produced at the Lawrence Livermore Nat ional Laboratory .
53 % Al l r i g h t s r e s e rved .
54 % For d e t a i l s , s e e the LICENSE f i l e .
55 % LLNS Copyright End
56 % $Revis ion : 4075 $Date : 2007/05/11 18 : 51 : 32 $
57

58 i f (narg in ˜= 6)
59 e r r o r (’ Monitor data not de f ined . ’) ;
60 end
61

62 new data = [] ;
63

64 i f c a l l == 0
65

66 % I n i t i a l i z e un sp e c i f i e d f i e l d s to d e f au l t va lue s .
67 data = i n i t i a l i z e d a t a (data) ;
68

69 % Open f i g u r e windows
70 i f data . post
71

72 i f data . grph
73 i f data . s t a t s | data . cntr
74 data . hfg = f i g u r e ;
75 end
76 % Number o f subp lo t s in f i g u r e hfg
77 i f data . s t a t s
78 data . npg = data . npg + 2 ;
79 end
80 i f data . cntr
81 data . npg = data . npg + 1 ;
82 end
83 end
84

85 i f data . t ex t
86 i f data . cntr | data . s t a t s
87 data . h f t = f i g u r e ;
88 end
89 end
90

91 i f data . s o l | data . s e n s i
92 data . h f s = f i g u r e ;
93 end
94

95 end
96

105

97 % I n i t i a l i z e other p r i va t e data
98 data . i = 0 ;
99 data . n = 1 ;

100 data . t = ze ro s (1 , data . updt) ;
101 i f data . s t a t s
102 data . h = ze ro s (1 , data . updt) ;
103 data . q = ze ro s (1 , data . updt) ;
104 end
105 i f data . cntr
106 data . nst = ze ro s (1 , data . updt) ;
107 data . n fe = ze ro s (1 , data . updt) ;
108 data . nni = ze ro s (1 , data . updt) ;
109 data . n e t f = ze ro s (1 , data . updt) ;
110 data . ncfn = ze ro s (1 , data . updt) ;
111 end
112

113 data . f i r s t = true ; % the next one w i l l be the f i r s t c a l l = 1
114 data . i n i t i a l i z e d = f a l s e ; % the g raph i c a l windows were not i n i t a l i z e d
115

116 new data = data ;
117

118 re turn ;
119

120 e l s e
121

122 % I f t h i s i s the f i r s t c a l l ˜= 0 ,
123 % use Y and YS f o r add i t i ona l i n i t i a l i z a t i o n s
124

125 i f data . f i r s t
126

127 i f isempty (YS)
128 data . s e n s i = f a l s e ;
129 end
130

131 i f data . s o l | data . s e n s i
132

133 i f isempty (data . s e l e c t)
134

135 data .N = length (Y) ;
136 data . s e l e c t = [1 : data .N] ;
137

138 e l s e
139

140 data .N = length (data . s e l e c t) ;
141

142 end
143

144 i f data . s o l
145 data . y = ze ro s (data .N, data . updt) ;
146 data . nps = data . nps + 1 ;
147 end
148

149 i f data . s e n s i
150 data . Ns = s i z e (YS , 2) ;

106

151 data . ys = ze ro s (data .N, data . Ns , data . updt) ;
152 data . nps = data . nps + data . Ns ;
153 end
154

155 end
156

157 data . f i r s t = f a l s e ;
158

159 end
160

161 % Extract v a r i a b l e s from data
162

163 hfg = data . hfg ;
164 h f t = data . h f t ;
165 h f s = data . h f s ;
166 npg = data . npg ;
167 nps = data . nps ;
168 i = data . i ;
169 n = data . n ;
170 t = data . t ;
171 N = data .N;
172 Ns = data . Ns ;
173 y = data . y ;
174 ys = data . ys ;
175 h = data . h ;
176 q = data . q ;
177 nst = data . nst ;
178 nfe = data . n fe ;
179 nni = data . nni ;
180 ne t f = data . n e t f ;
181 ncfn = data . ncfn ;
182

183 end
184

185

186 % Load cur rent s t a t i s t i c s ?
187

188 i f c a l l == 1
189

190 i f i ˜= 0
191 i = i −1;
192 data . i = i ;
193 new data = data ;
194 re turn ;
195 end
196

197 s i = CVodeGetStats ;
198

199 t (n) = s i . t cur ;
200

201 i f data . s t a t s
202 h(n) = s i . h l a s t ;
203 q (n) = s i . q l a s t ;
204 end

107

205

206 i f data . cntr
207 nst (n) = s i . nst ;
208 nfe (n) = s i . n f e ;
209 nni (n) = s i . nni ;
210 ne t f (n) = s i . n e t f ;
211 ncfn (n) = s i . ncfn ;
212 end
213

214 i f data . s o l
215 f o r j = 1 :N
216 y (j , n) = Y(data . s e l e c t (j)) ;
217 end
218 end
219

220 i f data . s e n s i
221 f o r k = 1 :Ns
222 f o r j = 1 :N
223 ys (j , k , n) = YS(data . s e l e c t (j) , k) ;
224 end
225 end
226 end
227

228 end
229

230 % Is i t time to post ?
231

232 i f data . post & (n == data . updt | c a l l ==2)
233

234 i f c a l l == 2
235 n = n−1;
236 end
237

238 i f ˜data . i n i t i a l i z e d
239

240 i f (data . s t a t s | data . cntr) & data . grph
241 g r a p h i c a l i n i t (n , hfg , npg , data . s t a t s , data . cntr , . . .
242 t , h , q , nst , nfe , nni , net f , ncfn) ;
243 end
244

245 i f (data . s t a t s | data . cntr) & data . t ex t
246 t e x t i n i t (n , hft , data . s t a t s , data . cntr , . . .
247 t , h , q , nst , nfe , nni , net f , ncfn) ;
248 end
249

250 i f data . s o l | data . s e n s i
251 s o l i n i t (n , hfs , nps , data . so l , data . s en s i , . . .
252 N, Ns , t , y , ys) ;
253 end
254

255 data . i n i t i a l i z e d = true ;
256

257 e l s e
258

108

259 i f (data . s t a t s | data . cntr) & data . grph
260 graph i ca l update (n , hfg , npg , data . s t a t s , data . cntr , . . .
261 t , h , q , nst , nfe , nni , net f , ncfn) ;
262 end
263

264 i f (data . s t a t s | data . cntr) & data . t ex t
265 text update (n , hft , data . s t a t s , data . cntr , . . .
266 t , h , q , nst , nfe , nni , net f , ncfn) ;
267 end
268

269 i f data . s o l
270 so l update (n , hfs , nps , data . so l , data . s en s i , N, Ns , t , y , ys) ;
271 end
272

273 end
274

275 i f c a l l == 2
276

277 i f (data . s t a t s | data . cntr) & data . grph
278 g r a p h i c a l f i n a l (hfg , npg , data . cntr , data . s t a t s) ;
279 end
280

281 i f data . s o l | data . s e n s i
282 s o l f i n a l (hfs , nps , data . so l , data . s en s i , N, Ns) ;
283 end
284

285 re turn ;
286

287 end
288

289 n = 1 ;
290

291 e l s e
292

293 n = n + 1 ;
294

295 end
296

297

298 % Save updated va lue s in data
299

300 data . i = data . sk ip ;
301 data . n = n ;
302 data . npg = npg ;
303 data . t = t ;
304 data . y = y ;
305 data . ys = ys ;
306 data . h = h ;
307 data . q = q ;
308 data . nst = nst ;
309 data . n fe = nfe ;
310 data . nni = nni ;
311 data . n e t f = ne t f ;
312 data . ncfn = ncfn ;

