SUNDIALSTB v2.4.0, a MATLAB Interface to SUNDIALS

Radu Serban
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

July 30, 2015

UCRL-SM-212121

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

Contents
1 Introduction

2 Installation
2.1 Compilation and installation of sundialsTB
2.2 Configuring Matlab’s startup o
2.3 Testing the installation o

3 MATLAB Interface to CVODES
3.1 Imterface functions e
3.2 Function types

4 MATLAB Interface to IDAS
4.1 Interface functions e e
4.2 Function types L

5 MATLAB Interface to KINSOL
5.1 Interface functions L e
5.2 Function types

6 Supporting modules
6.1 NVECTOR functions
6.2 Parallel utilities e

A Implementation of CVodeMonitor.m
B Implementation of IDAMonitor.m
References

Index

NG NR e

w

104

120

137

138

1 Introduction

SUNDIALS [2], SUite of Nonlinear and DIfferential/ALgebraic equation Solvers, is a family of software
tools for integration of ODE and DAE initial value problems and for the solution of nonlinear systems
of equations. It consists of CVODE, IDA, and KINSOL, and variants of these with sensitivity analysis
capabilities.

SUNDIALSTB is a collection of MATLAB functions which provide interfaces to the SUNDIALS solvers.

The core of each MATLAB interface in SUNDIALSTB is a single MEX file which interfaces to the
various user-callable functions for that solver. However, this MEX file should not be called directly,
but rather through the user-callable functions provided for each MATLAB interface.

A major design principle for SUNDIALSTB was to provide an interface that is, as much as possible,
equally familiar to both SUNDIALS users and MATLAB users. Moreover, we tried to keep the num-
ber of user-callable functions to a minimum. For example, the CVODES MATLAB interface contains
only 12 such functions, 2 of which relate to forward sensitivity analysis and 4 more interface solely
to the adjoint sensitivity module in CVODES. A user who is only interested in integration of ODEs
and not in sensitivity analysis therefore needs to call at most 6 functions. In tune with the MAT-
LAB ODESET function, optional solver inputs in SUNDIALSTB are specified through a single function;
e.g. CvodeSetOptions for CVODES (a similar function is used to specify optional inputs for forward
sensitivity analysis). However, unlike the ODE solvers in MATLAB, we have kept the more flexible
SUNDIALS model in which a separate “solve” function (CVode for CVODES) must be called to return the
solution at a desired output time. Solver statistics, as well as optional outputs (such as solution and
solution derivatives at additional times) can be obtained at any time with calls to separate functions
(CVodeGetStats and CVodeGet for CVODES).

This document provides a complete documentation for the SUNDIALSTB functions. For additional
details on the methods and underlying SUNDIALS software consult also the coresponding SUNDIALS
user guides [3, 4, 1].

Requirements. For parallel support, SUNDIALSTB depends on MPITB with LAM v > 7.1.1 (for MPI-
2 spawning feature). The required software packages can be obtained from the following addresses.

SUNDIALS http://www.1llnl.gov/CASC/sundials
MPITB http://atc.ugr.es/javier-bin/mpitb_eng
LAM http://www.lam-mpi.org/

2 Installation

The following steps are required to install and setup SUNDIALSTB:

2.1 Compilation and installation of sundialsTB

As of version 2.3.0, SUNDIALSTB is distributed only with the complete SUNDIALS package.

In the sequel, we assume that the SUNDIALS package was unpacked under the directory sredir. The
SUNDIALSTB files are therefore in srcdir/sundialsTB.

Compilation and installation of the SUNDIALSTB toolbox is done by running the MATLAB script
install STB.m which is present in the SUNDIALSTB top directory.

1. Launch MATLAB in sundialsTB

% cd srcdir/sundialsTB
% matlab

2. Run the MATLAB script install_ STB

Note that parallel support will be compiled into the MEX files only if SLAMHOME is defined
and $MPITB_ROOT is defined and sredir/src/nvec_par exists.

After the MEX files are generated, you will be asked if you wish to install the SUNDIALSTB
toolbox. If you answer yes, you will be then asked for the installation directory (called in the
sequel instdir). To install SUNDIALSTB for all MATLAB users (not usual), assuming MATLAB is
installed under /usr/local/matlab7, specify instdir = /usr/local/matlab7/toolbox. To in-
stall SUNDIALSTB for just one user (usual configuration), install SUNDIALSTB under a directory
of your choice (typically under your matlab working directory). In other words, specify instdir
= /home/user/matlab.

2.2 Configuring Matlab’s startup

After a successful installation, a SUNDIALSTB.m startup script is generated in instdir/sundialsTB.
This file must be called by MATLAB at initialization.

If SUNDIALSTB was installed for all MATLAB users (not usual), add the SUNDIALSTB startup to
the system-wide startup file (by linking or copying):

% cd /usr/local/matlab7/toolbox/local
% 1ln -s ../sundialsTB/startup_STB.m .

and add these lines to your original local startup.m

% SUNDIALS Toolbox startup M-file, if it exists.
if exist(’startup_STB’,’file’)

startup_STB
end

If SUNDIALSTB was installed for just one user (usual configuration) and assuming you do not need
to keep any previously existing startup.m, link or copy the startup_STB.m script to your working
‘matlab’ directory:

% cd “/matlab
% 1ln -s sundialsTB/startup_STB.m startup.m

If you already have a startup.m, use the method described above, first linking (or copying)
startup_STB.m to the destination subdirectory and then editing the file /matlab/startup.m to
run startup_STB.m.

2.3 Testing the installation

If everything went fine, you should now be able to try one of the CVODES, IDAS, or KINSOL examples
(in MATLAB, type "help cvodes’, 'help idas’, or 'help kinsol’ to see a list of all examples available). For
example, go to the CVODES serial example directory:

% cd instdir/sundialsTB/cvode/examples_ser

and then launch MATLAB and execute mcvsRoberts_dns.

3 MATLAB Interface to CVODES

The MATLAB interface to CVODES provides access to all functionality of the CVODES solver, including
IVP simulation and sensitvity analysis (both forward and adjoint).

The interface consists of several user-callable functions. In addition, the user must provide several
required and optional user-supplied functions which define the problem to be solved. The user-callable
functions are listed in Tables 1, 2, and 3 for IVP solution, forward sensitivity analysis (FSA), and
adjoint sensitivity analysis (ASA), respectively. For completness, some functions appear in more than
one table. The types of user-supplied functions are listed in Table 4. All these functions are fully
documented later in this section. For more in depth details, consult also the CVODES user guide [3].

To illustrate the use of the CVODES MATLAB interface, several example problems are provided with
SUNDIALSTB, both for serial and parallel computations. Most of them are MATLAB translations of
example problems provided with CVODES.

Table 1: CVODES MATLAB interface functions for ODE integration

CVodeSetOptions | create an options structure for an ODE problem. 4
CVodeQuadSetOptions | create an options structure for quadrature integration. 9
CVodelnit | allocate and initialize memory for CVODES. 11
CVodeQuadInit | allocate and initialize memory for quadrature integration. | 12
CVodeRelnit | reinitialize memory for CVODES. 14
CVodeQuadRelnit | reinitialize memory for quadrature integration. 15
CVode | integrate the ODE problem. 17
CVodeGetStats | return statistics for the CVODES solver. 19
CVodeGet | extract data from CVODES memory. 22
CVodeFree | deallocate memory for the CVODES solver. 24
CVodeMonitor | monitoring function. 104

Table 2: CVODES MATLAB interface functions for FSA
CVodeSetOptions | create an options structure for an ODE problem. 4
CVodeQuadSetOptions | create an options structure for quadrature integration. 9
CVodeSensSetOptions | create an options structure for FSA. 10
CVodelnit | allocate and initialize memory for CVODES. 11
CVodeQuadlInit | allocate and initialize memory for quadrature integration. 12
CVodeSenslInit | allocate and initialize memory for FSA. 12
CVodeRelnit | reinitialize memory for CVODES. 14
CVodeQuadRelnit | reinitialize memory for quadrature integration. 15
CVodeSensRelnit | reinitialize memory for FSA. 15
CVodeSensToggleOff | temporarily deactivates FSA. 19
CVode | integrate the ODE problem. 17
CVodeGetStats | return statistics for the CVODES solver. 19
CVodeGet | extract data from CVODES memory. 22
CVodeFree | deallocate memory for the CVODES solver. 24
CVodeMonitor | monitoring function. 104

Table 3: CVODES MATLAB interface functions for ASA

CVodeSetOptions | create an options structure for an ODE problem. 4
CVodeQuadSetOptions | create an options structure for quadrature integration. 9
CVodelnit | allocate and initialize memory for the forward problem. 11
CVodeQuadInit | allocate and initialize memory for forward quadrature integration. 12
CVodeQuadRelnit | reinitialize memory for forward quadrature integration. 15
CVodeRelnit | reinitialize memory for the forward problem. 14
CVodeAdjlnit | allocate and initialize memory for ASA. 13
CVodelnitB | allocate and initialize a backward problem. 13
CVodeAdjRelnit | reinitialize memory for ASA. 16
CVodeRelnitB | reinitialize a backward problem. 16
CVode | integrate the forward ODE problem. 17

CVodeB | integrate the backward problems. 18
CVodeGetStats | return statistics for the integration of the forward problem. 19
CVodeGetStatsB | return statistics for the integration of a backward problem. 21
CVodeGet | extract data from CVODES memory. 22
CVodeFree | deallocate memory for the CVODES solver. 24
CVodeMonitor | monitoring function for forward problem. 104
CVodeMonitorB | monitoring function for backward problems. 119

3.1 Interface functions

CVodeSetOptions

PURPOSE

CVodeSetOptions creates an options structure for CVODES.
SYNOPSIS

function options = CVodeSetOptions(varargin)
DESCRIPTION

CVodeSetOptions creates an options structure for CVODES.

Usage: OPTIONS
OPTIONS

CVodeSetOptions (’NAME1’ ,VALUE1, *NAME2’ ,VALUE2, ...)
CVodeSetOptions (OLDOPTIONS, *NAME1’ ,VALUEL,...)

OPTIONS = CVodeSetOptions(’NAME1’,VALUE1, ’NAME2’,VALUE2,...) creates
a CVODES options structure OPTIONS in which the named properties have
the specified values. Any unspecified properties have default values.
It is sufficient to type only the leading characters that uniquely
identify the property. Case is ignored for property names.

OPTIONS = CVodeSetOptions(OLDOPTIONS, ’NAME1’,VALUEL,...) alters an
existing options structure OLDOPTIONS.

CVodeSetOptions with no input arguments displays all property names

Table 4: CVODES MATLAB function types

CVRhsFn | RHS function 25

CVRootFn | root-finding function 26

é} CVQuadRhsFn | quadrature RHS function 26
% CVSensRhsFn | sensitivity RHS function 25
o CVDenseJacFn | dense Jacobian function 27
g CVBandJacFn | banded Jacobian function 28
= CVJacTimesVecFn | Jacobian times vector function 28
% CVPrecSetupFn | preconditioner setup function 29
= CVPrecSolveFn | preconditioner solve function 30
CVGlocalFn | RHS approximation function (BBDPre) | 32
CVGcommFn | communication function (BBDPre) 31
CVMonitorFn | monitoring function 33
CVRhsFnB | RHS function 34

5 CVQuadRhsFnB | quadrature RHS function 34
% CVDenseJacFnB | dense Jacobian function 35
% CVBandJacFnB | banded Jacobian function 35
— || CVJacTimesVecFnB | Jacobian times vector function 36
§ CVPrecSetupFnB | preconditioner setup function 37
< CVPrecSolveFnB | preconditioner solve function 38
= CVGlocalFnB | RHS approximation function (BBDPre) | 39
CVGcommFnB | communication function (BBDPre) 38
CVMonitorFnB | monitoring function 40

and their possible values.

CVodeSetOptions properties
(See also the CVODES User Guide)

UserData - User data passed unmodified to all functions [empty]
If UserData is not empty, all user provided functions will be
passed the problem data as their last input argument. For example,
the RHS function must be defined as YD = ODEFUN(T,Y,DATA).

LMM - Linear Multistep Method [’Adams’ | ’BDF’]

This property specifies whether the Adams method is to be used instead
of the default Backward Differentiation Formulas (BDF) method.

The Adams method is recommended for non-stiff problems, while BDF is
recommended for stiff problems.

NonlinearSolver - Type of nonlinear solver used [Functional | Newton]
The ’Functional’ nonlinear solver is best suited for non-stiff
problems, in conjunction with the ’Adams’ linear multistep method,
while ’Newton’ is better suited for stiff problems, using the ’BDF’
method.

RelTol - Relative tolerance [positive scalar | le-4]

RelTol defaults to le-4 and is applied to all components of the solution
vector. See AbsTol.

AbsTol - Absolute tolerance [positive scalar or vector | le-6]

The relative and absolute tolerances define a vector of error weights
with components

ewt(i) = 1/(RelTolx*|y(i)| + AbsTol) if AbsTol is a scalar

ewt (i) = 1/(RelTolx*|y(i)| + AbsTol(i)) if AbsTol is a vector
This vector is used in all error and convergence tests, which
use a weighted RMS norm on all error-like vectors v:

WRMSnorm(v) = sqrt((1/N) sum(i=1..N) (v(i)*ewt(i))"2),
where N is the problem dimension.

MaxNumSteps - Maximum number of steps [positive integer | 500]

CVode will return with an error after taking MaxNumSteps internal steps
in its attempt to reach the next output time.

InitialStep - Suggested initial stepsize [positive scalar]

By default, CVode estimates an initial stepsize hO at the initial time
t0 as the solution of
WRMSnorm(h0"2 ydd / 2) =1
where ydd is an estimated second derivative of y(tO).
MaxStep - Maximum stepsize [positive scalar | inf]
Defines an upper bound on the integration step size.
MinStep - Minimum stepsize [positive scalar | 0.0]
Defines a lower bound on the integration step size.

MaxOrder - Maximum method order [1-12 for Adams, 1-5 for BDF | 5]
Defines an upper bound on the linear multistep method order.

StopTime - Stopping time [scalar]

Defines a value for the independent variable past which the solution
is not to proceed.

RootsFn - Rootfinding function [function]

To detect events (roots of functions), set this property to the event
function. See CVRootFn.

NumRoots - Number of root functions [integer | 0]

Set NumRoots to the number of functions for which roots are monitored.
If NumRoots is 0, rootfinding is disabled.

StabilityLimDet - Stability limit detection algorithm [false | true]
Flag used to turn on or off the stability limit detection algorithm
within CVODES. This property can be used only with the BDF method.

In this case, if the order is 3 or greater and if the stability limit
is detected, the method order is reduced.

LinearSolver - Linear solver type [Dense|Diag|Band|GMRES|BiCGStab|TFQMR]
Specifies the type of linear solver to be used for the Newton nonlinear
solver (see NonlinearSolver). Valid choices are: Dense (direct, dense
Jacobian), Band (direct, banded Jacobian), Diag (direct, diagonal Jacobian),
GMRES (iterative, scaled preconditioned GMRES), BiCGStab (iterative, scaled
preconditioned stabilized BiCG), TFQMR (iterative, scaled transpose-free QMR).
The GMRES, BiCGStab, and TFQMR are matrix-free linear solvers.