109

313

314 new data = data ;
315

316 re turn ;
317

318 %−−−
319

320 f unc t i on data = i n i t i a l i z e d a t a (data)
321

322 i f ˜ i s f i e l d (data , ’mode ’)
323 data . mode = ’ g r aph i c a l ’ ;
324 end
325 i f ˜ i s f i e l d (data , ’ updt ’)
326 data . updt = 50 ;
327 end
328 i f ˜ i s f i e l d (data , ’ sk ip ’)
329 data . sk ip = 0 ;
330 end
331 i f ˜ i s f i e l d (data , ’ s t a t s ’)
332 data . s t a t s = true ;
333 end
334 i f ˜ i s f i e l d (data , ’ cnt r ’)
335 data . cntr = true ;
336 end
337 i f ˜ i s f i e l d (data , ’ s o l ’)
338 data . s o l = f a l s e ;
339 end
340 i f ˜ i s f i e l d (data , ’ s e n s i ’)
341 data . s e n s i = f a l s e ;
342 end
343 i f ˜ i s f i e l d (data , ’ s e l e c t ’)
344 data . s e l e c t = [] ;
345 end
346 i f ˜ i s f i e l d (data , ’ post ’)
347 data . post = true ;
348 end
349

350 data . grph = true ;
351 data . t ex t = true ;
352 i f strcmp (data . mode , ’ g r aph i c a l ’)
353 data . t ex t = f a l s e ;
354 end
355 i f strcmp (data . mode , ’ t ex t ’)
356 data . grph = f a l s e ;
357 end
358

359 i f ˜data . s o l & ˜data . s e n s i
360 data . s e l e c t = [] ;
361 end
362

363 % Other i n i t i a l i z a t i o n s
364 data . npg = 0 ;
365 data . nps = 0 ;
366 data . hfg = 0 ;

110

367 data . h f t = 0 ;
368 data . h f s = 0 ;
369 data . h = 0 ;
370 data . q = 0 ;
371 data . nst = 0 ;
372 data . n fe = 0 ;
373 data . nni = 0 ;
374 data . n e t f = 0 ;
375 data . ncfn = 0 ;
376 data .N = 0 ;
377 data . Ns = 0 ;
378 data . y = 0 ;
379 data . ys = 0 ;
380

381 %−−−
382

383 f unc t i on [] = g r a p h i c a l i n i t (n , hfg , npg , s ta t s , cntr , . . .
384 t , h , q , nst , nfe , nni , net f , ncfn)
385

386 f ig name = ’CVODES run s t a t i s t i c s ’ ;
387

388 % I f t h i s i s a p a r a l l e l job , look f o r the MPI rank in the g l oba l
389 % workspace and append i t to the f i g u r e name
390

391 g l oba l sundia ls MPI rank
392

393 i f ˜ isempty (sundia ls MPI rank)
394 f ig name = s p r i n t f (’%s (PE %d) ’ , f ig name , sundia ls MPI rank) ;
395 end
396

397 f i g u r e (hfg) ;
398 s e t (hfg , ’Name ’ , f ig name) ;
399 s e t (hfg , ’ c o l o r ’ , [1 1 1]) ;
400 pl = 0 ;
401

402 % Time l a b e l and f i g u r e t i t l e
403

404 t l ab = ’ \ r ightar row t \ r ightar row ’ ;
405

406 % Step s i z e and order
407 i f s t a t s
408 pl = pl +1;
409 subplot (npg , 1 , p l)
410 semi logy (t (1 : n) , abs (h (1 : n)) , ’− ’) ;
411 hold on ;
412 box on ;
413 g r id on ;
414 x l ab e l (t l ab) ;
415 y l ab e l (’ | Step s i z e | ’) ;
416

417 pl = pl +1;
418 subplot (npg , 1 , p l)
419 p lo t (t (1 : n) , q (1 : n) , ’− ’) ;
420 hold on ;

111

421 box on ;
422 g r id on ;
423 x l ab e l (t l ab) ;
424 y l ab e l (’ Order ’) ;
425 end
426

427 % Counters
428 i f cnt r
429 pl = pl +1;
430 subplot (npg , 1 , p l)
431 p lo t (t (1 : n) , nst (1 : n) , ’ k− ’) ;
432 hold on ;
433 p lo t (t (1 : n) , n fe (1 : n) , ’b− ’) ;
434 p lo t (t (1 : n) , nni (1 : n) , ’ r− ’) ;
435 p lo t (t (1 : n) , n e t f (1 : n) , ’ g− ’) ;
436 p lo t (t (1 : n) , ncfn (1 : n) , ’ c− ’) ;
437 box on ;
438 g r id on ;
439 x l ab e l (t l ab) ;
440 y l ab e l (’ Counters ’) ;
441 end
442

443 drawnow ;
444

445 %−−−
446

447 f unc t i on [] = graph i ca l update (n , hfg , npg , s ta t s , cntr , . . .
448 t , h , q , nst , nfe , nni , net f , ncfn)
449

450 f i g u r e (hfg) ;
451 pl = 0 ;
452

453 % Step s i z e and order
454 i f s t a t s
455 pl = pl +1;
456 subplot (npg , 1 , p l)
457 hc = get (gca , ’ Chi ldren ’) ;
458 xd = [get (hc , ’XData ’) t (1 : n)] ;
459 yd = [get (hc , ’YData ’) abs (h (1 : n))] ;
460 s e t (hc , ’XData ’ , xd , ’YData ’ , yd) ;
461

462 pl = pl +1;
463 subplot (npg , 1 , p l)
464 hc = get (gca , ’ Chi ldren ’) ;
465 xd = [get (hc , ’XData ’) t (1 : n)] ;
466 yd = [get (hc , ’YData ’) q (1 : n)] ;
467 s e t (hc , ’XData ’ , xd , ’YData ’ , yd) ;
468 end
469

470 % Counters
471 i f cnt r
472 pl = pl +1;
473 subplot (npg , 1 , p l)
474 hc = get (gca , ’ Chi ldren ’) ;

112

475 % Attent ion : Chi ldren are loaded in r e v e r s e order !
476 xd = [get (hc (1) , ’XData ’) t (1 : n)] ;
477 yd = [get (hc (1) , ’YData ’) ncfn (1 : n)] ;
478 s e t (hc (1) , ’XData ’ , xd , ’YData ’ , yd) ;
479 yd = [get (hc (2) , ’YData ’) n e t f (1 : n)] ;
480 s e t (hc (2) , ’XData ’ , xd , ’YData ’ , yd) ;
481 yd = [get (hc (3) , ’YData ’) nni (1 : n)] ;
482 s e t (hc (3) , ’XData ’ , xd , ’YData ’ , yd) ;
483 yd = [get (hc (4) , ’YData ’) n fe (1 : n)] ;
484 s e t (hc (4) , ’XData ’ , xd , ’YData ’ , yd) ;
485 yd = [get (hc (5) , ’YData ’) nst (1 : n)] ;
486 s e t (hc (5) , ’XData ’ , xd , ’YData ’ , yd) ;
487 end
488

489 drawnow ;
490

491 %−−−
492

493 f unc t i on [] = g r a p h i c a l f i n a l (hfg , npg , s ta t s , cntr)
494

495 f i g u r e (hfg) ;
496 pl = 0 ;
497

498 i f s t a t s
499 pl = pl +1;
500 subplot (npg , 1 , p l)
501 hc = get (gca , ’ Chi ldren ’) ;
502 xd = get (hc , ’XData ’) ;
503 s e t (gca , ’XLim ’ , s o r t ([xd (1) xd (end)])) ;
504

505 pl = pl +1;
506 subplot (npg , 1 , p l)
507 ylim = get (gca , ’YLim ’) ;
508 ylim (1) = ylim (1) − 1 ;
509 ylim (2) = ylim (2) + 1 ;
510 s e t (gca , ’YLim ’ , yl im) ;
511 s e t (gca , ’XLim ’ , s o r t ([xd (1) xd (end)])) ;
512 end
513

514 i f cnt r
515 pl = pl +1;
516 subplot (npg , 1 , p l)
517 hc = get (gca , ’ Chi ldren ’) ;
518 xd = get (hc (1) , ’XData ’) ;
519 s e t (gca , ’XLim ’ , s o r t ([xd (1) xd (end)])) ;
520 l egend (’ nst ’ , ’ n f e ’ , ’ nni ’ , ’ n e t f ’ , ’ ncfn ’ , 2) ;
521 end
522

523 %−−−
524

525 f unc t i on [] = t e x t i n i t (n , hft , s t a t s , cntr , t , h , q , nst , nfe , nni , net f , ncfn)
526

527 f ig name = ’CVODES run s t a t i s t i c s ’ ;
528

113

529 % I f t h i s i s a p a r a l l e l job , look f o r the MPI rank in the g l oba l
530 % workspace and append i t to the f i g u r e name
531

532 g l oba l sundia ls MPI rank
533

534 i f ˜ isempty (sundia ls MPI rank)
535 f ig name = s p r i n t f (’%s (PE %d) ’ , f ig name , sundia ls MPI rank) ;
536 end
537

538 f i g u r e (h f t) ;
539 s e t (hft , ’Name ’ , f ig name) ;
540 s e t (hft , ’ c o l o r ’ , [1 1 1]) ;
541 s e t (hft , ’MenuBar ’ , ’ none ’) ;
542 s e t (hft , ’ Res i ze ’ , ’ o f f ’) ;
543

544 % Create t ext box
545

546 margins =[10 10 50 5 0] ; % l e f t , r i ght , top , bottom
547 pos=get (hft , ’ p o s i t i o n ’) ;
548 tbpos=[margins (1) margins (4) pos (3)−margins (1)−margins (2) . . .
549 pos (4)−margins (3)−margins (4)] ;
550 tbpos (tbpos <1)=1;
551

552 htb=u i c on t r o l (hft , ’ s t y l e ’ , ’ l i s t b o x ’ , ’ p o s i t i o n ’ , tbpos , ’ tag ’ , ’ textbox ’) ;
553 s e t (htb , ’ BackgroundColor ’ , [1 1 1]) ;
554 s e t (htb , ’ S e l e c t i o nH i gh l i g h t ’ , ’ o f f ’) ;
555 s e t (htb , ’FontName ’ , ’ c ou r i e r ’) ;
556

557 % Create t ab l e head
558

559 tpos = [tbpos (1) tbpos (2)+ tbpos (4)+10 tbpos (3) 2 0] ;
560 ht=u i c on t r o l (hft , ’ s t y l e ’ , ’ t ex t ’ , ’ p o s i t i o n ’ , tpos , ’ tag ’ , ’ t ex t ’) ;
561 s e t (ht , ’ BackgroundColor ’ , [1 1 1]) ;
562 s e t (ht , ’ Hor izontalAl ignment ’ , ’ l e f t ’) ;
563 s e t (ht , ’FontName ’ , ’ c ou r i e r ’) ;
564 newl ine = ’ time step order | nst n fe nni n e t f ncfn ’ ;
565 s e t (ht , ’ S t r ing ’ , newl ine) ;
566

567 % Create OK button
568

569 b s i z e = [60 , 28] ;
570 badjustpos = [0 , 25] ;
571 bpos=[pos (3)/2− b s i z e (1)/2+ badjustpos (1) −b s i z e (2)/2+ badjustpos (2) . . .
572 b s i z e (1) b s i z e (2)] ;
573 bpos=round (bpos) ;
574 bpos (bpos <1)=1;
575 hb=u i c on t r o l (hft , ’ s t y l e ’ , ’ pushbutton ’ , ’ p o s i t i o n ’ , bpos , . . .
576 ’ s t r i n g ’ , ’ Close ’ , ’ tag ’ , ’ okaybutton ’) ;
577 s e t (hb , ’ c a l l b a ck ’ , ’ c l o s e ’) ;
578

579 % Save handles
580

581 handles=gu ihand le s (h f t) ;
582 guidata (hft , handles) ;

114

583

584 f o r i = 1 : n
585 newl ine = ’ ’ ;
586 i f s t a t s
587 newl ine = s p r i n t f (’ %10.3 e %10.3 e %1d | ’ , t (i) , h (i) , q (i)) ;
588 end
589 i f cnt r
590 newl ine = s p r i n t f (’%s %5d %5d %5d %5d %5d ’ , . . .
591 newline , nst (i) , n f e (i) , nni (i) , n e t f (i) , ncfn (i)) ;
592 end
593 s t r i n g = get (handles . textbox , ’ S t r ing ’) ;
594 s t r i n g {end+1}=newl ine ;
595 s e t (handles . textbox , ’ S t r ing ’ , s t r i n g) ;
596 end
597

598 drawnow
599

600 %−−−
601

602 f unc t i on [] = text update (n , hft , s t a t s , cntr , t , h , q , nst , nfe , nni , net f , ncfn)
603

604 f i g u r e (h f t) ;
605

606 handles=guidata (h f t) ;
607

608 f o r i = 1 : n
609 i f s t a t s
610 newl ine = s p r i n t f (’ %10.3 e %10.3 e %1d | ’ , t (i) , h (i) , q (i)) ;
611 end
612 i f cnt r
613 newl ine = s p r i n t f (’%s %5d %5d %5d %5d %5d ’ , . . .
614 newline , nst (i) , n f e (i) , nni (i) , n e t f (i) , ncfn (i)) ;
615 end
616 s t r i n g = get (handles . textbox , ’ S t r ing ’) ;
617 s t r i n g {end+1}=newl ine ;
618 s e t (handles . textbox , ’ S t r ing ’ , s t r i n g) ;
619 end
620

621 drawnow
622

623 %−−−
624

625 f unc t i on [] = s o l i n i t (n , hfs , nps , so l , s en s i , N, Ns , t , y , ys)
626

627 f ig name = ’CVODES so l u t i o n ’ ;
628

629 % I f t h i s i s a p a r a l l e l job , look f o r the MPI rank in the g l oba l
630 % workspace and append i t to the f i g u r e name
631

632 g l oba l sundia ls MPI rank
633

634 i f ˜ isempty (sundia ls MPI rank)
635 f ig name = s p r i n t f (’%s (PE %d) ’ , f ig name , sundia ls MPI rank) ;
636 end

115

637

638

639 f i g u r e (h f s) ;
640 s e t (hfs , ’Name ’ , f ig name) ;
641 s e t (hfs , ’ c o l o r ’ , [1 1 1]) ;
642

643 % Time l a b e l
644

645 t l ab = ’ \ r ightar row t \ r ightar row ’ ;
646

647 % Get number o f c o l o r s in colormap
648 map = colormap ;
649 nco l s = s i z e (map , 1) ;
650

651 % I n i t i a l i z e cur rent subplot counter
652 pl = 0 ;
653

654 i f s o l
655

656 pl = pl +1;
657 subplot (nps , 1 , p l) ;
658 hold on ;
659

660 f o r i = 1 :N
661 hp = p lo t (t (1 : n) , y (i , 1 : n) , ’− ’) ;
662 i c = 1+(i −1)∗ f l o o r (nco l s /N) ;
663 s e t (hp , ’ Color ’ ,map(ic , :)) ;
664 end
665 box on ;
666 g r id on ;
667 x l ab e l (t l ab) ;
668 y l ab e l (’ y ’) ;
669 t i t l e (’ So lu t i on ’) ;
670

671 end
672

673 i f s e n s i
674

675 f o r i s = 1 :Ns
676

677 pl = pl +1;
678 subplot (nps , 1 , p l) ;
679 hold on ;
680

681 y s c r t = ys (: , i s , 1 : n) ;
682 f o r i = 1 :N
683 hp = p lo t (t (1 : n) , y s c r t (i , 1 : n) , ’− ’) ;
684 i c = 1+(i −1)∗ f l o o r (nco l s /N) ;
685 s e t (hp , ’ Color ’ ,map(ic , :)) ;
686 end
687 box on ;
688 g r id on ;
689 x l ab e l (t l ab) ;
690 s t r = s p r i n t f (’ s {%d} ’ , i s) ; y l ab e l (s t r) ;

116

691 s t r = s p r i n t f (’ S e n s i t i v i t y %d ’ , i s) ; t i t l e (s t r) ;
692

693 end
694

695 end
696

697

698 drawnow ;
699

700 %−−−
701

702 f unc t i on [] = so l update (n , hfs , nps , so l , s en s i , N, Ns , t , y , ys)
703

704 f i g u r e (h f s) ;
705

706 pl = 0 ;
707

708 i f s o l
709

710 pl = pl +1;
711 subplot (nps , 1 , p l) ;
712

713 hc = get (gca , ’ Chi ldren ’) ;
714 xd = [get (hc (1) , ’XData ’) t (1 : n)] ;
715 % Attent ion : Chi ldren are loaded in r e v e r s e order !
716 f o r i = 1 :N
717 yd = [get (hc (i) , ’YData ’) y (N−i +1 ,1:n)] ;
718 s e t (hc (i) , ’XData ’ , xd , ’YData ’ , yd) ;
719 end
720