JacobianFn - Jacobian function [function]

This propeerty is overloaded. Set this value to a function that returns
Jacobian information consistent with the linear solver used (see Linsolver).
If not specified, CVODES uses difference quotient approximations.

For the Dense linear solver, JacobianFn must be of type CVDenseJacFn and

must return a dense Jacobian matrix. For the Band linear solver, JacobianFn
must be of type CVBandJacFn and must return a banded Jacobian matrix.

For the iterative linear solvers, GMRES, BiCGStab, and TFQMR, JacobianFn must
be of type CVJacTimesVecFn and must return a Jacobian-vector product. This
property is not used for the Diag linear solver.

If these options are for a backward problem, the corresponding funciton types
are CVDenseJacFnB for the Dense linear solver, CVBandJacFnB for he band linear
solver, and CVJacTimesVecFnB for the iterative linear solvers.

KrylovMaxDim - Maximum number of Krylov subspace vectors [integer | 5]
Specifies the maximum number of vectors in the Krylov subspace. This property
is used only if an iterative linear solver, GMRES, BiCGStab, or TFQMR is used
(see LinSolver).

GramSchmidtType - Gram-Schmidt orthogonalization [Classical | Modified]
Specifies the type of Gram-Schmidt orthogonalization (classical or modified).
This property is used only if the GMRES linear solver is used (see LinSolver).

PrecType - Preconditioner type [Left | Right | Both | None]

Specifies the type of user preconditioning to be done if an iterative linear
solver, GMRES, BiCGStab, or TFQMR is used (see LinSolver). PrecType must be
one of the following: ’None’, ’Left’, ’Right’, or ’Both’, corresponding to no
preconditioning, left preconditioning only, right preconditioning only, and
both left and right preconditioning, respectively.

PrecModule - Preconditioner module [BandPre | BBDPre | UserDefined]

If PrecModule = ’UserDefined’, then the user must provide at least a
preconditioner solve function (see PrecSolveFn)
CVODES provides the following two general-purpose preconditioner modules:

BandPre provide a band matrix preconditioner based on difference quotients
of the ODE right-hand side function. The user must specify the lower and
upper half-bandwidths through the properties LowerBwidth and UpperBwidth,
respectively.

BBDPre can be only used with parallel vectors. It provide a preconditioner
matrix that is block-diagonal with banded blocks. The blocking corresponds
to the distribution of the dependent variable vector y among the processors.
Each preconditioner block is generated from the Jacobian of the local part
(on the current processor) of a given function g(t,y) approximating
f(t,y) (see GlocalFn). The blocks are generated by a difference quotient
scheme on each processor independently. This scheme utilizes an assumed
banded structure with given half-bandwidths, mldq and mudq (specified through
LowerBwidthDQ and UpperBwidthDQ, respectively). However, the banded Jacobian
block kept by the scheme has half-bandwiths ml and mu (specified through
LowerBwidth and UpperBwidth), which may be smaller.

PrecSetupFn - Preconditioner setup function [function]

If PrecType is not ’None’, PrecSetupFn specifies an optional function which,
together with PrecSolve, defines left and right preconditioner matrices
(either of which can be trivial), such that the product P1*P2 is an
aproximation to the Newton matrix. PrecSetupFn must be of type CVPrecSetupFn
or CVPrecSetupFnB for forward and backward problems, respectively.

PrecSolveFn - Preconditioner solve function [function]

If PrecType is not ’None’, PrecSolveFn specifies a required function which
must solve a linear system Pz = r, for given r. PrecSolveFn must be of type
CVPrecSolveFn or CVPrecSolveFnB for forward and backward problems, respectively.

GlocalFn - Local right-hand side approximation funciton for BBDPre [function]
If PrecModule is BBDPre, GlocalFn specifies a required function that
evaluates a local approximation to the ODE right-hand side. GlocalFn must
be of type CVGlocFn or CVGlocFnB for forward and backward problems, respectively.

GcommFn - Inter-process communication function for BBDPre [function]

If PrecModule is BBDPre, GcommFn specifies an optional function

to perform any inter-process communication required for the evaluation of
GlocalFn. GcommFn must be of type CVGcommFn or CVGcommFnB for forward and
backward problems, respectively.

LowerBwidth - Jacobian/preconditioner lower bandwidth [integer | 0]

This property is overloaded. If the Band linear solver is used (see LinSolver),
it specifies the lower half-bandwidth of the band Jacobian approximation.

If one of the three iterative linear solvers, GMRES, BiCGStab, or TFQMR is used
(see LinSolver) and if the BBDPre preconditioner module in CVODES is used
(see PrecModule), it specifies the lower half-bandwidth of the retained
banded approximation of the local Jacobian block. If the BandPre preconditioner
module (see PrecModule) is used, it specifies the lower half-bandwidth of
the band preconditioner matrix. LowerBwidth defaults to O (no sub-diagonals).
UpperBwidth - Jacobian/preconditioner upper bandwidth [integer | 0]
This property is overloaded. If the Band linear solver is used (see LinSolver),
it specifies the upper half-bandwidth of the band Jacobian approximation.
If one of the three iterative linear solvers, GMRES, BiCGStab, or TFQMR is used
(see LinSolver) and if the BBDPre preconditioner module in CVODES is used
(see PrecModule), it specifies the upper half-bandwidth of the retained
banded approximation of the local Jacobian block. If the BandPre
preconditioner module (see PrecModule) is used, it specifies the upper
half-bandwidth of the band preconditioner matrix. UpperBwidth defaults to
0 (no super-diagonals).
LowerBwidthDQ - BBDPre preconditioner DQ lower bandwidth [integer | 0]
Specifies the lower half-bandwidth used in the difference-quotient Jacobian
approximation for the BBDPre preconditioner (see PrecModule).
UpperBwidthDQ - BBDPre preconditioner DQ upper bandwidth [integer | 0]
Specifies the upper half-bandwidth used in the difference-quotient Jacobian
approximation for the BBDPre preconditioner (see PrecModule).

MonitorFn - User-provied monitoring function [function]
Specifies a function that is called after each successful integration step.
This function must have type CVMonitorFn or CVMonitorFnB, depending on
whether these options are for a forward or a backward problem, respectively.
Sample monitoring functions CVodeMonitor and CvodeMonitorB are provided
with CVODES.

MonitorData - User-provied data for the monitoring function [struct]
Specifies a data structure that is passed to the MonitorFn function every
time it is called.

SensDependent - Backward problem depending on sensitivities [false | true]
Specifies whether the backward problem right-hand side depends on
forward sensitivites. If TRUE, the right-hand side function provided for
this backward problem must have the appropriate type (see CVRhsFnB).

ErrorMessages - Post error/warning messages [true | false]
Note that any errors in CVodeInit will result in a Matlab error, thus
stoping execution. Only subsequent calls to CVODES functions will respect
the value specified for ’ErrorMessages’.

NOTES:

The properties listed above that can only be used for forward problems
are: StopTime, RootsFn, and NumRoots.

The property SensDependent is relevant only for backward problems.
See also

CVodeInit, CVodeReInit, CVodeInitB, CVodeReInitB
CVRhsFn, CVRootFn,

CVDenseJacFn, CVBandJacFn, CVJacTimesVecFn
CVPrecSetupFn, CVPrecSolveFn

CVGlocalFn, CVGcommFn

CVMonitorFn

CVRhsFnB,

CVDenseJacFnB, CVBandJacFnB, CVJacTimesVecFnB
CVPrecSetupFnB, CVPrecSolveFnB

CVGlocalFnB, CVGcommFnB

CVMonitorFnB

CVodeQuadSetOptions

PURPOSE

CVodeQuadSetOptions creates an options structure for quadrature integration with CVODES.
SYNOPSIS

function options = CVodeQuadSetOptions(varargin)

DESCRIPTION

CVodeQuadSetOptions creates an options structure for quadrature integration with CVODES.

Usage: OPTIONS
OPTIONS

CVodeQuadSetOptions (’NAME1’ ,VALUE1, *NAME2’ ,VALUE2, .. .)
CVodeQuadSetOptions (OLDOPTIONS, *NAME1’ ,VALUEL,...)

OPTIONS = CVodeQuadSetOptions(’NAME1’,VALUE1, ’NAME2’ ,VALUE2,...) creates
a CVODES options structure OPTIONS in which the named properties have
the specified values. Any unspecified properties have default values.

It is sufficient to type only the leading characters that uniquely
identify the property. Case is ignored for property names.

OPTIONS = CVodeQuadSetOptions(OLDOPTIONS, ’NAME1’,VALUE1l,...) alters an
existing options structure OLDOPTIONS.

CVodeQuadSetOptions with no input arguments displays all property names
and their possible values.

CVodeQuadSetOptions properties
(See also the CVODES User Guide)

ErrControl - Error control strategy for quadrature variables [false | true]
Specifies whether quadrature variables are included in the error test.

RelTol - Relative tolerance for quadrature variables [scalar le-4]
Specifies the relative tolerance for quadrature variables. This parameter is
used only if ErrControl = true.

AbsTol - Absolute tolerance for quadrature variables [scalar or vector le-6]
Specifies the absolute tolerance for quadrature variables. This parameter is
used only if ErrControl = true.

SensDependent - Backward problem depending on sensitivities [false | true]
Specifies whether the backward problem quadrature right-hand side depends
on forward sensitivites. If TRUE, the right-hand side function provided for

this backward problem must have the appropriate type (see CVQuadRhsFnB).

See also
CVodeQuadInit, CVodeQuadReInit.
CVodeQuadInitB, CVodeQuadReInitB

CVodeSensSetOptions

PURPOSE

CVodeSensSetOptions creates an options structure for FSA with CVODES.
SYNOPSIS

function options = CVodeSensSetOptions(varargin)

DESCRIPTION

CVodeSensSetOptions creates an options structure for FSA with CVODES.

Usage: OPTIONS
OPTIONS

CVodeSensSetOptions (’NAME1’ ,VALUE1, *NAME2’ ,VALUE2, .. .)
CVodeSensSetOptions (OLDOPTIONS, *NAME1’ ,VALUEL,...)

OPTIONS = CVodeSensSetOptions(’NAME1’,VALUE1, ’NAME2’ ,VALUE2,...) creates
a CVODES options structure OPTIONS in which the named properties have
the specified values. Any unspecified properties have default values.

It is sufficient to type only the leading characters that uniquely
identify the property. Case is ignored for property names.

OPTIONS = CVodeSensSetOptions(OLDOPTIONS, ’NAME1’,VALUE1l,...) alters an
existing options structure OLDOPTIONS.

CVodeSensSetOptions with no input arguments displays all property names
and their possible values.

CVodeSensSetOptions properties
(See also the CVODES User Guide)

method - FSA solution method [’Simultaneous’ | ’Staggered’]
Specifies the FSA method for treating the nonlinear system solution for
sensitivity variables. In the simultaneous case, the nonlinear systems
for states and all sensitivities are solved simultaneously. In the
Staggered case, the nonlinear system for states is solved first and then
the nonlinear systems for all sensitivities are solved at the same time.
ParamField - Problem parameters [string]
Specifies the name of the field in the user data structure (specified through
the ’UserData’ field with CVodeSetOptions) in which the nominal values of the problem
parameters are stored. This property is used only if CVODES will use difference
quotient approximations to the sensitivity right-hand sides (see CVSensRhsFn).
ParamList - Parameters with respect to which FSA is performed [integer vector]
Specifies a list of Ns parameters with respect to which sensitivities are to
be computed. This property is used only if CVODES will use difference-quotient
approximations to the sensitivity right-hand sides. Its length must be Ns,

10

consistent with the number of columns of ySO (see CVodeSensInit).

ParamScales - Order of magnitude for problem parameters [vector]
Provides order of magnitude information for the parameters with respect to
which sensitivities are computed. This information is used if CVODES
approximates the sensitivity right-hand sides or if CVODES estimates integration
tolerances for the sensitivity variables (see RelTol and AbsTol).

RelTol - Relative tolerance for sensitivity variables [positive scalar]
Specifies the scalar relative tolerance for the sensitivity variables.

See also AbsTol.

AbsTol - Absolute tolerance for sensitivity variables [row-vector or matrix]
Specifies the absolute tolerance for sensitivity variables. AbsTol must be
either a row vector of dimension Ns, in which case each of its components is
used as a scalar absolute tolerance for the coresponding sensitivity vector,
or a N x Ns matrix, in which case each of its columns is used as a vector
of absolute tolerances for the corresponding sensitivity vector.

By default, CVODES estimates the integration tolerances for sensitivity
variables, based on those for the states and on the order of magnitude
information for the problem parameters specified through ParamScales.

ErrControl - Error control strategy for sensitivity variables [false | true]
Specifies whether sensitivity variables are included in the error control test.
Note that sensitivity variables are always included in the nonlinear system
convergence test.

DQtype - Type of DQ approx. of the sensi. RHS [Centered | Forward]

Specifies whether to use centered (second-order) or forward (first-order)
difference quotient approximations of the sensitivity eqation right-hand
sides. This property is used only if a user-defined sensitivity right-hand
side function was not provided.

DQparam - Cut-off parameter for the DQ approx. of the sensi. RHS [scalar | 0.0]
Specifies the value which controls the selection of the difference-quotient
scheme used in evaluating the sensitivity right-hand sides (switch between
simultaneous or separate evaluations of the two components in the sensitivity
right-hand side). The default value 0.0 indicates the use of simultaenous approximation
exclusively (centered or forward, depending on the value of DQtype.

For DQparam >= 1, CVODES uses a simultaneous approximation if the estimated
DQ perturbations for states and parameters are within a factor of DQparam,

and separate approximations otherwise. Note that a value DQparam &1t; 1

will inhibit switching! This property is used only if a user-defined sensitivity
right-hand side function was not provided.

See also
CVodeSensInit, CVodeSensRelnit

CVodelnit

PURPOSE

CVodeInit allocates and initializes memory for CVODES.
SYNOPSIS

function status = CVodeInit(fct, lmm, nls, tO, yO, options)

DESCRIPTION

11

CVodelInit allocates and initializes memory for CVODES.
Usage: CVodeInit (ODEFUN, LMM, NLS, TO, YO [, OPTIONS 1)
ODEFUN is a function defining the ODE right-hand side: y’ = f(t,y).

This function must return a vector containing the current
value of the righ-hand side.

LMM is the Linear Multistep Method (’Adams’ or ’BDF’)

NLS is the type of nonlinear solver used (’Functional’ or ’Newton’)
TO is the initial value of t.

YO is the initial condition vector y(tO0).

OPTIONS is an (optional) set of integration options, created with
the CVodeSetOptions function.

See also: CVodeSetOptions, CVRhsFn

NOTES:

1) The ’Functional’ nonlinear solver is best suited for non-stiff
problems, in conjunction with the ’Adams’ linear multistep method,
while ’Newton’ is better suited for stiff problems, using the ’BDF’
method.

2) When using the ’Newton’ nonlinear solver, a linear solver is also
required. The default one is ’Dense’, indicating the use of direct
dense linear algebra (LU factorization). A different linear solver
can be specified through the option ’LinearSolver’ to CVodeSetOptions.