721 end
722

723 i f s e n s i
724

725 f o r i s = 1 :Ns
726

727 pl = pl +1;
728 subplot (nps , 1 , p l) ;
729

730 y s c r t = ys (: , i s , :) ;
731

732 hc = get (gca , ’ Chi ldren ’) ;
733 xd = [get (hc (1) , ’XData ’) t (1 : n)] ;
734 % Attent ion : Chi ldren are loaded in r e v e r s e order !
735 f o r i = 1 :N
736 yd = [get (hc (i) , ’YData ’) y s c r t (N−i +1 ,1:n)] ;
737 s e t (hc (i) , ’XData ’ , xd , ’YData ’ , yd) ;
738 end
739

740 end
741

742 end
743

744

117

745 drawnow ;
746

747

748 %−−−
749

750 f unc t i on [] = s o l f i n a l (hfs , nps , so l , s en s i , N, Ns)
751

752 f i g u r e (h f s) ;
753

754 pl = 0 ;
755

756 i f s o l
757

758 pl = pl +1;
759 subplot (nps , 1 , p l) ;
760

761 hc = get (gca , ’ Chi ldren ’) ;
762 xd = get (hc (1) , ’XData ’) ;
763 s e t (gca , ’XLim ’ , s o r t ([xd (1) xd (end)])) ;
764

765 ylim = get (gca , ’YLim ’) ;
766 addon = 0.1∗ abs (ylim (2)−ylim (1)) ;
767 ylim (1) = ylim (1) + s i gn (ylim (1))∗ addon ;
768 ylim (2) = ylim (2) + s i gn (ylim (2))∗ addon ;
769 s e t (gca , ’YLim ’ , yl im) ;
770

771 f o r i = 1 :N
772 c s t r i n g { i } = s p r i n t f (’ y {%d} ’ , i) ;
773 end
774 l egend (c s t r i n g) ;
775

776 end
777

778 i f s e n s i
779

780 f o r i s = 1 :Ns
781

782 pl = pl +1;
783 subplot (nps , 1 , p l) ;
784

785 hc = get (gca , ’ Chi ldren ’) ;
786 xd = get (hc (1) , ’XData ’) ;
787 s e t (gca , ’XLim ’ , s o r t ([xd (1) xd (end)])) ;
788

789 ylim = get (gca , ’YLim ’) ;
790 addon = 0.1∗ abs (ylim (2)−ylim (1)) ;
791 ylim (1) = ylim (1) + s i gn (ylim (1))∗ addon ;
792 ylim (2) = ylim (2) + s i gn (ylim (2))∗ addon ;
793 s e t (gca , ’YLim ’ , yl im) ;
794

795 f o r i = 1 :N
796 c s t r i n g { i } = s p r i n t f (’ s%d {%d} ’ , i s , i) ;
797 end
798 l egend (c s t r i n g) ;

118

799

800 end
801

802 end
803

804 drawnow

CVodeMonitorB

Purpose

CVodeMonitorB is the default CVODES monitoring function for backward problems.

Synopsis

function [new_data] = CVodeMonitorB(call, idxB, T, Y, YQ, data)

Description

CVodeMonitorB is the default CVODES monitoring function for backward problems.

To use it, set the Monitor property in CVodeSetOptions to

’CVodeMonitorB’ or to @CVodeMonitorB and ’MonitorData’ to mondata

(defined as a structure).

With default settings, this function plots the evolution of the step

size, method order, and various counters.

Various properties can be changed from their default values by passing

to CVodeSetOptions, through the property ’MonitorData’, a structure

MONDATA with any of the following fields. If a field is not defined,

the corresponding default value is used.

Fields in MONDATA structure:

o stats [true | false]

If true, report the evolution of the step size and method order.

o cntr [true | false]

If true, report the evolution of the following counters:

nst, nfe, nni, netf, ncfn (see CVodeGetStats)

o mode [’graphical’ | ’text’ | ’both’]

In graphical mode, plot the evolutions of the above quantities.

In text mode, print a table.

o sol [true | false]

If true, plot solution components.

o select [array of integers]

To plot only particular solution components, specify their indeces in

the field select. If not defined, but sol=true, all components are plotted.

o updt [integer | 50]

Update frequency. Data is posted in blocks of dimension n.

o skip [integer | 0]

Number of integrations steps to skip in collecting data to post.

o post [true | false]

If false, disable all posting. This option is necessary to disable

monitoring on some processors when running in parallel.

119

See also CVodeSetOptions, CVMonitorFnB

NOTES:

1. The argument mondata is REQUIRED. Even if only the default options

are desired, set mondata=struct; and pass it to CVodeSetOptions.

2. The yQ argument is currently ignored.

B Implementation of IDAMonitor.m

IDAMonitor

Purpose

IDAMonitor is the default IDAS monitoring function.

Synopsis

function [new_data] = IDAMonitor(call, T, Y, YQ, YS, data)

Description

IDAMonitor is the default IDAS monitoring function.

To use it, set the Monitor property in IDASetOptions to

’IDAMonitor’ or to @IDAMonitor and ’MonitorData’ to mondata

(defined as a structure).

With default settings, this function plots the evolution of the step

size, method order, and various counters.

Various properties can be changed from their default values by passing

to IDASetOptions, through the property ’MonitorData’, a structure

MONDATA with any of the following fields. If a field is not defined,

the corresponding default value is used.

Fields in MONDATA structure:

o stats [true | false]

If true, report the evolution of the step size and method order.

o cntr [true | false]

If true, report the evolution of the following counters:

nst, nfe, nni, netf, ncfn (see IDAGetStats)

o mode [’graphical’ | ’text’ | ’both’]

In graphical mode, plot the evolutions of the above quantities.

In text mode, print a table.

o sol [true | false]

If true, plot solution components.

o sensi [true | false]

If true and if FSA is enabled, plot sensitivity components.

o select [array of integers]

To plot only particular solution components, specify their indeces in

the field select. If not defined, but sol=true, all components are plotted.

o updt [integer | 50]

Update frequency. Data is posted in blocks of dimension n.

o skip [integer | 0]

120

Number of integrations steps to skip in collecting data to post.

o post [true | false]

If false, disable all posting. This option is necessary to disable

monitoring on some processors when running in parallel.

See also IDASetOptions, IDAMonitorFn

NOTES:

1. The argument mondata is REQUIRED. Even if only the default options

are desired, set mondata=struct; and pass it to IDASetOptions.

2. The yQ argument is currently ignored.

Source Code

1 f unc t i on [new data] = IDAMonitor (c a l l , T, Y, YQ, YS, data)
45

46 % Radu Serban <radu@l ln l . gov>

47 % LLNS Copyright Star t
48 % Copyright (c) 2014 , Lawrence Livermore Nat ional Secu r i ty
49 % This work was performed under the au sp i c e s o f the U. S . Department
50 % of Energy by Lawrence Livermore Nat ional Laboratory in part under
51 % Contract W−7405−Eng−48 and in part under Contract DE−AC52−07NA27344 .
52 % Produced at the Lawrence Livermore Nat ional Laboratory .
53 % Al l r i g h t s r e s e rved .
54 % For d e t a i l s , s e e the LICENSE f i l e .
55 % LLNS Copyright End
56 % $Revis ion : 4075 $Date : 2007/08/21 17 : 38 : 42 $
57

58 i f (narg in ˜= 6)
59 e r r o r (’ Monitor data not de f ined . ’) ;
60 end
61

62 new data = [] ;
63

64 i f c a l l == 0
65

66 % I n i t i a l i z e un sp e c i f i e d f i e l d s to d e f au l t va lue s .
67 data = i n i t i a l i z e d a t a (data) ;
68

69 % Open f i g u r e windows
70 i f data . post
71

72 i f data . grph
73 i f data . s t a t s | data . cntr
74 data . hfg = f i g u r e ;
75 end
76 % Number o f subp lo t s in f i g u r e hfg
77 i f data . s t a t s
78 data . npg = data . npg + 2 ;
79 end
80 i f data . cntr
81 data . npg = data . npg + 1 ;
82 end
83 end
84

121

85 i f data . t ex t
86 i f data . cntr | data . s t a t s
87 data . h f t = f i g u r e ;
88 end
89 end
90

91 i f data . s o l | data . s e n s i
92 data . h f s = f i g u r e ;
93 end
94

95 end
96

97 % I n i t i a l i z e other p r i va t e data
98 data . i = 0 ;
99 data . n = 1 ;

100 data . t = ze ro s (1 , data . updt) ;
101 i f data . s t a t s
102 data . h = ze ro s (1 , data . updt) ;
103 data . q = ze ro s (1 , data . updt) ;
104 end
105 i f data . cntr
106 data . nst = ze ro s (1 , data . updt) ;
107 data . n fe = ze ro s (1 , data . updt) ;
108 data . nni = ze ro s (1 , data . updt) ;
109 data . n e t f = ze ro s (1 , data . updt) ;
110 data . ncfn = ze ro s (1 , data . updt) ;
111 end
112

113 data . f i r s t = true ; % the next one w i l l be the f i r s t c a l l = 1
114 data . i n i t i a l i z e d = f a l s e ; % the g raph i c a l windows were not i n i t a l i z e d
115

116 new data = data ;
117

118 re turn ;
119

120 e l s e
121

122 % I f t h i s i s the f i r s t c a l l ˜= 0 ,
123 % use Y and YS f o r add i t i ona l i n i t i a l i z a t i o n s
124

125 i f data . f i r s t
126

127 i f isempty (YS)
128 data . s e n s i = f a l s e ;
129 end
130

131 i f data . s o l | data . s e n s i
132

133 i f isempty (data . s e l e c t)
134

135 data .N = length (Y) ;
136 data . s e l e c t = [1 : data .N] ;
137

138 e l s e

122

139

140 data .N = length (data . s e l e c t) ;
141

142 end
143

144 i f data . s o l
145 data . y = ze ro s (data .N, data . updt) ;
146 data . nps = data . nps + 1 ;
147 end
148

149 i f data . s e n s i
150 data . Ns = s i z e (YS , 2) ;
151 data . ys = ze ro s (data .N, data . Ns , data . updt) ;
152 data . nps = data . nps + data . Ns ;
153 end
154

155 end
156

157 data . f i r s t = f a l s e ;
158

159 end
160

161 % Extract v a r i a b l e s from data
162

163 hfg = data . hfg ;
164 h f t = data . h f t ;
165 h f s = data . h f s ;
166 npg = data . npg ;
167 nps = data . nps ;
168 i = data . i ;
169 n = data . n ;
170 t = data . t ;
171 N = data .N;
172 Ns = data . Ns ;
173 y = data . y ;
174 ys = data . ys ;
175 h = data . h ;
176 q = data . q ;
177 nst = data . nst ;
178 nfe = data . n fe ;
179 nni = data . nni ;
180 ne t f = data . n e t f ;
181 ncfn = data . ncfn ;
182

183 end
184

185

186 % Load cur rent s t a t i s t i c s ?
187

188 i f c a l l == 1
189

190 i f i ˜= 0
191 i = i −1;
192 data . i = i ;

123

193 new data = data ;
194 re turn ;
195 end
196

197 s i = IDAGetStats ;
198

199 t (n) = s i . t cur ;
200

201 i f data . s t a t s
202 h(n) = s i . h l a s t ;
203 q (n) = s i . q l a s t ;
204 end
205

206 i f data . cntr
207 nst (n) = s i . nst ;
208 nfe (n) = s i . n f e ;
209 nni (n) = s i . nni ;
210 ne t f (n) = s i . n e t f ;
211 ncfn (n) = s i . ncfn ;
212 end
213

214 i f data . s o l
215 f o r j = 1 :N
216 y (j , n) = Y(data . s e l e c t (j)) ;
217 end
218 end
219

220 i f data . s e n s i
221 f o r k = 1 :Ns
222 f o r j = 1 :N
223 ys (j , k , n) = YS(data . s e l e c t (j) , k) ;
224 end
225 end
226 end
227

228 end
229

230 % Is i t time to post ?
231

232 i f data . post & (n == data . updt | c a l l ==2)
233

234 i f c a l l == 2
235 n = n−1;
236 end
237

238 i f ˜data . i n i t i a l i z e d
239

240 i f (data . s t a t s | data . cntr) & data . grph
241 g r a p h i c a l i n i t (n , hfg , npg , data . s t a t s , data . cntr , . . .
242 t , h , q , nst , nfe , nni , net f , ncfn) ;
243 end
244

245 i f (data . s t a t s | data . cntr) & data . t ex t
246 t e x t i n i t (n , hft , data . s t a t s , data . cntr , . . .

124

247 t , h , q , nst , nfe , nni , net f , ncfn) ;
248 end
249

250 i f data . s o l | data . s e n s i
251 s o l i n i t (n , hfs , nps , data . so l , data . s en s i , . . .
252 N, Ns , t , y , ys) ;
253 end
254

255 data . i n i t i a l i z e d = true ;
256

257 e l s e
258

259 i f (data . s t a t s | data . cntr) & data . grph
260 graph i ca l update (n , hfg , npg , data . s t a t s , data . cntr , . . .
261 t , h , q , nst , nfe , nni , net f , ncfn) ;
262 end
263

264 i f (data . s t a t s | data . cntr) & data . t ex t
265 text update (n , hft , data . s t a t s , data . cntr , . . .
266 t , h , q , nst , nfe , nni , net f , ncfn) ;
267 end
268

269 i f data . s o l
270 so l update (n , hfs , nps , data . so l , data . s en s i , N, Ns , t , y , ys) ;
271 end
272

273 end
274

275 i f c a l l == 2
276

277 i f (data . s t a t s | data . cntr) & data . grph
278 g r a p h i c a l f i n a l (hfg , npg , data . cntr , data . s t a t s) ;
279 end
280

281 i f data . s o l | data . s e n s i
282 s o l f i n a l (hfs , nps , data . so l , data . s en s i , N, Ns) ;
283 end
284

285 re turn ;
286

287 end
288

289 n = 1 ;
290

291 e l s e
292

293 n = n + 1 ;
294

295 end
296

297

298 % Save updated va lue s in data
299

300 data . i = data . sk ip ;

125

301 data . n = n ;
302 data . npg = npg ;
303 data . t = t ;
304 data . y = y ;
305 data . ys = ys ;
306 data . h = h ;
307 data . q = q ;
308 data . nst = nst ;
309 data . n fe = nfe ;
310 data . nni = nni ;
311 data . n e t f = ne t f ;
312 data . ncfn = ncfn ;
313

314 new data = data ;
315

316 re turn ;
317

318 %−−−
319

320 f unc t i on data = i n i t i a l i z e d a t a (data)
321

322 i f ˜ i s f i e l d (data , ’mode ’)
323 data . mode = ’ g r aph i c a l ’ ;
324 end
325 i f ˜ i s f i e l d (data , ’ updt ’)
326 data . updt = 50 ;
327 end
328 i f ˜ i s f i e l d (data , ’ sk ip ’)
329 data . sk ip = 0 ;
330 end
331 i f ˜ i s f i e l d (data , ’ s t a t s ’)
332 data . s t a t s = true ;
333 end
334 i f ˜ i s f i e l d (data , ’ cnt r ’)
335 data . cntr = true ;
336 end
337 i f ˜ i s f i e l d (data , ’ s o l ’)
338 data . s o l = f a l s e ;
339 end
340 i f ˜ i s f i e l d (data , ’ s e n s i ’)
341 data . s e n s i = f a l s e ;
342 end
343 i f ˜ i s f i e l d (data , ’ s e l e c t ’)
344 data . s e l e c t = [] ;
345 end
346 i f ˜ i s f i e l d (data , ’ post ’)
347 data . post = true ;
348 end
349

350 data . grph = true ;
351 data . t ex t = true ;
352 i f strcmp (data . mode , ’ g r aph i c a l ’)
353 data . t ex t = f a l s e ;
354 end

126

355 i f strcmp (data . mode , ’ t ex t ’)
356 data . grph = f a l s e ;
357 end
358

359 i f ˜data . s o l & ˜data . s e n s i
360 data . s e l e c t = [] ;
361 end
362