CVodeQuadInit

PUrRPOSE

CVodeQuadInit allocates and initializes memory for quadrature integration.
SYNOPSIS

function status = CVodeQuadInit(fctQ, yQO, options)

DESCRIPTION

CVodeQuadInit allocates and initializes memory for quadrature integration.

Usage: CVodeQuadInit (QFUN, YQO [, OPTIONS])

QFUN is a function defining the righ-hand sides of the quadrature
ODEs yQ’ = £fQ(t,y).
YQO is the initial conditions vector yQ(tO0).

OPTIONS is an (optional) set of QUAD options, created with
the CVodeSetQuadOptions function.

See also: CVodeSetQuadOptions, CVQuadRhsFn

CVodeSensInit

12

PURPOSE

CVodeSensInit allocates and initializes memory for FSA with CVODES.
SYNOPSIS

function status = CVodeSensInit(Ns,fctS,yS0,options)

DESCRIPTION

CVodeSensInit allocates and initializes memory for FSA with CVODES.

Usage: CVodeSensInit (NS, SFUN, YSO [, OPTIONS])

NS is the number of parameters with respect to which sensitivities
are desired

SFUN is a function defining the righ-hand sides of the sensitivity
ODEs yS’ = £S(t,y,yS).

YSO Initial conditions for sensitivity variables.

YSO must be a matrix with N rows and Ns columns, where N is the problem
dimension and Ns the number of sensitivity systems.

OPTIONS is an (optional) set of FSA options, created with
the CVodeSetFSAOptions function.

See also CVodeSensSetOptions, CVodeInit, CVSensRhsFn

CVodeAdjInit

PURPOSE

CVodeAdjInit allocates and initializes memory for ASA with CVODES.
SYNOPSIS

function status = CVodeAdjInit(steps, interp)

DESCRIPTION

CVodeAdjInit allocates and initializes memory for ASA with CVODES.
Usage: CVodeAdjInit(STEPS, INTEPR)

STEPS specifies the (maximum) number of integration steps between two
consecutive check points.

INTERP Specifies the type of interpolation used for estimating the forward
solution during the backward integration phase. INTERP should be
’Hermite’, indicating cubic Hermite interpolation, or ’Polynomial’,
indicating variable order polynomial interpolation.

CVodeInitB

PURPOSE

CVodeInitB allocates and initializes backward memory for CVODES.

SYNOPSIS

function [idxB, status] = CVodeInitB(fctB, 1lmmB, nlsB, tBO, yBO, optionsB)

DESCRIPTION

13

CVodeInitB allocates and initializes backward memory for CVODES.
Usage: IDXB = CVodeInitB (FCTB, LMMB, NLSB, TBO, YBO [, OPTIONSB])
FCTB is a function defining the adjoint ODE right-hand side.

This function must return a vector containing the current
value of the adjoint ODE righ-hand side.

LMMB is the Linear Multistep Method (’Adams’ or ’BDF’)

NLSB is the type of nonlinear solver used (’Functional’ or ’Newton’)
TBO is the final value of t.

YBO is the final condition vector yB(tBO).

OPTIONSB is an (optional) set of integration options, created with
the CVodeSetOptions function.

CVodeInitB returns the index IDXB associated with this backward
problem. This index must be passed as an argument to any subsequent

functions related to this backward problem.

See also: CVodeSetOptions, CVodeInit, CVRhsFnB

CVodeQuadInitB

PURPOSE

CVodeQuadInitB allocates and initializes memory for backward quadrature integration.
SYNOPSIS

function status = CVodeQuadInitB(idxB, fctQB, yQBO, optionsB)

DESCRIPTION

CVodeQuadInitB allocates and initializes memory for backward quadrature integration.
Usage: CVodeQuadInitB (IDXB, QBFUN, YQBO [, OPTIONS])

IDXB is the index of the backward problem, returned by
CVodeInitB.

QBFUN is a function defining the righ-hand sides of the
backward ODEs yQB’ = fQB(t,y,yB).

YQBO is the final conditions vector yQB(tBO).

OPTIONS is an (optional) set of QUAD options, created with
the CVodeSetQuadOptions function.

See also: CVodeInitB, CVodeSetQuadOptions, CVQuadRhsFnB

CVodeReInit

PURPOSE

CVodeReInit reinitializes memory for CVODES
SYNOPSIS

function status = CVodeReInit(tO, y0, options)

DESCRIPTION

14

CVodeRelInit reinitializes memory for CVODES
where a prior call to CVodeInit has been made with the same
problem size N. CVodeReInit performs the same input checking
and initializations that CVodeInit does, but it does no
memory allocation, assuming that the existing internal memory
is sufficient for the new problem.

Usage: CVodeReInit (TO, YO [, OPTIONS])

TO is the initial value of t.

YO is the initial condition vector y(tO0).

OPTIONS is an (optional) set of integration options, created with

the CVodeSetOptions function.

See also: CVodeSetOptions, CVodelnit

CVodeQuadRelInit

PURPOSE

CVodeQuadReInit reinitializes CVODES’s quadrature-related memory
SYNOPSIS

function status = CVodeQuadReInit(yQO, options)

DESCRIPTION

CVodeQuadReInit reinitializes CVODES’s quadrature-related memory
assuming it has already been allocated in prior calls to CVodelnit
and CVodeQuadInit.

Usage: CVodeQuadReInit (YQO [, OPTIONS])
YQO Initial conditions for quadrature variables yQ(tO).
OPTIONS is an (optional) set of QUAD options, created with

the CVodeSetQuadOptions function.

See also: CVodeSetQuadOptions, CVodeQuadInit

CVodeSensRelnit

PURPOSE

CVodeSensRelInit reinitializes CVODES’s FSA-related memory
SYNOPSIS

function status = CVodeSensReInit(ySO, options)

DESCRIPTION

15

CVodeSensReInit reinitializes CVODES’s FSA-related memory
assuming it has already been allocated in prior calls to CVodelnit
and CVodeSensInit.
The number of sensitivities Ns is assumed to be unchanged since the
previous call to CVodeSensInit.

Usage: CVodeSensReInit (YSO [, OPTIONS])

YSO Initial conditions for sensitivity variables.
YSO must be a matrix with N rows and Ns columns, where N is the problem
dimension and Ns the number of sensitivity systems.

OPTIONS is an (optional) set of FSA options, created with
the CVodeSensSetOptions function.

See also: CVodeSensSetOptions, CVodeReInit, CVodeSensInit

CVodeAdjRelInit

PURPOSE

CVodeAdjReInit re-initializes memory for ASA with CVODES.
SYNOPSIS

function status = CVodeAdjReInit()

DESCRIPTION

CVodeAdjReInit re-initializes memory for ASA with CVODES.

Usage: CVodeAdjReInit

CVodeReInitB

PURPOSE

CVodeReInitB re-initializes backward memory for CVODES.
SYNOPSIS

function status = CVodeReInitB(idxB, tBO, yBO, optionsB)
DESCRIPTION

CVodeReInitB re-initializes backward memory for CVODES.
where a prior call to CVodeInitB has been made with the same
problem size NB. CVodeReInitB performs the same input checking
and initializations that CVodeInitB does, but it does no
memory allocation, assuming that the existing internal memory
is sufficient for the new problem.

Usage: CVodeReInitB (IDXB, TBO, YBO [, OPTIONSB])

IDXB is the index of the backward problem, returned by

16

CVodeInitB.

TBO is the final value of t.

YBO is the final condition vector yB(tBO).

OPTIONSB is an (optional) set of integration options, created with
the CVodeSetOptions function.

See also: CVodeSetOptions, CVodeInitB

CVodeQuadReInitB

PURPOSE

CVodeQuadReInitB reinitializes memory for backward quadrature integration.
SYNOPSIS

function status = CVodeQuadReInitB(idxB, yQBO, optionsB)

DESCRIPTION

CVodeQuadReInitB reinitializes memory for backward quadrature integration.

Usage: CVodeQuadReInitB (IDXB, YSO [, OPTIONS])

IDXB is the index of the backward problem, returned by
CVodeInitB.
YQBO is the final conditions vector yQB(tBO).

OPTIONS is an (optional) set of QUAD options, created with
the CVodeSetQuadOptions function.

See also: CVodeSetQuadOptions, CVodeReInitB, CVodeQuadInitB

CVode

PURPOSE

CVode integrates the ODE.

SYNOPSIS

function [varargout] = CVode(tout, itask)
DESCRIPTION

CVode integrates the ODE.

Usage: [STATUS, T, Y] = CVode (TOUT, ITASK)
[STATUS, T, Y, YS] = CVode (TOUT, ITASK)
[STATUS, T, Y, YQ] = CVode (TOUT, ITASK)
[STATUS, T, Y, YQ, YS] = CVode (TOUT, ITASK)

If ITASK is ’Normal’, then the solver integrates from its current internal

T value to a point at or beyond TOUT, then interpolates to T = TOUT and returns
Y(TOUT). If ITASK is ’OneStep’, then the solver takes one internal time step

17

and returns in Y the solution at the new internal time. In this case, TOUT
is used only during the first call to CVode to determine the direction of
integration and the rough scale of the problem. In either case, the time
reached by the solver is returned in T.

If quadratures were computed (see CVodeQuadInit), CVode will return their
values at T in the vector YQ.

If sensitivity calculations were enabled (see CVodeSensInit), CVode will
return their values at T in the matrix YS. Each row in the matrix YS
represents the sensitivity vector with respect to one of the problem parameters.

In ITASK =’ Normal’ mode, to obtain solutions at specific times TO,T1,...,TFINAL
(all increasing or all decreasing) use TOUT = [TO T1 ... TFINAL]. In this case

the output arguments Y and YQ are matrices, each column representing the solution
vector at the corresponding time returned in the vector T. If computed, the
sensitivities are eturned in the 3-dimensional array YS, with YS(:,:,I) representing
the sensitivity vectors at the time T(I).

On return, STATUS is one of the following:
successful CVode return.

CVode succeded and returned at tstop.

CVode succeeded and found one or more roots.
-1: an error occurred (see printed message) .

N~ O

See also CVodeSetOptions, CVodeGetStats

CVodeB

PURPOSE

CVodeB integrates all backwards ODEs currently defined.

SYNOPSIS

function [varargout] = CVodeB(tout,itask)

DESCRIPTION

CVodeB integrates all backwards ODEs currently defined.

Usage: [STATUS, T, YB] = CVodeB (TOUT, ITASK)
[STATUS, T, YB, YQB] = CVodeB (TOUT, ITASK)

If ITASK is ’Normal’, then the solver integrates from its current internal

T value to a point at or beyond TOUT, then interpolates to T = TOUT and returns
YB(TOUT). If ITASK is ’OneStep’, then the solver takes one internal time step
and returns in YB the solution at the new internal time. In this case, TOUT

is used only during the first call to CVodeB to determine the direction of
integration and the rough scale of the problem. In either case, the time
reached by the solver is returned in T.

If quadratures were computed (see CVodeQuadInitB), CVodeB will return their
values at T in the vector YQB.

18

In ITASK =’ Normal’ mode, to obtain solutions at specific times TO,T1,...,TFINAL
(all increasing or all decreasing) use TOUT = [TO T1 ... TFINAL]. In this case

the output arguments YB and Y(QB are matrices, each column representing the solution
vector at the corresponding time returned in the vector T.

If more than one backward problem was defined, the return arguments are cell
arrays, with TIDXB, YBIDXB, and YQBIDXB corresponding to the backward
problem with index IDXB (as returned by CVodeInitB).

On return, STATUS is one of the following:

0: successful CVodeB return.

1: CVodeB succeded and return at a tstop value (internally set).
-1: an error occurred (see printed message).

See also CVodeSetOptions, CVodeGetStatsB

CVodeSensToggleOff

PURPOSE

CVodeSensToggleOff deactivates sensitivity calculations.

SYNOPSIS

function status = CVodeSensToggleOff ()

DESCRIPTION

CVodeSensToggleOff deactivates sensitivity calculations.

It does NOT deallocate sensitivity-related memory so that
sensitivity computations can be later toggled ON (through
CVodeSensReInit).

Usage: CVodeSensToggleOff

See also: CVodeSensInit, CVodeSensRelnit

CVodeGetStats

PURPOSE

CVodeGetStats returns run statistics for the CVODES solver.

SYNOPSIS

function [si, status] = CVodeGetStats()

DESCRIPTION

CVodeGetStats returns run statistics for the CVODES solver.

Usage: STATS = CVodeGetStats

19

Fields in the structure STATS

o nst - number of integration steps

o nfe - number of right-hand side function evaluations

o nsetups - number of linear solver setup calls

o netf - number of error test failures

o nni - number of nonlinear solver iterations

o ncfn - number of convergence test failures

o qlast - last method order used

o qcur - current method order

o hOused - actual initial step size used

o hlast - last step size used

o hcur - current step size

o tcur - current time reached by the integrator

o RootInfo - strucutre with rootfinding information

o QuadInfo - structure with quadrature integration statistics
o LSInfo - structure with linear solver statistics

o FSAInfo - structure with forward sensitivity solver statistics

If rootfinding was requested, the structure RootInfo has the following fields

0 nge - number of calls to the rootfinding function

o roots - array of integers (a value of 1 in the i-th component means that the
i-th rootfinding function has a root (upon a return with status=2 from
CVode) .

If quadratures were present, the structure QuadInfo has the following fields

o nfQe - number of quadrature integrand function evaluations
o netfQ - number of error test failures for quadrature variables

The structure LSinfo has different fields, depending on the linear solver used.
Fields in LSinfo for the ’Dense’ linear solver
o name - ’Dense’
o njeD - number of Jacobian evaluations
o nfeD - number of right-hand side function evaluations for difference-quotient
Jacobian approximation
Fields in LSinfo for the ’Diag’ linear solver
o name - ’Diag’
o nfeDI - number of right-hand side function evaluations for difference-quotient
Jacobian approximation
Fields in LSinfo for the ’Band’ linear solver
o name - ’Band’
o njeB - number of Jacobian evaluations
o nfeB - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’GMRES’ and ’BiCGStab’ linear solvers

20

njeSG - number of Jacobian-vector product evaluations
nfeSG - number of right-hand side function evaluations for difference-quotient
Jacobian-vector product approximation

o name - ’GMRES’ or ’BiCGStab’

o nli - number of linear solver iterations

o0 npe - number of preconditioner setups

o nps - number of preconditioner solve function calls

o ncfl - number of linear system convergence test failures
o

o

If forward sensitivities were computed, the structure FSAInfo has the
following fields

o nfSe - number of sensitivity right-hand side evaluations

o nfeS - number of right-hand side evaluations for difference-quotient
sensitivity right-hand side approximation

o nsetupsS - number of linear solver setups triggered by sensitivity variables

o netfS - number of error test failures for sensitivity variables

o nniS - number of nonlinear solver iterations for sensitivity variables

o ncfnS - number of convergence test failures due to sensitivity variables

CVodeGetStatsB
PURPOSE

CVodeGetStatsB returns run statistics for the backward CVODES solver.
SYNOPSIS

function [si, status] = CVodeGetStatsB(idxB)

DESCRIPTION

CVodeGetStatsB returns run statistics for the backward CVODES solver.
Usage: STATS = CVodeGetStatsB(IDXB)

IDXB is the index of the backward problem, returned by
CVodeInitB.

Fields in the structure STATS

nst - number of integration steps

nfe - number of right-hand side function evaluations
nsetups - number of linear solver setup calls
netf - number of error test failures

nni - number of nonlinear solver iterations
ncfn - number of convergence test failures
gqlast - last method order used

qcur - current method order

hOused - actual initial step size used

hlast - last step size used

hcur - current step size

tcur - current time reached by the integrator

O O O OO0 OO0 OO0 o o

21

¢}
o

QuadInfo - structure with quadrature integration statistics
LSInfo - structure with linear solver statistics

The structure LSinfo has different fields, depending on the linear solver used.

If quadratures were present, the structure QuadInfo has the following fields

O O O 0O 0O O O

nfQe - number of quadrature integrand function evaluations
netfQ - number of error test failures for quadrature variables

Fields in LSinfo for the ’Dense’ linear solver

name - ’Dense’

njeD - number of Jacobian evaluations

nfeD - number of right-hand side function evaluations for difference-quotient
Jacobian approximation

Fields in LSinfo for the ’Diag’ linear solver

name - ’Diag’
nfeDI - number of right-hand side function evaluations for difference-quotient
Jacobian approximation

Fields in LSinfo for the ’Band’ linear solver

name - ’Band’

njeB - number of Jacobian evaluations

nfeB - number of right-hand side function evaluations for difference-quotient
Jacobian approximation

Fields in LSinfo for the ’GMRES’ and ’BiCGStab’ linear solvers

name - ’GMRES’ or ’BiCGStab’

nli - number of linear solver iterations

npe - number of preconditioner setups

nps - number of preconditioner solve function calls

ncfl - number of linear system convergence test failures

njeSG - number of Jacobian-vector product evaluations

nfeSG - number of right-hand side function evaluations for difference-quotient
Jacobian-vector product approximation

CVodeGet

PURPOSE

CVodeGet extracts data from the CVODES solver memory.

SYNOPSIS

function [output, status] = CVodeGet(key, varargin)

DESCRIPTION

22

CVodeGet extracts data from the CVODES solver memory.
Usage: RET = CVodeGet (KEY [, P1 [, P2] ... 1)

CVodeGet returns internal CVODES information based on KEY. For some values
of KEY, additional arguments may be required and/or more than one output is
returned.

KEY is a string and should be one of:

o DerivSolution - Returns a vector containing the K-th order derivative
of the solution at time T. The time T and order K must be passed through
the input arguments Pl and P2, respectively:
DKY = CVodeGet (’DerivSolution’, T, K)

o ErrorWeights - Returns a vector containing the current error weights.
EWT = CVodeGet (’ErrorWeights’)

o CheckPointsInfo - Returns an array of structures with check point information.
CK = CVodeGet (’CheckPointInfo)

CVodeSet

PURPOSE

CVodeSet changes optional input values during the integration.
SYNOPSIS

function status = CVodeSet(varargin)

DESCRIPTION

CVodeSet changes optional input values during the integration.
Usage: CVodeSet(’NAME1’,VALUE1, ’NAME2’,VALUE2,...)

CVodeSet can be used to change some of the optional inputs during
the integration, i.e., without need for a solver reinitialization.
The property names accepted by CVodeSet are a subset of those valid
for CVodeSetOptions. Any unspecified properties are left unchanged.

CVodeSet with no input arguments displays all property names.

CVodeSet properties
(See also the CVODES User Guide)

UserData - problem data passed unmodified to all user functions.
Set VALUE to be the new user data.
RelTol - Relative tolerance
Set VALUE to the new relative tolerance
AbsTol - absolute tolerance
Set VALUE to be either the new scalar absolute tolerance or
a vector of absolute tolerances, one for each solution component.
StopTime - Stopping time
Set VALUE to be a new value for the independent variable past which
the solution is not to proceed.

23

CVodeSetB

PURPOSE

CVodeSetB changes optional input values during the integration.
SYNOPSIS

function status = CVodeSetB(idxB, varargin)

DESCRIPTION

CVodeSetB changes optional input values during the integration.

Usage: CVodeSetB(IDXB, ’NAME1l’,VALUE1,’NAME2’,VALUE2,...)

CVodeSetB can be used to change some of the optional inputs for

the backward problem identified by IDXB during the backward
integration, i.e., without need for a solver reinitialization.

The property names accepted by CVodeSet are a subset of those valid
for CVodeSetOptions. Any unspecified properties are left unchanged.

CVodeSetB with no input arguments displays all property names.

CVodeSetB properties
(See also the CVODES User Guide)

UserData - problem data passed unmodified to all user functions.
Set VALUE to be the new user data.
RelTol - Relative tolerance
Set VALUE to the new relative tolerance
AbsTol - absolute tolerance
Set VALUE to be either the new scalar absolute tolerance or
a vector of absolute tolerances, one for each solution component.

CVodeFree

PURPOSE

CVodeFree deallocates memory for the CVODES solver.
SYNOPSIS

function CVodeFree()

DESCRIPTION

CVodeFree deallocates memory for the CVODES solver.

Usage: CVodeFree

24

3.2 Function types

CVRhsFn

PURPOSE

CVRhsFn - type for user provided RHS function
SYNOPSIS

This is a script file.

DESCRIPTION

CVRhsFn - type for user provided RHS function

The function ODEFUN must be defined as

FUNCTION [YD, FLAG] = ODEFUN(T,Y)
and must return a vector YD corresponding to f(t,y).
If a user data structure DATA was specified in CVodelInit, then
ODEFUN must be defined as

FUNCTION [YD, FLAG, NEW_DATA] = ODEFUN(T,Y,DATA)
If the local modifications to the user data structure are needed
in other user-provided functions then, besides setting the vector YD,
the ODEFUN function must also set NEW_DATA. Otherwise, it should set
NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

The function ODEFUN must set FLAG=0 if successful, FLAG&1lt;0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also CVodelnit

CVSensRhsFn

PURPOSE

CVSensRhsFn - type for user provided sensitivity RHS function.
SYNOPSIS

This is a script file.

DESCRIPTION

CVSensRhsFn - type for user provided sensitivity RHS function.

The function ODESFUN must be defined as
FUNCTION [YSD, FLAG] = ODESFUN(T,Y,YD,YS)
and must return a matrix YSD corresponding to £S(t,y,yS).
If a user data structure DATA was specified in CVodelInit, then
ODESFUN must be defined as
FUNCTION [YSD, FLAG, NEW_DATA] = ODESFUN(T,Y,YD,YS,DATA)

25

If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the matrix YSD,
the ODESFUN function must also set NEW_DATA. Otherwise, it should
set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

The function ODESFUN must set FLAG=0 if successful, FLAG<0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also CVodeSetFSAOptions

NOTE: ODESFUN is specified through the property FSARhsFn to
CVodeSetFSAOptions.

CVQuadRhsFn

PURPOSE

CVQuadRhsFn - type for user provided quadrature RHS function.
SYNOPSIS

This is a script file.

DESCRIPTION

CVQuadRhsFn - type for user provided quadrature RHS function.

The function ODEQFUN must be defined as

FUNCTION [YQD, FLAG] = ODEQFUN(T,Y)
and must return a vector YQD corresponding to fQ(t,y), the integrand
for the integral to be evaluated.
If a user data structure DATA was specified in CVodelInit, then
ODEQFUN must be defined as

FUNCTION [YQD, FLAG, NEW_DATA] = ODEQFUN(T,Y,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the vector YQD,
the ODEQFUN function must also set NEW_DATA. Otherwise, it should set
NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying).

The function ODEQFUN must set FLAG=0 if successful, FLAG<0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also CVodeQuadInit

CVRootFn

PURPOSE

CVRootFn - type for user provided root-finding function.
SYNOPSIS

This is a script file.

DESCRIPTION

26

CVRootFn - type for user provided root-finding function.

The function ROOTFUN must be defined as

FUNCTION [G, FLAG] = ROOTFUN(T,Y)
and must return a vector G corresponding to g(t,y).
If a user data structure DATA was specified in CVodelInit, then
ROOTFUN must be defined as

FUNCTION [G, FLAG, NEW_DATA] = ROOTFUN(T,Y,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the vector G,
the ROOTFUN function must also set NEW_DATA. Otherwise, it should
set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

The function ROOTFUN must set FLAG=0 if successful, or FLAG™=0 if
a failure occurred.

See also CVodeSetOptions
NOTE: ROOTFUN is specified through the RootsFn property in

CVodeSetOptions and is used only if the property NumRoots is a
positive integer.

CVDenseJacFn

PURPOSE

CVDenseJacFn - type for user provided dense Jacobian function.
SYNOPSIS

This is a script file.

DESCRIPTION

CVDenseJacFn - type for user provided dense Jacobian function.

The function DJACFUN must be defined as

FUNCTION [J, FLAG] = DJACFUN(T, Y, FY)
and must return a matrix J corresponding to the Jacobian of f(t,y).
The input argument FY contains the current value of f(t,y).
If a user data structure DATA was specified in CVodelInit, then
DJACFUN must be defined as

FUNCTION [J, FLAG, NEW_DATA] = DJACFUN(T, Y, FY, DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the matrix J,
the DJACFUN function must also set NEW_DATA. Otherwise, it should
set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying).

The function DJACFUN must set FLAG=0 if successful, FLAG<0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also CVodeSetOptions

27

NOTE: DJACFUN is specified through the property JacobianFn to
CVodeSetOptions and is used only if the property LinearSolver
was set to ’Dense’.

CVBandJacFn

PURPOSE

CVBandJacFn - type for user provided banded Jacobian function.
SYNOPSIS

This is a script file.

DESCRIPTION

CVBandJacFn - type for user provided banded Jacobian function.

The function BJACFUN must be defined as

FUNCTION [J, FLAG] = BJACFUN(T, Y, FY)
and must return a matrix J corresponding to the banded Jacobian of f(t,y).
The input argument FY contains the current value of f(t,y).
If a user data structure DATA was specified in CVodelInit, then
BJACFUN must be defined as

FUNCTION [J, FLAG, NEW_DATA] = BJACFUN(T, Y, FY, DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the matrix J,
the BJACFUN function must also set NEW_DATA. Otherwise, it should
set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

The function BJACFUN must set FLAG=0 if successful, FLAG&1lt;0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also CVodeSetOptions

See the CVODES user guide for more informaiton on the structure of
a banded Jacobian.

NOTE: BJACFUN is specified through the property JacobianFn to
CVodeSetOptions and is used only if the property LinearSolver
was set to ’Band’.

CVJacTimesVecFn

PURPOSE

CVJacTimesVecFn - type for user provided Jacobian times vector function.
SYNOPSIS

This is a script file.

DESCRIPTION

28

CVJacTimesVecFn - type for user provided Jacobian times vector function.

The function JTVFUN must be defined as

FUNCTION [JV, FLAG] = JTVFUN(T,Y,FY,V)
and must return a vector JV corresponding to the product of the
Jacobian of f(t,y) with the vector v.
The input argument FY contains the current value of f(t,y).
If a user data structure DATA was specified in CVodeInit, then
JTVFUN must be defined as

FUNCTION [JV, FLAG, NEW_DATA] = JTVFUN(T,Y,FY,V,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the vector JV,
the JTVFUN function must also set NEW_DATA. Otherwise, it should set
NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying).

The function JTVFUN must set FLAG=0 if successful, or FLAG"=0 if
a failure occurred.

See also CVodeSetOptions
NOTE: JTVFUN is specified through the property JacobianFn to

CVodeSetOptions and is used only if the property LinearSolver
was set to ’GMRES’, ’BiCGStab’, or ’TFQMR’.

CVPrecSetupFn

PURPOSE

CVPrecSetupFn - type for user provided preconditioner setup function.
SYNOPSIS

This is a script file.

DESCRIPTION

CVPrecSetupFn - type for user provided preconditioner setup function.

The user-supplied preconditioner setup function PSETFUN and
the user-supplied preconditioner solve function PSOLFUN
together must define left and right preconditoner matrices
P1 and P2 (either of which may be trivial), such that the
product P1*P2 is an approximation to the Newton matrix

M =1 - gamma*J. Here J is the system Jacobian J = df/dy,
and gamma is a scalar proportional to the integration step
size h. The solution of systems P z = r, with P = P1 or P2,
is to be carried out by the PrecSolve function, and PSETFUN
is to do any necessary setup operations.

The user-supplied preconditioner setup function PSETFUN
is to evaluate and preprocess any Jacobian-related data
needed by the preconditioner solve function PSOLFUN.

This might include forming a crude approximate Jacobian,

29

and performing an LU factorization on the resulting
approximation to M. This function will not be called in
advance of every call to PSOLFUN, but instead will be called
only as often as necessary to achieve convergence within the
Newton iteration. If the PSOLFUN function needs no
preparation, the PSETFUN function need not be provided.

For greater efficiency, the PSETFUN function may save
Jacobian-related data and reuse it, rather than generating it
from scratch. In this case, it should use the input flag JOK
to decide whether to recompute the data, and set the output
flag JCUR accordingly.

Each call to the PSETFUN function is preceded by a call to
ODEFUN with the same (t,y) arguments. Thus the PSETFUN
function can use any auxiliary data that is computed and
saved by the ODEFUN function and made accessible to PSETFUN.

The function PSETFUN must be defined as

FUNCTION [JCUR, FLAG] = PSETFUN(T,Y,FY,JOK,GAMMA)
and must return a logical flag JCUR (true if Jacobian information
was recomputed and false if saved data was reused). If PSETFUN
was successful, it must return FLAG=0. For a recoverable error (in
which case the setup will be retried) it must set FLAG to a positive
integer value. If an unrecoverable error occurs, it must set FLAG
to a negative value, in which case the integration will be halted.
The input argument FY contains the current value of f(t,y).
If the input logical flag JOK is false, it means that
Jacobian-related data must be recomputed from scratch. If it is true,
it means that Jacobian data, if saved from the previous PSETFUN call
can be reused (with the current value of GAMMA).

If a user data structure DATA was specified in CVodelInit, then
PSETFUN must be defined as

FUNCTION [JCUR, FLAG, NEW_DATA] = PSETFUN(T,Y,FY,JOK,GAMMA,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the flags JCUR
and FLAG, the PSETFUN function must also set NEW_DATA. Otherwise, it
should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead
to unnecessary copying) .

See also CVPrecSolveFn, CVodeSetOptions

NOTE: PSETFUN is specified through the property PrecSetupFn to
CVodeSetOptions and is used only if the property LinearSolver was
set to ’GMRES’, ’BiCGStab’, or ’TFQMR’ and if the property PrecType
is not ’None’.

CVPrecSolveFn

30

PURPOSE

CVPrecSolveFn - type for user provided preconditioner solve function.
SYNOPSIS

This is a script file.

DESCRIPTION

CVPrecSolveFn - type for user provided preconditioner solve function.

The user-supplied preconditioner solve function PSOLFN

is to solve a linear system P z = r in which the matrix P is
one of the preconditioner matrices P1 or P2, depending on the
type of preconditioning chosen.

The function PSOLFUN must be defined as

FUNCTION [Z, FLAG] = PSOLFUN(T,Y,FY,R)
and must return a vector Z containing the solution of Pz=r.
If PSOLFUN was successful, it must return FLAG=0. For a recoverable
error (in which case the step will be retried) it must set FLAG to a
positive value. If an unrecoverable error occurs, it must set FLAG
to a negative value, in which case the integration will be halted.
The input argument FY contains the current value of f(t,y).