363 % Other i n i t i a l i z a t i o n s
364 data . npg = 0 ;
365 data . nps = 0 ;
366 data . hfg = 0 ;
367 data . h f t = 0 ;
368 data . h f s = 0 ;
369 data . h = 0 ;
370 data . q = 0 ;
371 data . nst = 0 ;
372 data . n fe = 0 ;
373 data . nni = 0 ;
374 data . n e t f = 0 ;
375 data . ncfn = 0 ;
376 data .N = 0 ;
377 data . Ns = 0 ;
378 data . y = 0 ;
379 data . ys = 0 ;
380

381 %−−−
382

383 f unc t i on [] = g r a p h i c a l i n i t (n , hfg , npg , s ta t s , cntr , . . .
384 t , h , q , nst , nfe , nni , net f , ncfn)
385

386 f ig name = ’IDAS run s t a t i s t i c s ’ ;
387

388 % I f t h i s i s a p a r a l l e l job , look f o r the MPI rank in the g l oba l
389 % workspace and append i t to the f i g u r e name
390

391 g l oba l sundia ls MPI rank
392

393 i f ˜ isempty (sundia ls MPI rank)
394 f ig name = s p r i n t f (’%s (PE %d) ’ , f ig name , sundia ls MPI rank) ;
395 end
396

397 f i g u r e (hfg) ;
398 s e t (hfg , ’Name ’ , f ig name) ;
399 s e t (hfg , ’ c o l o r ’ , [1 1 1]) ;
400 pl = 0 ;
401

402 % Time l a b e l and f i g u r e t i t l e
403

404 t l ab = ’ \ r ightar row t \ r ightar row ’ ;
405

406 % Step s i z e and order
407 i f s t a t s
408 pl = pl +1;

127

409 subplot (npg , 1 , p l)
410 semi logy (t (1 : n) , abs (h (1 : n)) , ’− ’) ;
411 hold on ;
412 box on ;
413 g r id on ;
414 x l ab e l (t l ab) ;
415 y l ab e l (’ | Step s i z e | ’) ;
416

417 pl = pl +1;
418 subplot (npg , 1 , p l)
419 p lo t (t (1 : n) , q (1 : n) , ’− ’) ;
420 hold on ;
421 box on ;
422 g r id on ;
423 x l ab e l (t l ab) ;
424 y l ab e l (’ Order ’) ;
425 end
426

427 % Counters
428 i f cnt r
429 pl = pl +1;
430 subplot (npg , 1 , p l)
431 p lo t (t (1 : n) , nst (1 : n) , ’ k− ’) ;
432 hold on ;
433 p lo t (t (1 : n) , n fe (1 : n) , ’b− ’) ;
434 p lo t (t (1 : n) , nni (1 : n) , ’ r− ’) ;
435 p lo t (t (1 : n) , n e t f (1 : n) , ’ g− ’) ;
436 p lo t (t (1 : n) , ncfn (1 : n) , ’ c− ’) ;
437 box on ;
438 g r id on ;
439 x l ab e l (t l ab) ;
440 y l ab e l (’ Counters ’) ;
441 end
442

443 drawnow ;
444

445 %−−−
446

447 f unc t i on [] = graph i ca l update (n , hfg , npg , s ta t s , cntr , . . .
448 t , h , q , nst , nfe , nni , net f , ncfn)
449

450 f i g u r e (hfg) ;
451 pl = 0 ;
452

453 % Step s i z e and order
454 i f s t a t s
455 pl = pl +1;
456 subplot (npg , 1 , p l)
457 hc = get (gca , ’ Chi ldren ’) ;
458 xd = [get (hc , ’XData ’) t (1 : n)] ;
459 yd = [get (hc , ’YData ’) abs (h (1 : n))] ;
460 s e t (hc , ’XData ’ , xd , ’YData ’ , yd) ;
461

462 pl = pl +1;

128

463 subplot (npg , 1 , p l)
464 hc = get (gca , ’ Chi ldren ’) ;
465 xd = [get (hc , ’XData ’) t (1 : n)] ;
466 yd = [get (hc , ’YData ’) q (1 : n)] ;
467 s e t (hc , ’XData ’ , xd , ’YData ’ , yd) ;
468 end
469

470 % Counters
471 i f cnt r
472 pl = pl +1;
473 subplot (npg , 1 , p l)
474 hc = get (gca , ’ Chi ldren ’) ;
475 % Attent ion : Chi ldren are loaded in r e v e r s e order !
476 xd = [get (hc (1) , ’XData ’) t (1 : n)] ;
477 yd = [get (hc (1) , ’YData ’) ncfn (1 : n)] ;
478 s e t (hc (1) , ’XData ’ , xd , ’YData ’ , yd) ;
479 yd = [get (hc (2) , ’YData ’) n e t f (1 : n)] ;
480 s e t (hc (2) , ’XData ’ , xd , ’YData ’ , yd) ;
481 yd = [get (hc (3) , ’YData ’) nni (1 : n)] ;
482 s e t (hc (3) , ’XData ’ , xd , ’YData ’ , yd) ;
483 yd = [get (hc (4) , ’YData ’) n fe (1 : n)] ;
484 s e t (hc (4) , ’XData ’ , xd , ’YData ’ , yd) ;
485 yd = [get (hc (5) , ’YData ’) nst (1 : n)] ;
486 s e t (hc (5) , ’XData ’ , xd , ’YData ’ , yd) ;
487 end
488

489 drawnow ;
490

491 %−−−
492

493 f unc t i on [] = g r a p h i c a l f i n a l (hfg , npg , s ta t s , cntr)
494

495 f i g u r e (hfg) ;
496 pl = 0 ;
497

498 i f s t a t s
499 pl = pl +1;
500 subplot (npg , 1 , p l)
501 hc = get (gca , ’ Chi ldren ’) ;
502 xd = get (hc , ’XData ’) ;
503 s e t (gca , ’XLim ’ , s o r t ([xd (1) xd (end)])) ;
504

505 pl = pl +1;
506 subplot (npg , 1 , p l)
507 ylim = get (gca , ’YLim ’) ;
508 ylim (1) = ylim (1) − 1 ;
509 ylim (2) = ylim (2) + 1 ;
510 s e t (gca , ’YLim ’ , yl im) ;
511 s e t (gca , ’XLim ’ , s o r t ([xd (1) xd (end)])) ;
512 end
513

514 i f cnt r
515 pl = pl +1;
516 subplot (npg , 1 , p l)

129

517 hc = get (gca , ’ Chi ldren ’) ;
518 xd = get (hc (1) , ’XData ’) ;
519 s e t (gca , ’XLim ’ , s o r t ([xd (1) xd (end)])) ;
520 l egend (’ nst ’ , ’ n f e ’ , ’ nni ’ , ’ n e t f ’ , ’ ncfn ’ , 2) ;
521 end
522

523 %−−−
524

525 f unc t i on [] = t e x t i n i t (n , hft , s t a t s , cntr , t , h , q , nst , nfe , nni , net f , ncfn)
526

527 f ig name = ’IDAS run s t a t i s t i c s ’ ;
528

529 % I f t h i s i s a p a r a l l e l job , look f o r the MPI rank in the g l oba l
530 % workspace and append i t to the f i g u r e name
531

532 g l oba l sundia ls MPI rank
533

534 i f ˜ isempty (sundia ls MPI rank)
535 f ig name = s p r i n t f (’%s (PE %d) ’ , f ig name , sundia ls MPI rank) ;
536 end
537

538 f i g u r e (h f t) ;
539 s e t (hft , ’Name ’ , f ig name) ;
540 s e t (hft , ’ c o l o r ’ , [1 1 1]) ;
541 s e t (hft , ’MenuBar ’ , ’ none ’) ;
542 s e t (hft , ’ Res i ze ’ , ’ o f f ’) ;
543

544 % Create t ext box
545

546 margins =[10 10 50 5 0] ; % l e f t , r i ght , top , bottom
547 pos=get (hft , ’ p o s i t i o n ’) ;
548 tbpos=[margins (1) margins (4) pos (3)−margins (1)−margins (2) . . .
549 pos (4)−margins (3)−margins (4)] ;
550 tbpos (tbpos <1)=1;
551

552 htb=u i c on t r o l (hft , ’ s t y l e ’ , ’ l i s t b o x ’ , ’ p o s i t i o n ’ , tbpos , ’ tag ’ , ’ textbox ’) ;
553 s e t (htb , ’ BackgroundColor ’ , [1 1 1]) ;
554 s e t (htb , ’ S e l e c t i o nH i gh l i g h t ’ , ’ o f f ’) ;
555 s e t (htb , ’FontName ’ , ’ c ou r i e r ’) ;
556