If a user data structure DATA was specified in CVodelInit, then
PSOLFUN must be defined as

FUNCTION [Z, FLAG, NEW_DATA] = PSOLFUN(T,Y,FY,R,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the vector Z and
the flag FLAG, the PSOLFUN function must also set NEW_DATA. Otherwise,
it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would
lead to unnecessary copying).

See also CVPrecSetupFn, CVodeSetOptions

NOTE: PSOLFUN is specified through the property PrecSolveFn to
CVodeSetOptions and is used only if the property LinearSolver was
set to ’GMRES’, ’BiCGStab’, or ’TFQMR’ and if the property PrecType
is not ’None’.

CVGcommFn

PURPOSE

CVGcommFn - type for user provided communication function (BBDPre).
SYNOPSIS

This is a script file.

DESCRIPTION

31

CVGcommFn - type for user provided communication function (BBDPre).

The function GCOMFUN must be defined as

FUNCTION FLAG = GCOMFUN(T, Y)
and can be used to perform all interprocess communication necessary
to evaluate the approximate right-hand side function for the BBDPre
preconditioner module.
If a user data structure DATA was specified in CVodelInit, then
GCOMFUN must be defined as

FUNCTION [FLAG, NEW_DATA] = GCOMFUN(T, Y, DATA)
If the local modifications to the user data structure are needed
in other user-provided functions then the GCOMFUN function must also
set NEW_DATA. Otherwise, it should set NEW_DATA=[] (do not set
NEW_DATA = DATA as it would lead to unnecessary copying).

The function GCOMFUN must set FLAG=0 if successful, FLAG<0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also CVGlocalFn, CVodeSetOptions

NOTES:
GCOMFUN is specified through the GcommFn property in CVodeSetOptions
and is used only if the property PrecModule is set to ’BBDPre’.

Each call to GCOMFUN is preceded by a call to the RHS function
ODEFUN with the same arguments T and Y. Thus GCOMFUN can omit

any communication done by ODEFUN if relevant to the evaluation

of G by GLOCFUN. If all necessary communication was done by ODEFUN,
GCOMFUN need not be provided.

CVGlocalFn

PURPOSE

CVGlocalFn - type for user provided RHS approximation function (BBDPre) .
SYNOPSIS

This is a script file.

DESCRIPTION

CVGlocalFn - type for user provided RHS approximation function (BBDPre).

The function GLOCFUN must be defined as
FUNCTION [GLOC, FLAG] = GLOCFUN(T,Y)
and must return a vector GLOC corresponding to an approximation to f(t,y)
which will be used in the BBDPRE preconditioner module. The case where
G is mathematically identical to F is allowed.
If a user data structure DATA was specified in CVodelInit, then
GLOCFUN must be defined as
FUNCTION [GLOC, FLAG, NEW_DATA] = GLOCFUN(T,Y,DATA)
If the local modifications to the user data structure are needed

32

in other user-provided functions then, besides setting the vector G,
the GLOCFUN function must also set NEW_DATA. Otherwise, it should set
NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying).

The function GLOCFUN must set FLAG=0 if successful, FLAG&1lt;0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also CVGcommFn, CVodeSetOptions

NOTE: GLOCFUN is specified through the GlocalFn property in CVodeSetOptions
and is used only if the property PrecModule is set to ’BBDPre’.

CVMonitorFn

PURPOSE

CVMonitorFn - type for user provided monitoring function for forward problems.
SYNOPSIS

This is a script file.

DESCRIPTION

CVMonitorFn - type for user provided monitoring function for forward problems.

The function MONFUN must be defined as

FUNCTION [] = MONFUN(CALL, T, Y, YQ, YS)
It is called after every internal CVode step and can be used to
monitor the progress of the solver. MONFUN is called with CALL=0
from CVodeInit at which time it should initialize itself and it
is called with CALL=2 from CVodeFree. Otherwise, CALL=1.

It receives as arguments the current time T, solution vector Y,
and, if they were computed, quadrature vector YQ, and forward
sensitivity matrix YS. If YQ and/or YS were not computed they
are empty here.

If additional data is needed inside MONFUN, it must be defined
as
FUNCTION NEW_MONDATA = MONFUN(CALL, T, Y, YQ, YS, MONDATA)
If the local modifications to the user data structure need to be
saved (e.g. for future calls to MONFUN), then MONFUN must set
NEW_MONDATA. Otherwise, it should set NEW_MONDATA=[]
(do not set NEW_MONDATA = DATA as it would lead to unnecessary copying).

A sample monitoring function, CVodeMonitor, is provided with CVODES.
See also CVodeSetOptions, CVodeMonitor

NOTES:

33

MONFUN is specified through the MonitorFn property in CVodeSetOptions.
If this property is not set, or if it is empty, MONFUN is not used.
MONDATA is specified through the MonitorData property in CVodeSetOptions.

See CVodeMonitor for an implementation example.

CVRhsFnB

PURPOSE

CVRhsFnB - type for user provided RHS function for backward problems.
SYNOPSIS

This is a script file.

DESCRIPTION

CVRhsFnB - type for user provided RHS function for backward problems.

The function ODEFUNB must be defined either as

FUNCTION [YBD, FLAG] = ODEFUNB(T,Y,YB)
or as

FUNCTION [YBD, FLAG, NEW_DATA] = ODEFUNB(T,Y,YB,DATA)
depending on whether a user data structure DATA was specified in
CVodeInit. In either case, it must return the vector YBD
corresponding to fB(t,y,yB).

The function ODEFUNB must set FLAG=0 if successful, FLAG<0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also CVodelInitB

CVQuadRhsFnB

PURPOSE

CVQuadRhsFnB - type for user provided quadrature RHS function for backward problems
SYNOPSIS

This is a script file.

DESCRIPTION

CVQuadRhsFnB - type for user provided quadrature RHS function for backward problems

The function ODEQFUNB must be defined either as

FUNCTION [YQBD, FLAG] = ODEQFUNB(T,Y,YB)
or as

FUNCTION [YQBD, FLAG, NEW_DATA] = ODEQFUNB(T,Y,YB,DATA)
depending on whether a user data structure DATA was specified in
CVodeInit. In either case, it must return the vector YQBD

34

corresponding to fQB(t,y,yB), the integrand for the integral to be
evaluated on the backward phase.

The function ODEQFUNB must set FLAG=0 if successful, FLAG<0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also CVodeQuadInitB

CVDenseJacFnB

PURPOSE

CVDenseJacFnB - type for user provided dense Jacobian function for backward problems.
SYNOPSIS

This is a script file.

DESCRIPTION

CVDenseJacFnB - type for user provided dense Jacobian function for backward problems.

The function DJACFUNB must be defined either as

FUNCTION [JB, FLAG] = DJACFUNB(T, Y, YB, FYB)
or as

FUNCTION [JB, FLAG, NEW_DATA] = DJACFUNB(T, Y, YB, FYB, DATA)
depending on whether a user data structure DATA was specified in
CVodeInit. In either case, it must return the matrix JB, the
Jacobian of fB(t,y,yB), with respect to yB. The input argument
FYB contains the current value of f(t,y,yB).

The function DJACFUNB must set FLAG=0 if successful, FLAG<0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also CVodeSetOptions
NOTE: DJACFUNB is specified through the property JacobianFn to

CVodeSetOptions and is used only if the property LinearSolver
was set to ’Dense’.

CVBandJacFnB

PURPOSE

CVBandJacFnB - type for user provided banded Jacobian function for backward problems.
SYNOPSIS

This is a script file.

DESCRIPTION

35

CVBandJacFnB - type for user provided banded Jacobian function for backward problems.

The function BJACFUNB must be defined either as

FUNCTION [JB, FLAG] = BJACFUNB(T, Y, YB, FYB)
or as

FUNCTION [JB, FLAG, NEW_DATA] = BJACFUNB(T, Y, YB, FYB, DATA)
depending on whether a user data structure DATA was specified in
CVodeInit. In either case, it must return the matrix JB, the
Jacobian of fB(t,y,yB), with respect to yB. The input argument
FYB contains the current value of f(t,y,yB).

The function BJACFUNB must set FLAG=0 if successful, FLAG&1lt;0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also CVodeSetOptions

See the CVODES user guide for more informaiton on the structure of
a banded Jacobian.

NOTE: BJACFUNB is specified through the property JacobianFn to
CVodeSetOptions and is used only if the property LinearSolver
was set to ’Band’.

CVJacTimesVecFnB

PURPOSE

CVJacTimesVecFnB - type for user provided Jacobian times vector function for backward problems.
SYNOPSIS

This is a script file.

DESCRIPTION

CVJacTimesVecFnB - type for user provided Jacobian times vector function for backward problems.

The function JTVFUNB must be defined either as

FUNCTION [JVB, FLAG] = JTVFUNB(T,Y,YB,FYB,VB)
or as

FUNCTION [JVB, FLAG, NEW_DATA] = JTVFUNB(T,Y,YB,FYB,VB,DATA)
depending on whether a user data structure DATA was specified in
CVodeInit. In either case, it must return the vector JVB, the
product of the Jacobian of fB(t,y,yB) with respect to yB and a vector
vB. The input argument FYB contains the current value of f(t,y,yB).

The function JTVFUNB must set FLAG=0 if successful, or FLAG™=0 if
a failure occurred.

See also CVodeSetOptions
NOTE: JTVFUNB is specified through the property JacobianFn to

CVodeSetOptions and is used only if the property LinearSolver
was set to ’GMRES’, ’BiCGStab’, or ’TFQMR’.

36

CVPrecSetupFnB

PURPOSE

CVPrecSetupFnB - type for user provided preconditioner setup function for backward problems.
SYNOPSIS

This is a script file.

DESCRIPTION

CVPrecSetupFnB - type for user provided preconditioner setup function for backward problems.

The user-supplied preconditioner setup function PSETFUN and
the user-supplied preconditioner solve function PSOLFUN
together must define left and right preconditoner matrices
P1 and P2 (either of which may be trivial), such that the
product P1%P2 is an approximation to the Newton matrix

M =TI - gamma*xJ. Here J is the system Jacobian J = df/dy,
and gamma is a scalar proportional to the integration step
size h. The solution of systems P z = r, with P = P1 or P2,
is to be carried out by the PrecSolve function, and PSETFUN
is to do any necessary setup operations.

The user-supplied preconditioner setup function PSETFUN

is to evaluate and preprocess any Jacobian-related data
needed by the preconditioner solve function PSOLFUN.

This might include forming a crude approximate Jacobian,

and performing an LU factorization on the resulting
approximation to M. This function will not be called in
advance of every call to PSOLFUN, but instead will be called
only as often as necessary to achieve convergence within the
Newton iteration. If the PSOLFUN function needs no
preparation, the PSETFUN function need not be provided.

For greater efficiency, the PSETFUN function may save
Jacobian-related data and reuse it, rather than generating it
from scratch. In this case, it should use the input flag JOK
to decide whether to recompute the data, and set the output
flag JCUR accordingly.

Each call to the PSETFUN function is preceded by a call to
ODEFUN with the same (t,y) arguments. Thus the PSETFUN
function can use any auxiliary data that is computed and
saved by the ODEFUN function and made accessible to PSETFUN.

The function PSETFUNB must be defined either as
FUNCTION [JCURB, FLAG] = PSETFUNB(T,Y,YB,FYB,JOK,GAMMAB)
or as
FUNCTION [JCURB, FLAG, NEW_DATA] = PSETFUNB(T,Y,YB,FYB,JOK,GAMMAB,DATA)
depending on whether a user data structure DATA was specified in
CVodeInit. In either case, it must return the flags JCURB and FLAG.

37

See also CVPrecSolveFnB, CVodeSetOptions

NOTE: PSETFUNB is specified through the property PrecSetupFn to
CVodeSetOptions and is used only if the property LinearSolver was
set to ’GMRES’, ’BiCGStab’, or ’TFQMR’ and if the property PrecType
is not ’None’.

CVPrecSolveFnB

PURPOSE

CVPrecSolveFnB - type for user provided preconditioner solve function for backward problems.
SYNOPSIS

This is a script file.

DESCRIPTION

CVPrecSolveFnB - type for user provided preconditioner solve function for backward problems.

The user-supplied preconditioner solve function PSOLFN

is to solve a linear system P z = r in which the matrix P is
one of the preconditioner matrices P1 or P2, depending on the
type of preconditioning chosen.

The function PSOLFUNB must be defined either as

FUNCTION [ZB, FLAG] = PSOLFUNB(T,Y,YB,FYB,RB)
or as

FUNCTION [ZB, FLAG, NEW_DATA] = PSOLFUNB(T,Y,YB,FYB,RB,DATA)
depending on whether a user data structure DATA was specified in
CVodeInit. In either case, it must return the vector ZB and the
flag FLAG.

See also CVPrecSetupFnB, CVodeSetOptions

NOTE: PSOLFUNB is specified through the property PrecSolveFn to
CVodeSetOptions and is used only if the property LinearSolver was
set to ’GMRES’, ’BiCGStab’, or ’TFQMR’ and if the property PrecType
is not ’None’.

CVGcommFnB

PURPOSE

CVGcommFn - type for user provided communication function (BBDPre) for backward problems.
SYNOPSIS

This is a script file.

DESCRIPTION

38

CVGcommFn - type for user provided communication function (BBDPre) for backward problems.

The function GCOMFUNB must be defined either as

FUNCTION FLAG = GCOMFUNB(T, Y, YB)
or as

FUNCTION [FLAG, NEW_DATA] = GCOMFUNB(T, Y, YB, DATA)
depending on whether a user data structure DATA was specified in
CVodeInit.

The function GCOMFUNB must set FLAG=0 if successful, FLAG<0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also CVGlocalFnB, CVodeSetOptions

NOTES:
GCOMFUNB is specified through the GcommFn property in CVodeSetOptions
and is used only if the property PrecModule is set to ’BBDPre’.

Each call to GCOMFUNB is preceded by a call to the RHS function
ODEFUNB with the same arguments T, Y, and YB. Thus GCOMFUNB can

omit any communication done by ODEFUNB if relevant to the evaluation
of G by GLOCFUNB. If all necessary communication was done by ODEFUNB,
GCOMFUNB need not be provided.

CVGlocalFnB

PURPOSE

CVGlocalFnB - type for user provided RHS approximation function (BBDPre) for backward problems.
SYNOPSIS

This is a script file.

DESCRIPTION

CVGlocalFnB - type for user provided RHS approximation function (BBDPre) for backward problems.

The function GLOCFUNB must be defined either as

FUNCTION [GLOCB, FLAG] = GLOCFUNB(T,Y,YB)
or as

FUNCTION [GLOCB, FLAG, NEW_DATA] = GLOCFUNB(T,Y,YB,DATA)
depending on whether a user data structure DATA was specified in
CVodeInit. In either case, it must return the vector GLOCB
corresponding to an approximation to fB(t,y,yB).

The function GLOCFUNB must set FLAG=0 if successful, FLAG<0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also CVGcommFnB, CVodeSetOptions

NOTE: GLOCFUNB is specified through the GlocalFn property in CVodeSetOptions
and is used only if the property PrecModule is set to ’BBDPre’.

39

CVMonitorFnB

PURPOSE

CVMonitorFnB - type of user provided monitoring function for backward problems.
SYNOPSIS

This is a script file.

DESCRIPTION

CVMonitorFnB - type of user provided monitoring function for backward problems.

The function MONFUNB must be defined as

FUNCTION [] = MONFUNB(CALL, IDXB, T, Y, YQ)
It is called after every internal CVodeB step and can be used to
monitor the progress of the solver. MONFUNB is called with CALL=0
from CVodeInitB at which time it should initialize itself and it
is called with CALL=2 from CVodeFree. Otherwise, CALL=1.

It receives as arguments the index of the backward problem (as
returned by CVodeInitB), the current time T, solution vector Y,
and, if it was computed, the quadrature vector YQ. If quadratures
were not computed for this backward problem, YQ is empty here.

If additional data is needed inside MONFUNB, it must be defined
as
FUNCTION NEW_MONDATA = MONFUNB(CALL, IDXB, T, Y, YQ, MONDATA)
If the local modifications to the user data structure need to be
saved (e.g. for future calls to MONFUNB), then MONFUNB must set
NEW_MONDATA. Otherwise, it should set NEW_MONDATA=[]
(do not set NEW_MONDATA = DATA as it would lead to unnecessary copying).

A sample monitoring function, CVodeMonitorB, is provided with CVODES.
See also CVodeSetOptions, CVodeMonitorB

NOTES:

MONFUNB is specified through the MonitorFn property in CVodeSetOptions.
If this property is not set, or if it is empty, MONFUNB is not used.

MONDATA is specified through the MonitorData property in CVodeSetOptions.

See CVodeMonitorB for an implementation example.

40

4 MATLAB Interface to IDAS

The MATLAB interface to IDAS provides access to all functionality of the IDAS solver, including DAE
simulation and sensitvity analysis (both forward and adjoint).

The interface consists of 9 user-callable functions. The user must provide several required and
optional user-supplied functions which define the problem to be solved. The user-callable functions are
listed in Tables 5, 6, and 7 for IVP solution, forward sensitivity analysis (FSA), and adjoint sensitivity
analysis (ASA), respectively. For completness, some functions appear in more than one table. The
types of user-supplied functions are listed in Table 8. All these functions are fully documented later
in this section. For more in depth details, consult also the IDAS user guide [4].

To illustrate the use of the IDAS MATLAB interface, several example problems are provided with
SUNDIALSTB, both for serial and parallel computations. Most of them are MATLAB translations of
example problems provided with IDAS.

Table 5: IDAS MATLAB interface functions for DAE integration

IDASetOptions | create an options structure for an DAE problem. 42
IDAQuadSetOptions | create an options structure for quadrature integration. 46
IDAInit | allocate and initialize memory for IDAS. 49
IDAQuadlInit | allocate and initialize memory for quadrature integration. 49
IDARelnit | reinitialize memory for IDAS. 52
IDAQuadRelnit | reinitialize memory for quadrature integration. 52
IDACalcIC | compute consistent initial conditions. 54
IDASolve | integrate the DAE problem. 56
IDAGetStats | return statistics for the IDAS solver. 58
IDAGet | extract data from IDAS memory. 61
IDAFree | deallocate memory for the IDAS solver. 63
IDAMonitor | monitoring function. 120

Table 6: IDAS MATLAB interface functions for FSA
IDASetOptions | create an options structure for an DAE problem. 42
IDAQuadSetOptions | create an options structure for quadrature integration. 46
IDASensSetOptions | create an options structure for FSA. 47
IDAInit | allocate and initialize memory for IDAS. 49
IDAQuadlInit | allocate and initialize memory for quadrature integration. | 49
IDASensInit | allocate and initialize memory for FSA. 50
IDARelnit | reinitialize memory for IDAS. 52
IDAQuadRelnit | reinitialize memory for quadrature integration. 52
IDASensRelnit | reinitialize memory for FSA. 53
IDASensToggleOff | temporarily deactivates FSA. 58
IDACalcIC | compute consistent initial conditions. 54
IDASolve | integrate the DAE problem. 56
IDAGetStats | return statistics for the 1DAS solver. 58
IDAGet | extract data from IDAS memory. 61
IDAFree | deallocate memory for the IDAS solver. 63
IDAMonitor | monitoring function. 120

41

Table 7: IDAS MATLAB interface functions for ASA

IDASetOptions | create an options structure for an DAE problem. 42
IDAQuadSetOptions | create an options structure for quadrature integration. 46
IDAInit | allocate and initialize memory for the forward problem. 49
IDAQuadlInit | allocate and initialize memory for forward quadrature integration. | 49
IDAQuadRelnit | reinitialize memory for forward quadrature integration. 52
IDARelnit | reinitialize memory for the forward problem. 52
IDAAdjInit | allocate and initialize memory for ASA. 50
IDAInitB | allocate and initialize a backward problem. 51
IDAAdjRelnit | reinitialize memory for ASA. 53
IDARelnitB | reinitialize a backward problem. 53
IDACalcIC | compute consistent initial conditions. 54
IDACalcICB | compute consistent initial conditions for the backward problem. 56
IDASolve | integrate the forward DAE problem. 56
IDASolveB | integrate the backward problems. 57
IDAGetStats | return statistics for the integration of the forward problem. 58
IDAGetStatsB | return statistics for the integration of a backward problem. 60
IDAGet | extract data from IDAS memory. 61
IDAFree | deallocate memory for the IDAS solver. 63
IDAMonitor | monitoring function for forward problem. 120
IDAMonitorB | monitoring function for backward problems. 135

4.1 Interface functions

IDASetOptions

PURPOSE

IDASetOptions creates an options structure for IDAS.
SYNOPSIS

function options = IDASetOptions(varargin)
DESCRIPTION

IDASetOptions creates an options structure for IDAS.

Usage: OPTIONS
OPTIONS

IDASetOptions(’NAME1’ ,VALUE1, °NAME2’ ,VALUE2, . ..)
IDASetOptions (OLDOPTIONS, *NAME1’ ,VALUEL,...)

OPTIONS = IDASetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...) creates
a IDAS options structure OPTIONS in which the named properties have

the specified values. Any unspecified properties have default values.

It is sufficient to type only the leading characters that uniquely
identify the property. Case is ignored for property names.

OPTIONS = IDASetOptions(OLDOPTIONS,’NAME1’,VALUE1l,...) alters an
existing options structure OLDOPTIONS.

42

Table 8: IDAS MATLAB function types
IDARhsFn | residual function 64
IDARootFn | root-finding function 65
g IDAQuadRhsFn | quadrature RHS function 65
% IDASensRhsFn | sensitivity RHS function 64
S IDADenseJackn | dense Jacobian function 66
é‘ IDABandJacFn | banded Jacobian function 67
5 IDAJacTimesVecFn | Jacobian times vector function 67
; IDAPrecSetupFn | preconditioner setup function 68
= IDAPrecSolveFn | preconditioner solve function 69
IDAGlocalFn | residual approximation function (BBDPre) | 71
IDAGcommFn | communication function (BBDPre) 70
IDAMonitorFn | monitoring function 71
IDARhsFnB | residual function 73
é) IDAQuadRhsFnB | quadrature RHS function 73
% IDADenseJacFnB | dense Jacobian function 74
% IDABandJacFnB | banded Jacobian function 74
~ || IDAJacTimesVecFnB | Jacobian times vector function 75
§ IDAPrecSetupFnB | preconditioner setup function 76
~ IDAPrecSolveFnB | preconditioner solve function 76
r:g IDAGlocalFnB | residual approximation function (BBDPre) | 77
IDAGcommFnB | communication function (BBDPre) 7
IDAMonitorFnB | monitoring function 78

IDASetOptions with no input arguments displays all property names
and their possible values.

IDASetOptions properties
(See also the IDAS User Guide)

UserData - User data passed unmodified to all functions [empty]
If UserData is not empty, all user provided functions will be
passed the problem data as their last input argument. For example,
the RES function must be defined as R = DAEFUN(T,YY,TP,DATA).

RelTol - Relative tolerance [positive scalar | le-4]
RelTol defaults to le-4 and is applied to all components of the solution

vector.

See AbsTol.

AbsTol - Absolute tolerance [positive scalar or vector | 1le-6]

The relative and absolute tolerances define a vector of error weights

with components

ewt (i)
ewt (i)

WRMSnorm(v) =

1/(RelTol*|y(i)| + AbsTol)

if AbsTol is a scalar

1/(RelTol*|y(i)| + AbsTol(i)) if AbsTol is a vector
This vector is used in all error and convergence tests, which
use a weighted RMS norm on all error-like vectors v:

sqrt((1/N) sum(i=1..N) (v(i)*ewt(i))"2),

where N is the problem dimension.
MaxNumSteps - Maximum number of steps [positive integer | 500]

IDASolve will return with an error after taking MaxNumSteps internal steps

in its attempt to reach the next output time.

43

InitialStep - Suggested initial stepsize [positive scalar]
By default, IDASolve estimates an initial stepsize hO at the initial time
t0 as the solution of
WRMSnorm(h0~2 ydd / 2) =1
where ydd is an estimated second derivative of y(tO).
MaxStep - Maximum stepsize [positive scalar | inf]
Defines an upper bound on the integration step size.
MaxOrder - Maximum method order [1-5 for BDF | 5]
Defines an upper bound on the linear multistep method order.
StopTime - Stopping time [scalar]
Defines a value for the independent variable past which the solution
is not to proceed.
RootsFn - Rootfinding function [function]
To detect events (roots of functions), set this property to the event
function. See IDARootFn.
NumRoots - Number of root functions [integer | 0]
Set NumRoots to the number of functions for which roots are monitored.
If NumRoots is 0, rootfinding is disabled.

SuppressAlgVars - Suppres algebraic vars. from error test [on | off]
VariableTypes - Alg./diff. variables [vector]
ConstraintTypes - Simple bound constraints [vector]

LinearSolver - Linear solver type [Dense|Band|GMRES|BiCGStab|TFQMR]

Specifies the type of linear solver to be used for the Newton nonlinear
solver. Valid choices are: Dense (direct, dense Jacobian), Band (direct,
banded Jacobian), GMRES (iterative, scaled preconditioned GMRES),
BiCGStab (iterative, scaled preconditioned stabilized BiCG), TFQMR
(iterative, scaled transpose-free QMR).

The GMRES, BiCGStab, and TFQMR are matrix-free linear solvers.

JacobianFn - Jacobian function [function]

This propeerty is overloaded. Set this value to a function that returns
Jacobian information consistent with the linear solver used (see Linsolver).
If not specified, IDAS uses difference quotient approximations.

For the Dense linear solver, JacobianFn must be of type IDADenseJacFn and
must return a dense Jacobian matrix. For the Band linear solver, JacobianFn
must be of type IDABandJacFn and must return a banded Jacobian matrix.

For the iterative linear solvers, GMRES, BiCGStab, and TFQMR, JacobianFn must
be of type IDAJacTimesVecFn and must return a Jacobian-vector product.

KrylovMaxDim - Maximum number of Krylov subspace vectors [integer | 5]
Specifies the maximum number of vectors in the Krylov subspace. This property
is used only if an iterative linear solver, GMRES, BiCGStab, or TFQMR is used
(see LinSolver).

GramSchmidtType - Gram-Schmidt orthogonalization [Classical | Modified]
Specifies the type of Gram-Schmidt orthogonalization (classical or modified).
This property is used only if the GMRES linear solver is used (see LinSolver).

PrecModule - Preconditioner module [BBDPre | UserDefined]

If PrecModule = ’UserDefined’, then the user must provide at least a
preconditioner solve function (see PrecSolveFn)

IDAS provides one general-purpose preconditioner module, BBDPre, which can
be only used with parallel vectors. It provide a preconditioner matrix that
is block-diagonal with banded blocks. The blocking corresponds to the
distribution of the dependent variable vector y among the processors.

Each preconditioner block is generated from the Jacobian of the local part

44

(on the current processor) of a given function g(t,y,yp) approximating
f(t,y,yp) (see GlocalFn). The blocks are generated by a difference quotient
scheme on each processor independently. This scheme utilizes an assumed
banded structure with given half-bandwidths, mldq and mudq (specified through
LowerBwidthDQ and UpperBwidthDQ, respectively). However, the banded Jacobian
block kept by the scheme has half-bandwiths ml and mu (specified through
LowerBwidth and UpperBwidth), which may be smaller.

PrecSetupFn - Preconditioner setup function [function]

If PrecType is not ’None’, PrecSetupFn specifies an optional function which,
together with PrecSolve, defines the preconditioner matrix, which must be an
aproximation to the Newton matrix. PrecSetupFn must be of type IDAPrecSetupFn.

PrecSolveFn - Preconditioner solve function [function]

If PrecType is not ’None’, PrecSolveFn specifies a required function which
must solve a linear system Pz = r, for given r. PrecSolveFn must be of type
IDAPrecSolveFn.

GlocalFn - Local residual approximation function for BBDPre [function]
If PrecModule is BBDPre, GlocalFn specifies a required function that
evaluates a local approximation to the DAE residual. GlocalFn must
be of type IDAGlocFn.

GcommFn - Inter-process communication function for BBDPre [function]
If PrecModule is BBDPre, GcommFn specifies an optional function
to perform any inter-process communication required for the evaluation of
GlocalFn. GcommFn must be of type IDAGcommFn.

LowerBwidth - Jacobian/preconditioner lower bandwidth [integer | 0]

This property is overloaded. If the Band linear solver is used (see LinSolver),
it specifies the lower half-bandwidth of the band Jacobian approximation.

If one of the three iterative linear solvers, GMRES, BiCGStab, or TFQMR is used
(see LinSolver) and if the BBDPre preconditioner module in IDAS is used

(see PrecModule), it specifies the lower half-bandwidth of the retained

banded approximation of the local Jacobian block.

LowerBwidth defaults to O (no sub-diagonals).

UpperBwidth - Jacobian/preconditioner upper bandwidth [integer | O]

This property is overloaded. If the Band linear solver is used (see LinSolver),
it specifies the upper half-bandwidth of the band Jacobian approximation.

If one of the three iterative linear solvers, GMRES, BiCGStab, or TFQMR is used
(see LinSolver) and if the BBDPre preconditioner module in IDAS is used

(see PrecModule), it specifies the upper half-bandwidth of the retained

banded approximation of the local Jacobian block.

UpperBwidth defaults to O (no super-diagonals).

LowerBwidthDQ - BBDPre preconditioner DQ lower bandwidth [integer | O]
Specifies the lower half-bandwidth used in the difference-quotient Jacobian
approximation for the BBDPre preconditioner (see PrecModule).

UpperBwidthDQ - BBDPre preconditioner DQ upper bandwidth [integer | 0]
Specifies the upper half-bandwidth used in the difference-quotient Jacobian
approximation for the BBDPre preconditioner (see PrecModule).

MonitorFn - User-provied monitoring function [function]
Specifies a function that is called after each successful integration step.
This function must have type IDAMonitorFn or IDAMonitorFnB, depending on
whether these options are for a forward or a backward problem, respectively.
Sample monitoring functions IDAMonitor and IDAMonitorB are provided
with IDAS.