557 % Create t ab l e head
558

559 tpos = [tbpos (1) tbpos (2)+ tbpos (4)+10 tbpos (3) 2 0] ;
560 ht=u i c on t r o l (hft , ’ s t y l e ’ , ’ t ex t ’ , ’ p o s i t i o n ’ , tpos , ’ tag ’ , ’ t ex t ’) ;
561 s e t (ht , ’ BackgroundColor ’ , [1 1 1]) ;
562 s e t (ht , ’ Hor izontalAl ignment ’ , ’ l e f t ’) ;
563 s e t (ht , ’FontName ’ , ’ c ou r i e r ’) ;
564 newl ine = ’ time step order | nst n fe nni n e t f ncfn ’ ;
565 s e t (ht , ’ S t r ing ’ , newl ine) ;
566

567 % Create OK button
568

569 b s i z e = [60 , 28] ;
570 badjustpos = [0 , 25] ;

130

571 bpos=[pos (3)/2− b s i z e (1)/2+ badjustpos (1) −b s i z e (2)/2+ badjustpos (2) . . .
572 b s i z e (1) b s i z e (2)] ;
573 bpos=round (bpos) ;
574 bpos (bpos <1)=1;
575 hb=u i c on t r o l (hft , ’ s t y l e ’ , ’ pushbutton ’ , ’ p o s i t i o n ’ , bpos , . . .
576 ’ s t r i n g ’ , ’ Close ’ , ’ tag ’ , ’ okaybutton ’) ;
577 s e t (hb , ’ c a l l b a ck ’ , ’ c l o s e ’) ;
578

579 % Save handles
580

581 handles=gu ihand le s (h f t) ;
582 guidata (hft , handles) ;
583

584 f o r i = 1 : n
585 newl ine = ’ ’ ;
586 i f s t a t s
587 newl ine = s p r i n t f (’ %10.3 e %10.3 e %1d | ’ , t (i) , h (i) , q (i)) ;
588 end
589 i f cnt r
590 newl ine = s p r i n t f (’%s %5d %5d %5d %5d %5d ’ , . . .
591 newline , nst (i) , n f e (i) , nni (i) , n e t f (i) , ncfn (i)) ;
592 end
593 s t r i n g = get (handles . textbox , ’ S t r ing ’) ;
594 s t r i n g {end+1}=newl ine ;
595 s e t (handles . textbox , ’ S t r ing ’ , s t r i n g) ;
596 end
597

598 drawnow
599

600 %−−−
601

602 f unc t i on [] = text update (n , hft , s t a t s , cntr , t , h , q , nst , nfe , nni , net f , ncfn)
603

604 f i g u r e (h f t) ;
605

606 handles=guidata (h f t) ;
607

608 f o r i = 1 : n
609 i f s t a t s
610 newl ine = s p r i n t f (’ %10.3 e %10.3 e %1d | ’ , t (i) , h (i) , q (i)) ;
611 end
612 i f cnt r
613 newl ine = s p r i n t f (’%s %5d %5d %5d %5d %5d ’ , . . .
614 newline , nst (i) , n f e (i) , nni (i) , n e t f (i) , ncfn (i)) ;
615 end
616 s t r i n g = get (handles . textbox , ’ S t r ing ’) ;
617 s t r i n g {end+1}=newl ine ;
618 s e t (handles . textbox , ’ S t r ing ’ , s t r i n g) ;
619 end
620

621 drawnow
622

623 %−−−
624

131

625 f unc t i on [] = s o l i n i t (n , hfs , nps , so l , s en s i , N, Ns , t , y , ys)
626

627 f ig name = ’IDAS so l u t i o n ’ ;
628

629 % I f t h i s i s a p a r a l l e l job , look f o r the MPI rank in the g l oba l
630 % workspace and append i t to the f i g u r e name
631

632 g l oba l sundia ls MPI rank
633

634 i f ˜ isempty (sundia ls MPI rank)
635 f ig name = s p r i n t f (’%s (PE %d) ’ , f ig name , sundia ls MPI rank) ;
636 end
637

638

639 f i g u r e (h f s) ;
640 s e t (hfs , ’Name ’ , f ig name) ;
641 s e t (hfs , ’ c o l o r ’ , [1 1 1]) ;
642

643 % Time l a b e l
644

645 t l ab = ’ \ r ightar row t \ r ightar row ’ ;
646

647 % Get number o f c o l o r s in colormap
648 map = colormap ;
649 nco l s = s i z e (map , 1) ;
650

651 % I n i t i a l i z e cur rent subplot counter
652 pl = 0 ;
653

654 i f s o l
655

656 pl = pl +1;
657 subplot (nps , 1 , p l) ;
658 hold on ;
659

660 f o r i = 1 :N
661 hp = p lo t (t (1 : n) , y (i , 1 : n) , ’− ’) ;
662 i c = 1+(i −1)∗ f l o o r (nco l s /N) ;
663 s e t (hp , ’ Color ’ ,map(ic , :)) ;
664 end
665 box on ;
666 g r id on ;
667 x l ab e l (t l ab) ;
668 y l ab e l (’ y ’) ;
669 t i t l e (’ So lu t i on ’) ;
670

671 end
672

673 i f s e n s i
674

675 f o r i s = 1 :Ns
676

677 pl = pl +1;
678 subplot (nps , 1 , p l) ;

132

679 hold on ;
680

681 y s c r t = ys (: , i s , 1 : n) ;
682 f o r i = 1 :N
683 hp = p lo t (t (1 : n) , y s c r t (i , 1 : n) , ’− ’) ;
684 i c = 1+(i −1)∗ f l o o r (nco l s /N) ;
685 s e t (hp , ’ Color ’ ,map(ic , :)) ;
686 end
687 box on ;
688 g r id on ;
689 x l ab e l (t l ab) ;
690 s t r = s p r i n t f (’ s {%d} ’ , i s) ; y l ab e l (s t r) ;
691 s t r = s p r i n t f (’ S e n s i t i v i t y %d ’ , i s) ; t i t l e (s t r) ;
692

693 end
694

695 end
696

697

698 drawnow ;
699

700 %−−−
701

702 f unc t i on [] = so l update (n , hfs , nps , so l , s en s i , N, Ns , t , y , ys)
703

704 f i g u r e (h f s) ;
705

706 pl = 0 ;
707

708 i f s o l
709

710 pl = pl +1;
711 subplot (nps , 1 , p l) ;
712

713 hc = get (gca , ’ Chi ldren ’) ;
714 xd = [get (hc (1) , ’XData ’) t (1 : n)] ;
715 % Attent ion : Chi ldren are loaded in r e v e r s e order !
716 f o r i = 1 :N
717 yd = [get (hc (i) , ’YData ’) y (N−i +1 ,1:n)] ;
718 s e t (hc (i) , ’XData ’ , xd , ’YData ’ , yd) ;
719 end
720

721 end
722

723 i f s e n s i
724

725 f o r i s = 1 :Ns
726

727 pl = pl +1;
728 subplot (nps , 1 , p l) ;
729

730 y s c r t = ys (: , i s , :) ;
731

732 hc = get (gca , ’ Chi ldren ’) ;

133

733 xd = [get (hc (1) , ’XData ’) t (1 : n)] ;
734 % Attent ion : Chi ldren are loaded in r e v e r s e order !
735 f o r i = 1 :N
736 yd = [get (hc (i) , ’YData ’) y s c r t (N−i +1 ,1:n)] ;
737 s e t (hc (i) , ’XData ’ , xd , ’YData ’ , yd) ;
738 end
739

740 end
741

742 end
743

744

745 drawnow ;
746

747

748 %−−−
749

750 f unc t i on [] = s o l f i n a l (hfs , nps , so l , s en s i , N, Ns)
751

752 f i g u r e (h f s) ;
753

754 pl = 0 ;
755

756 i f s o l
757

758 pl = pl +1;
759 subplot (nps , 1 , p l) ;
760

761 hc = get (gca , ’ Chi ldren ’) ;
762 xd = get (hc (1) , ’XData ’) ;
763 s e t (gca , ’XLim ’ , s o r t ([xd (1) xd (end)])) ;
764