MonitorData - User-provied data for the monitoring function [struct]
Specifies a data structure that is passed to the MonitorFn function every time

45

it is called.

SensDependent - Backward problem depending on sensitivities [false | true]
Specifies whether the backward problem right-hand side depends on
forward sensitivites. If TRUE, the residual function provided for
this backward problem must have the appropriate type (see IDAResFnB).

ErrorMessages - Post error/warning messages [true | false]
Note that any errors in IDAInit will result in a Matlab error, thus
stoping execution. Only subsequent calls to IDAS functions will respect
the value specified for ’ErrorMessages’.

NOTES:

The properties listed above that can only be used for forward problems
are: ConstraintTypes, StopTime, RootsFn, and NumRoots.

The property SensDependent is relevant only for backward problems.

See also
IDAInit, IDARelInit, IDAInitB, IDARelInitB
IDAResFn, IDARootFn
IDADenseJacFn, IDABandJacFn, IDAJacTimesVecFn
IDAPrecSetupFn, IDAPrecSolveFn
IDAGlocalFn, IDAGcommFn
IDAMonitorFn
IDAResFnB
IDADenseJacFnB, IDABandJacFnB, IDAJacTimesVecFnB
IDAPrecSetupFnB, IDAPrecSolveFnB
IDAGlocalFnB, IDAGcommFnB
IDAMonitorFnB

IDAQuadSetOptions

PURPOSE

IDAQuadSetOptions creates an options structure for IDAS.
SYNOPSIS

function options = IDAQuadSetOptions(varargin)
DESCRIPTION

IDAQuadSetOptions creates an options structure for IDAS.

Usage: OPTIONS = IDAQuadSetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...)
OPTIONS = IDAQuadSetOptions(OLDOPTIONS, ’NAME1’,VALUEL,...)

OPTIONS = IDAQuadSetOptions(’NAME1’,VALUE1, ’NAME2’,VALUE2,...) creates
an IDAS options structure OPTIONS in which the named properties have
the specified values. Any unspecified properties have default values.
It is sufficient to type only the leading characters that uniquely
identify the property. Case is ignored for property names.

46

OPTIONS = IDAQuadSetOptions(OLDOPTIONS, ’NAME1’,VALUE1,...) alters an
existing options structure OLDOPTIONS.

IDAQuadSetOptions with no input arguments displays all property names
and their possible values.

IDAQuadSetOptions properties
(See also the IDAS User Guide)

ErrControl - Error control strategy for quadrature variables [on | off]
Specifies whether quadrature variables are included in the error test.

RelTol - Relative tolerance for quadrature variables [scalar le-4]
Specifies the relative tolerance for quadrature variables. This parameter is
used only if QuadErrCon=on.

AbsTol - Absolute tolerance for quadrature variables [scalar or vector le-6]
Specifies the absolute tolerance for quadrature variables. This parameter is
used only if QuadErrCon=on.

SensDependent - Backward problem depending on sensitivities [false | true]
Specifies whether the backward problem quadrature right-hand side depends
on forward sensitivites. If TRUE, the right-hand side function provided for
this backward problem must have the appropriate type (see IDAQuadRhsFnB) .

See also
IDAQuadInit, IDAQuadReInit.
IDAQuadInitB, IDAQuadReInitB

IDASensSetOptions

PURPOSE

IDASensSetOptions creates an options structure for FSA with IDAS.
SYNOPSIS

function options = IDASensSetOptions(varargin)

DESCRIPTION

IDASensSetOptions creates an options structure for FSA with IDAS.

Usage: OPTIONS = IDASensSetOptions(’NAME1’,VALUE1,’NAME2’ ,VALUE2,...)
OPTIONS = IDASensSetOptions(OLDOPTIONS, ’NAME1’,VALUEL,...)

OPTIONS = IDASensSetOptions(’NAME1’,VALUE1, ’NAME2’ ,VALUE2,...) creates
a IDAS options structure OPTIONS in which the named properties have
the specified values. Any unspecified properties have default values.
It is sufficient to type only the leading characters that uniquely
identify the property. Case is ignored for property names.

OPTIONS = IDASensSetOptions(OLDOPTIONS,’NAME1’,VALUE1l,...) alters an
existing options structure OLDOPTIONS.

47

IDASensSetOptions with no input arguments displays all property names
and their possible values.

IDASensSetOptions properties
(See also the IDAS User Guide)

method - FSA solution method [’Simultaneous’ | ’Staggered’]

Specifies the FSA method for treating the nonlinear system solution for
sensitivity variables. In the simultaneous case, the nonlinear systems
for states and all sensitivities are solved simultaneously. In the
Staggered case, the nonlinear system for states is solved first and then
the nonlinear systems for all sensitivities are solved at the same time.

ParamField - Problem parameters [string]

Specifies the name of the field in the user data structure (specified through

the ’UserData’ field with IDASetOptions) in which the nominal values of the problem
parameters are stored. This property is used only if IDAS will use difference
quotient approximations to the sensitivity residuals (see IDASensResFn).

ParamlList - Parameters with respect to which FSA is performed [integer vector]
Specifies a list of Ns parameters with respect to which sensitivities are to
be computed. This property is used only if IDAS will use difference-quotient
approximations to the sensitivity residuals. Its length must be Ns,
consistent with the number of columns of ySO (see IDASensInit).

ParamScales - Order of magnitude for problem parameters [vector]

Provides order of magnitude information for the parameters with respect to
which sensitivities are computed. This information is used if IDAS
approximates the sensitivity residuals or if IDAS estimates integration
tolerances for the sensitivity variables (see RelTol and AbsTol).

RelTol - Relative tolerance for sensitivity variables [positive scalar]
Specifies the scalar relative tolerance for the sensitivity variables.

See also AbsTol.

AbsTol - Absolute tolerance for sensitivity variables [row-vector or matrix]
Specifies the absolute tolerance for sensitivity variables. AbsTol must be
either a row vector of dimension Ns, in which case each of its components is
used as a scalar absolute tolerance for the coresponding sensitivity vector,
or a N x Ns matrix, in which case each of its columns is used as a vector
of absolute tolerances for the corresponding sensitivity vector.

By default, IDAS estimates the integration tolerances for sensitivity
variables, based on those for the states and on the order of magnitude
information for the problem parameters specified through ParamScales.

ErrControl - Error control strategy for sensitivity variables [false | true]
Specifies whether sensitivity variables are included in the error control test.
Note that sensitivity variables are always included in the nonlinear system
convergence test.

DQtype - Type of DQ approx. of the sensi. RHS [Centered | Forward]

Specifies whether to use centered (second-order) or forward (first-order)
difference quotient approximations of the sensitivity eqation residuals.
This property is used only if a user-defined sensitivity residual function
was not provided.

DQparam - Cut-off parameter for the DQ approx. of the sensi. RES [scalar | 0.0]
Specifies the value which controls the selection of the difference-quotient
scheme used in evaluating the sensitivity residuals (switch between
simultaneous or separate evaluations of the two components in the sensitivity
right-hand side). The default value 0.0 indicates the use of simultaenous approximation
exclusively (centered or forward, depending on the value of DQtype.

48

For DQparam >= 1, IDAS uses a simultaneous approximation if the estimated

DQ perturbations for states and parameters are within a factor of DQparam,

and separate approximations otherwise. Note that a value DQparam &1t; 1

will inhibit switching! This property is used only if a user-defined sensitivity
residual function was not provided.

See also
IDASensInit, IDASensRelnit

IDAInit

PURPOSE

IDAInit allocates and initializes memory for IDAS.
SYNOPSIS

function status = IDAInit(fct,t0,yy0,yp0,options)
DESCRIPTION

IDAInit allocates and initializes memory for IDAS.
Usage: IDAInit (DAEFUN, TO, YYO, YPO [, OPTIONS 1)
DAEFUN is a function defining the DAE residual: f(t,yy,yp).

This function must return a vector containing the current
value of the residual.

TO is the initial value of t.
YYO is the initial condition vector y(t0).
YPO is the initial condition vector y’(t0).

OPTIONS is an (optional) set of integration options, created with
the IDASetOptions function.

See also: IDASetOptions, IDAResFn

IDAQuadInit

PURPOSE

IDAQuadInit allocates and initializes memory for quadrature integration.
SYNOPSIS

function status = IDAQuadInit(fctQ, yQO, options)

DESCRIPTION

IDAQuadInit allocates and initializes memory for quadrature integration.

Usage: IDAQuadInit (QFUN, YQO [, OPTIONS])

QFUN is a function defining the righ-hand sides of the quadrature
ODEs yQ’ = £Q(t,y).
YQO is the initial conditions vector yQ(tO0).

OPTIONS is an (optional) set of QUAD options, created with
the IDASetQuadOptions function.

See also: IDASetQuadOptions, IDAQuadRhsFn

49

IDASensInit

PURPOSE

IDASensInit allocates and initializes memory for FSA with IDAS.
SYNOPSIS

function status = IDASensInit(Ns,fctS,yyS0,ypSO,options)
DESCRIPTION

IDASensInit allocates and initializes memory for FSA with IDAS.

Usage: IDASensInit (NS, SFUN, YYSO, YPSO [, OPTIONS])

NS is the number of parameters with respect to which sensitivities
are desired
SFUN is a function defining the residual of the sensitivity DAEs

£8(¢,y,yP,yS,ypS) .
YYSO, YPSO Initial conditions for sensitivity variables.
YYSO and YPSO must be matrices with N rows and Ns columns, where N is
the problem dimension and Ns the number of sensitivity systems.
OPTIONS is an (optional) set of FSA options, created with
the IDASetFSAOptions function.

See also IDASensSetOptions, IDAInit, IDASensResFn

IDAAdjInit

PURPOSE

IDAAdjInit allocates and initializes memory for ASA with IDAS.
SYNOPSIS

function status = IDAAdjInit(steps, interp)

DESCRIPTION

IDAAdjInit allocates and initializes memory for ASA with IDAS.
Usage: IDAAdjInit(STEPS, INTEPR)

STEPS specifies the (maximum) number of integration steps between two
consecutive check points.

INTERP Specifies the type of interpolation used for estimating the forward
solution during the backward integration phase. INTERP should be
’Hermite’, indicating cubic Hermite interpolation, or ’Polynomial’,
indicating variable order polynomial interpolation.

50

IDAInitB

PURPOSE
IDAInitB allocates and initializes backward memory for CVODES.
SYNOPSIS
function [idxB, status] = IDAInitB(fctB, tBO, yyBO, ypBO, optionsB)
DESCRIPTION
IDAInitB allocates and initializes backward memory for CVODES.
Usage: IDXB = IDAInitB (DAEFUNB, TBO, YYBO, YPBO [, OPTIONSB])
DAEFUNB 1is a function defining the adjoint DAE: F(t,y,y’,yB,yB’)=0

This function must return a vector containing the current
value of the adjoint DAE residual.

TBO is the final value of t.
YYBO is the final condition vector yB(tBO).
YPBO is the final condition vector yB’(tBO).

OPTIONSB is an (optional) set of integration options, created with
the IDASetOptions function.

IDAInitB returns the index IDXB associated with this backward
problem. This index must be passed as an argument to any subsequent

functions related to this backward problem.

See also: IDASetOptions, IDAResFnB

IDAQuadInitB

PuUrPOSE

IDAQuadInitB allocates and initializes memory for backward quadrature integration.
SYNOPSIS

function status = IDAQuadInitB(idxB, fctQB, yQBO, optionsB)

DESCRIPTION

IDAQuadInitB allocates and initializes memory for backward quadrature integration.
Usage: IDAQuadInitB (IDXB, QBFUN, YQBO [, OPTIONS])

IDXB is the index of the backward problem, returned by
IDAInitB.

QBFUN is a function defining the righ-hand sides of the
backward ODEs yQB’ = fQB(t,y,yB).

YQBO is the final conditions vector yQB(tBO).

OPTIONS is an (optional) set of QUAD options, created with
the IDASetQuadOptions function.

See also: IDAInitB, IDASetQuadOptions, IDAQuadRhsFnB

51

IDAReInit

PURPOSE

IDAReInit reinitializes memory for IDAS.
SYNOPSIS

function status = IDAReInit(t0,yyO,ypO,options)
DESCRIPTION

IDAReInit reinitializes memory for IDAS.
where a prior call to IDAInit has been made with the same
problem size N. IDAReInit performs the same input checking
and initializations that IDAInit does, but it does no
memory allocation, assuming that the existing internal memory
is sufficient for the new problem.

Usage: IDAReInit (TO, YYO, YPO [, OPTIONS])

TO is the initial value of t.
YYO is the initial condition vector y(tO).
YPO is the initial condition vector y’(t0).

OPTIONS is an (optional) set of integration options, created with
the IDASetOptions function.

See also: IDASetOptions, IDAInit

IDAQuadReInit

PURPOSE

IDAQuadReInit reinitializes IDAS’s quadrature-related memory
SYNOPSIS

function status = IDAQuadReInit(yQO, options)

DESCRIPTION

IDAQuadReInit reinitializes IDAS’s quadrature-related memory

assuming it has already been allocated in prior calls to IDAInit
and IDAQuadInit.

Usage: IDAQuadReInit (YQO [, OPTIONS])
YQO Initial conditions for quadrature variables yQ(tO).
OPTIONS is an (optional) set of QUAD options, created with

the IDASetQuadOptions function.

See also: IDASetQuadOptions, IDAQuadInit

52

IDASensReInit

PURPOSE

IDASensReInit reinitializes IDAS’s FSA-related memory
SYNOPSIS

function status = IDASensReInit(yySO,ypSO,options)
DESCRIPTION

IDASensRelnit reinitializes IDAS’s FSA-related memory
assuming it has already been allocated in prior calls to IDAInit
and IDASensInit.
The number of sensitivities Ns is assumed to be unchanged since the
previous call to IDASensInit.

Usage: IDASensReInit (YYSO, YPSO [, OPTIONS])

YYSO, YPSO Initial conditions for sensitivity variables.
YYSO and YPSO must be matrices with N rows and Ns columns, where N is
the problem dimension and Ns the number of sensitivity systems.
OPTIONS is an (optional) set of FSA options, created with
the IDASetFSAOptions function.

See also: IDASensSetOptions, IDAReInit, IDASensInit

IDAAdjRelInit

PURPOSE

IDAAdjReInit re-initializes memory for ASA with CVODES.
SYNOPSIS

function status = IDAAdjReInit()

DESCRIPTION

IDAAdjReInit re-initializes memory for ASA with CVODES.

Usage: IDAAdjRelInit

IDAReInitB

PURPOSE

IDAReInitB allocates and initializes backward memory for IDAS.
SYNOPSIS

function status = IDAReInitB(idxB,tBO,yyBO,ypBO,optionsB)

DESCRIPTION

53

IDAReInitB allocates and initializes backward memory for IDAS.
where a prior call to IDAInitB has been made with the same
problem size NB. IDAReInitB performs the same input checking
and initializations that IDAInitB does, but it does no
memory allocation, assuming that the existing internal memory
is sufficient for the new problem.

Usage: IDAReInitB (IDXB, TBO, YYBO, YPBO [, OPTIONSB])

IDXB is the index of the backward problem, returned by
IDAInitB.

TBO is the final value of t.

YYBO is the final condition vector yB(tBO).