765 ylim = get (gca , ’YLim ’) ;
766 addon = 0.1∗ abs (ylim (2)−ylim (1)) ;
767 ylim (1) = ylim (1) + s i gn (ylim (1))∗ addon ;
768 ylim (2) = ylim (2) + s i gn (ylim (2))∗ addon ;
769 s e t (gca , ’YLim ’ , yl im) ;
770

771 f o r i = 1 :N
772 c s t r i n g { i } = s p r i n t f (’ y {%d} ’ , i) ;
773 end
774 l egend (c s t r i n g) ;
775

776 end
777

778 i f s e n s i
779

780 f o r i s = 1 :Ns
781

782 pl = pl +1;
783 subplot (nps , 1 , p l) ;
784

785 hc = get (gca , ’ Chi ldren ’) ;
786 xd = get (hc (1) , ’XData ’) ;

134

787 s e t (gca , ’XLim ’ , s o r t ([xd (1) xd (end)])) ;
788

789 ylim = get (gca , ’YLim ’) ;
790 addon = 0.1∗ abs (ylim (2)−ylim (1)) ;
791 ylim (1) = ylim (1) + s i gn (ylim (1))∗ addon ;
792 ylim (2) = ylim (2) + s i gn (ylim (2))∗ addon ;
793 s e t (gca , ’YLim ’ , yl im) ;
794

795 f o r i = 1 :N
796 c s t r i n g { i } = s p r i n t f (’ s%d {%d} ’ , i s , i) ;
797 end
798 l egend (c s t r i n g) ;
799

800 end
801

802 end
803

804 drawnow

IDAMonitorB

Purpose

IDAMonitorB is the default IDAS monitoring function for backward problems.

Synopsis

function [new_data] = IDAMonitorB(call, idxB, T, Y, YQ, data)

Description

IDAMonitorB is the default IDAS monitoring function for backward problems.

To use it, set the Monitor property in IDASetOptions to

’IDAMonitorB’ or to @IDAMonitorB and ’MonitorData’ to mondata

(defined as a structure).

With default settings, this function plots the evolution of the step

size, method order, and various counters.

Various properties can be changed from their default values by passing

to IDASetOptions, through the property ’MonitorData’, a structure

MONDATA with any of the following fields. If a field is not defined,

the corresponding default value is used.

Fields in MONDATA structure:

o stats [true | false]

If true, report the evolution of the step size and method order.

o cntr [true | false]

If true, report the evolution of the following counters:

nst, nfe, nni, netf, ncfn (see IDAGetStats)

o mode [’graphical’ | ’text’ | ’both’]

In graphical mode, plot the evolutions of the above quantities.

In text mode, print a table.

o sol [true | false]

135

If true, plot solution components.

o select [array of integers]

To plot only particular solution components, specify their indeces in

the field select. If not defined, but sol=true, all components are plotted.

o updt [integer | 50]

Update frequency. Data is posted in blocks of dimension n.

o skip [integer | 0]

Number of integrations steps to skip in collecting data to post.

o post [true | false]

If false, disable all posting. This option is necessary to disable

monitoring on some processors when running in parallel.

See also IDASetOptions, IDAMonitorFnB

NOTES:

1. The argument mondata is REQUIRED. Even if only the default options

are desired, set mondata=struct; and pass it to IDASetOptions.

2. The yQ argument is currently ignored.

136

References

[1] A. M. Collier, A. C. Hindmarsh, R. Serban, and C.S. Woodward. User Documentation for KINSOL
v2.6.0. Technical Report UCRL-SM-208116, LLNL, 2009.

[2] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S.
Woodward. SUNDIALS, suite of nonlinear and differential/algebraic equation solvers. ACM Trans.

Math. Soft., (31):363–396, 2005.

[3] A. C. Hindmarsh and R. Serban. User Documentation for CVODES v2.6.0. Technical report,
LLNL, 2009. UCRL-SM-208111.

[4] R. Serban, C. Petra, and A.C. Hindmarsh. User Documentation for IDAS v1.0.0. Technical report,
LLNL, 2009. UCRL-SM-234051.

137

Index

CVBandJacFn, 28
CVBandJacFnB, 35
CVDenseJacFn, 27
CVDenseJacFnB, 35
CVGcommFn, 31
CVGcommFnB, 38
CVGlocalFn, 32
CVGlocalFnB, 39
CVJacTimesVecFn, 28
CVJacTimesVecFnB, 36
CVMonitorFn, 33
CVMonitorFnB, 40
CVode, 17
CVodeAdjInit, 13
CVodeAdjReInit, 16
CVodeB, 18
CVodeFree, 24
CVodeGet, 22
CVodeGetStats, 19
CVodeGetStatsB, 21
CVodeInit, 11
CVodeInitB, 13
CVodeMonitor, 104
CVodeMonitorB, 119
CVodeQuadInit, 12
CVodeQuadInitB, 14
CVodeQuadReInit, 15
CVodeQuadReInitB, 17
CVodeQuadSetOptions, 9
CVodeReInit, 14
CVodeReInitB, 16
CVodeSensInit, 12
CVodeSensReInit, 15
CVodeSensSetOptions, 10
CVodeSensToggleOff, 19
CVodeSet, 23
CVodeSetB, 24
CVodeSetOptions, 4
CVPrecSetupFn, 29
CVPrecSetupFnB, 37
CVPrecSolveFn, 30
CVPrecSolveFnB, 38
CVQuadRhsFn, 26
CVQuadRhsFnB, 34
CVRhsFn, 25
CVRhsFnB, 34
CVRootFn, 26
CVSensRhsFn, 25

IDAAdjInit, 50
IDAAdjReInit, 53
IDABandJacFn, 67
IDABandJacFnB, 74

IDACalcIC, 54
IDACalcICB, 56
IDADenseJacFn, 66
IDADenseJacFnB, 74
IDAFree, 63
IDAGcommFn, 70
IDAGcommFnB, 77
IDAGet, 61
IDAGetStats, 58
IDAGetStatsB, 60
IDAGlocalFn, 71
IDAGlocalFnB, 77
IDAInit, 49
IDAInitB, 51
IDAJacTimesVecFn, 67
IDAJacTimesVecFnB, 75
IDAMonitor, 120
IDAMonitorB, 135
IDAMonitorFn, 71
IDAMonitorFnB, 78
IDAPrecSetupFn, 68
IDAPrecSetupFnB, 76
IDAPrecSolveFn, 69
IDAPrecSolveFnB, 76
IDAQuadInit, 49
IDAQuadInitB, 51
IDAQuadReInit, 52
IDAQuadReInitB, 54
IDAQuadRhsFn, 65
IDAQuadRhsFnB, 73
IDAQuadSetOptions, 46
IDAReInit, 52
IDAReInitB, 53
IDAResFn, 64
IDAResFnB, 73
IDARootFn, 65
IDASensInit, 50
IDASensReInit, 53
IDASensResFn, 64
IDASensSetOptions, 47
IDASensToggleOff, 58
IDASet, 61
IDASetB, 62
IDASetOptions, 42
IDASolve, 56
IDASolveB, 57

KINBandJacFn, 89
KINDenseJacFn, 88
KINFree, 86
KINGcommFn, 92
KINGetStats, 85
KINGlocalFn, 93

138

KINInit, 84
KINJacTimesVecFn, 90
KINPrecSetupFn, 90
KINPrecSolveFn, 91
KINSetOptions, 81
KINSol, 85
KINSysFn, 88

mpirun, 102
mpiruns, 102
mpistart, 102

N VDotProd, 95
N VL1Norm, 95
N VMax, 96
N VMaxNorm, 97
N VMin, 98
N VWL2Norm, 99
N VWrmsNorm, 100

139

	Introduction
	Installation
	Compilation and installation of sundialsTB
	Configuring Matlab's startup
	Testing the installation

	matlab Interface to cvodes
	Interface functions
	Function types

	matlab Interface to idas
	Interface functions
	Function types

	matlab Interface to kinsol
	Interface functions
	Function types

	Supporting modules
	nvector functions
	Parallel utilities

	Implementation of CVodeMonitor.m
	Implementation of IDAMonitor.m
	References
	Index