YPBO is the final condition vector yB’ (tBO).

OPTIONSB is an (optional) set of integration options, created with
the IDASetOptions function.

See also: IDASetOptions, IDAInitB

IDAQuadReInitB

PURPOSE

IDAQuadReInitB reinitializes memory for backward quadrature integration.
SYNOPSIS

function status = IDAQuadReInitB(idxB, yQBO, optionsB)

DESCRIPTION

IDAQuadReInitB reinitializes memory for backward quadrature integration.

Usage: IDAQuadReInitB (IDXB, YSO [, OPTIONS])

IDXB is the index of the backward problem, returned by
IDAInitB.
YQBO is the final conditions vector yQB(tBO).

OPTIONS is an (optional) set of QUAD options, created with
the IDASetQuadOptions function.

See also: IDASetQuadOptions, IDAReInitB, IDAQuadInitB

IDACalcIC

PURPOSE

IDACalcIC computes consistent initial conditions
SYNOPSIS

function [status, varargout] = IDACalcIC(tout,icmeth)

DESCRIPTION

54

IDACalcIC computes consistent initial conditions

Usage: STATUS = IDACalcIC (TOUT, ICMETH)
[STATUS, YYO, YPO] = IDACalcIC (TOUT, ICMETH)

IDACalcIC corrects the guess for initial conditions passed
to IDAInit or IDAReInit so that the algebraic constraints
are satisfied.

The argument TOUT is the first value of t at which a soluton will be
requested (from IDASolve). This is needed here to determine the
direction of integration and rough scale in the independent variable.

If ICMETH is ’FindAlgebraic’, then IDACalcIC attempts to compute

the algebraic components of y and differential components of y’,
given the differential components of y.

This option requires that the vector id was set through IDASetOptions
specifying the differential and algebraic components.

If ICMETH is ’FindAll’, then IDACalcIC attempts to compute all
components of y, given y’. In this case, id is not required.

On return, STATUS is one of the following:

SUCCESS IDACalcIC was successful. The corrected
initial value vectors are in yO and ypO.

IDA_MEM_NULL The argument ida_mem was NULL.

IDA_ILL_INPUT One of the input arguments was illegal.
See printed message.

IDA_LINIT_FAIL The linear solver’s init routine failed.

IDA_BAD_EWT Some component of the error weight vector

is zero (illegal), either for the input

value of y0O or a corrected value.
IDA_RES_FAIL The user’s residual routine returned

a non-recoverable error flag.
IDA_FIRST_RES_FAIL The user’s residual routine returned

a recoverable error flag on the first call,

but IDACalcIC was unable to recover.

IDA_LSETUP_FAIL The linear solver’s setup routine had a
non-recoverable error.

IDA_LSOLVE_FAIL The linear solver’s solve routine had a
non-recoverable error.

IDA_NO_RECOVERY The user’s residual routine, or the linear

solver’s setup or solve routine had a
recoverable error, but IDACalcIC was
unable to recover.

IDA_CONSTR_FAIL IDACalcIC was unable to find a solution
satisfying the inequality constraints.

IDA_LINESEARCH_FAIL The Linesearch algorithm failed to find a
solution with a step larger than steptol
in weighted RMS norm.

IDA_CONV_FAIL IDACalcIC failed to get convergence of the
Newton iteratioms.

If the output arguments YYO and YPO are present, they will
contain the consistent initial conditioms.

55

See also: IDASetOptions, IDAInit, IDAReInit

IDACalcICB

PURPOSE

IDACalcICB computes consistent initial conditions for the backward phase.
SYNOPSIS

function [status, varargout] = IDACalcICB(tout,icmeth)

DESCRIPTION

IDACalcICB computes consistent initial conditions for the backward phase.

Usage: STATUS = IDACalcICB (TOUTB, ICMETHB)
[STATUS, YYOB, YPOB] = IDACalcIC (TOUTB, ICMETHB)

See also: IDASetOptions, IDAInitB, IDAReInitB

IDASolve

PURPOSE

IDASolve integrates the DAE.

SYNOPSIS

function [varargout] = IDASolve(tout,itask)
DESCRIPTION

IDASolve integrates the DAE.

Usage: [STATUS, T, Y] = IDASolve (TOUT, ITASK)
[STATUS, T, Y, YQ] = IDASolve (TOUT, ITASK)
[STATUS, T, Y, YS] = IDASolve (TOUT, ITASK)
[STATUS, T, Y, YQ, YS] = IDASolve (TOUT, ITASK)

If ITASK is ’Normal’, then the solver integrates from its current internal

T value to a point at or beyond TOUT, then interpolates to T = TOUT and returns

Y(TOUT). If ITASK is ’OneStep’, then the solver takes one internal time step
and returns in Y the solution at the new internal time. In this case, TOUT
is used only during the first call to IDASolve to determine the direction of
integration and the rough scale of the problem. In either case, the time
reached by the solver is returned in T.

If quadratures were computed (see IDAQuadInit), IDASolve will return their
values at T in the vector YQ.

If sensitivity calculations were enabled (see IDASensInit), IDASolve will
return their values at T in the matrix YS. Each row in the matrix YS

56

represents the sensitivity vector with respect to one of the problem parameters.

In ITASK =’ Normal’ mode, to obtain solutions at specific times TO,T1,...,TFINAL
(all increasing or all decreasing) use TOUT = [TO T1 ... TFINAL]. In this case

the output arguments Y and YQ are matrices, each column representing the solution
vector at the corresponding time returned in the vector T. If computed, the
sensitivities are eturned in the 3-dimensional array YS, with YS(:,:,I) representing
the sensitivity vectors at the time T(I).

On return, STATUS is one of the following:

IDASolve succeeded and no roots were found.
IDASolve succeded and returned at tstop.
IDASolve succeeded, and found one or more roots.
-1: An error occurred (see printed message).

N~ O

See also IDASetOptions, IDAGetStats

IDASolveB

PURPOSE

IDASolveB integrates the backward DAE.

SYNOPSIS

function [varargout] = IDASolveB(tout,itask)

DESCRIPTION

IDASolveB integrates the backward DAE.

Usage: [STATUS, T, YB] = IDASolveB (TOUT, ITASK)
[STATUS, T, YB, YQB] = IDASolveB (TOUT, ITASK)

If ITASK is ’Normal’, then the solver integrates from its current internal

T value to a point at or beyond TOUT, then interpolates to T = TOUT and returns
YB(TOUT). If ITASK is ’OneStep’, then the solver takes one internal time step
and returns in YB the solution at the new internal time. In this case, TOUT

is used only during the first call to IDASolveB to determine the direction of
integration and the rough scale of the problem. In either case, the time
reached by the solver is returned in T.

If quadratures were computed (see IDAQuadInitB), IDASolveB will return their
values at T in the vector YQB.

In ITASK =’ Normal’ mode, to obtain solutions at specific times TO,T1,...,TFINAL
(all increasing or all decreasing) use TOUT = [TO T1 ... TFINAL]. In this case

the output arguments YB and Y(QB are matrices, each column representing the solution
vector at the corresponding time returned in the vector T.

If more than one backward problem was defined, the return arguments are cell

arrays, with TIDXB, YBIDXB, and Y(QBIDXB corresponding to the backward
problem with index IDXB (as returned by IDAInitB).

57

On return, STATUS is one of the following:

0: IDASolveB succeeded.

1: IDASolveB succeded and return at a tstop value (internally set).
-1: An error occurred (see printed message).

See also IDASetOptions, IDAGetStatsB

IDASensToggleOff

PURPOSE

IDASensToggleOff deactivates sensitivity calculations.
SYNOPSIS

function status = IDASensToggleOff ()

DESCRIPTION

IDASensToggle0ff deactivates sensitivity calculations.
It does NOT deallocate sensitivity-related memory so that
sensitivity computations can be later toggled ON (through
IDASensRelInit).

Usage: IDASensToggleOff

See also: IDASensInit, IDASensRelnit

IDAGetStats

PURPOSE

IDAGetStats returns run statistics for the IDAS solver.
SYNOPSIS

function [si, status] = IDAGetStats()

DESCRIPTION

IDAGetStats returns run statistics for the IDAS solver.
Usage: STATS = IDAGetStats

Fields in the structure STATS

o nst - number of integration steps

o nre - number of residual function evaluations
o nsetups - number of linear solver setup calls

o netf - number of error test failures

o nni - number of nonlinear solver iteratiomns

o ncfn - number of convergence test failures

o qlast - last method order used

o qcur - current method order

58

o hOused - actual initial step size used

o hlast - last step size used

o hcur - current step size

o tcur - current time reached by the integrator

o RootInfo - strucutre with rootfinding information

o QuadInfo - structure with quadrature integration statistics

o LSInfo - structure with linear solver statistics

o FSAInfo - structure with forward sensitivity solver statistics

If rootfinding was requested, the structure RootInfo has the following fields

o nge - number of calls to the rootfinding function

o roots - array of integers (a value of 1 in the i-th component means that the
i-th rootfinding function has a root (upon a return with status=2 from
IDASolve) .

If quadratures were present, the structure QuadInfo has the following fields

o nfQe - number of quadrature integrand function evaluations
o netfQ - number of error test failures for quadrature variables

The structure LSinfo has different fields, depending on the linear solver used.
Fields in LSinfo for the ’Dense’ linear solver

o name - ’Dense’

o njeD - number of Jacobian evaluations

o nreD - number of residual function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’Band’ linear solver

o name - ’Band’

o njeB - number of Jacobian evaluations

o nreB - number of residual function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’GMRES’ and ’BiCGStab’ linear solvers

o name - ’GMRES’ or ’BiCGStab’

o nli - number of linear solver iterations

0 npe - number of preconditioner setups

o nps - number of preconditioner solve function calls

o ncfl - number of linear system convergence test failures

o njeSG - number of Jacobian-vector product evaluations

o nreSG - number of residual function evaluations for difference-quotient

Jacobian-vector product approximation

If forward sensitivities were computed, the structure FSAInfo has the
following fields

o nrSe - number of sensitivity residual evaluations

o nreS - number of residual evaluations for difference-quotient
sensitivity residual approximation

59

o nsetupsS - number of linear solver setups triggered by sensitivity variables

o netfS - number of error test failures for sensitivity variables

o nniS - number of nonlinear solver iterations for sensitivity variables

o ncfnS - number of convergence test failures due to sensitivity variables
IDAGetStatsB

PURPOSE

IDAGetStatsB returns run statistics for the backward IDAS solver.
SYNOPSIS

function [si, status] = IDAGetStatsB(idxB)

DESCRIPTION

IDAGetStatsB returns run statistics for the backward IDAS solver.
Usage: STATS = IDAGetStatsB(IDXB)
IDXB is the index of the backward problem, returned by IDAInitB.
Fields in the structure STATS

nst - number of integration steps

nre - number of residual function evaluations
nsetups - number of linear solver setup calls
netf - number of error test failures

nni - number of nonlinear solver iterations

ncfn - number of convergence test failures

qlast - last method order used

qcur - current method order

hOused - actual initial step size used

hlast - last step size used

hcur - current step size

tcur - current time reached by the integrator
QuadInfo - structure with quadrature integration statistics
LSInfo - structure with linear solver statistics

O O O O OO0 OO0 OO0 O o o

The structure LSinfo has different fields, depending on the linear solver used.
If quadratures were present, the structure QuadInfo has the following fields

o nfQe - number of quadrature integrand function evaluations
o netfQ - number of error test failures for quadrature variables

Fields in LSinfo for the ’Dense’ linear solver
o name - ’Dense’
o njeD - number of Jacobian evaluations

o nreD - number of residual function evaluations for difference-quotient
Jacobian approximation

60

Fields in LSinfo for the ’Band’ linear solver

o name - ’Band’

o njeB - number of Jacobian evaluations

o nreB - number of residual function evaluations for difference-quotient
Jacobian approximation

Fields in LSinfo for the ’GMRES’ and ’BiCGStab’ linear solvers

o name - ’GMRES’ or ’BiCGStab’

o nli - number of linear solver iterations

o npe - number of preconditioner setups

o nps - number of preconditioner solve function calls

o ncfl - number of linear system convergence test failures

o njeSG - number of Jacobian-vector product evaluations

o nreSG - number of residual function evaluations for difference-quotient
Jacobian-vector product approximation

IDAGet
PURPOSE

IDAGet extracts data from the IDAS solver memory.

SYNOPSIS

function [output, status] = IDAGet(key, varargin)

DESCRIPTION

IDAGet extracts data from the IDAS solver memory.

Usage: RET = IDAGet (KEY [, P1 [, P2] ... 1)

IDAGet returns internal IDAS information based on KEY. For some values
of KEY, additional arguments may be required and/or more than one output is
returned.

KEY is a string and should be one of:

o DerivSolution - Returns a vector containing the K-th order derivative
of the solution at time T. The time T and order K must be passed through
the input arguments Pl and P2, respectively:
DKY = IDAGet(’DerivSolution’, T, K)

o ErrorWeights - Returns a vector containing the current error weights.
EWT = IDAGet(’ErrorWeights’)

o CheckPointsInfo - Returns an array of structures with check point information.
CK = IDAGet(’CheckPointInfo)

IDASet

PURPOSE

IDASet changes optional input values during the integration.

SYNOPSIS

function status = IDASet(varargin)

DESCRIPTION

61

IDASet changes optional input values during the integration.
Usage: IDASet(’NAME1’,VALUE1, ’NAME2’,VALUEZ2,...)

IDASet can be used to change some of the optional inputs during

the integration, i.e., without need for a solver reinitialization.
The property names accepted by IDASet are a subset of those valid
for IDASetOptions. Any unspecified properties are left unchanged.

IDASet with no input arguments displays all property names.

IDASet properties
(See also the IDAS User Guide)

UserData - problem data passed unmodified to all user functions.
Set VALUE to be the new user data.
RelTol - Relative tolerance
Set VALUE to the new relative tolerance
AbsTol - absolute tolerance
Set VALUE to be either the new scalar absolute tolerance or
a vector of absolute tolerances, one for each solution component.
StopTime - Stopping time
Set VALUE to be a new value for the independent variable past which
the solution is not to proceed.

IDASetB

PURPOSE

IDASetB changes optional input values during the integration.
SYNOPSIS

function status = IDASetB(idxB, varargin)

DESCRIPTION

IDASetB changes optional input values during the integration.

Usage: IDASetB(IDXB, ’NAME1’,VALUE1,’NAME2’,VALUE2,...)

IDASetB can be used to change some of the optional inputs for

the backward problem identified by IDXB during the backward
integration, i.e., without need for a solver reinitialization.
The property names accepted by IDASet are a subset of those valid
for IDASetOptions. Any unspecified properties are left unchanged.

IDASetB with no input arguments displays all property names.

IDASetB properties
(See also the IDAS User Guide)

UserData - problem data passed unmodified to all user functions.
Set VALUE to be the new user data.

62

RelTol - Relative tolerance
Set VALUE to the new relative tolerance
AbsTol - absolute tolerance
Set VALUE to be either the new scalar absolute tolerance or
a vector of absolute tolerances, one for each solution component.

IDAFree

PURPOSE

IDAFree deallocates memory for the IDAS solver.
SYNOPSIS

function [] = IDAFree()

DESCRIPTION

IDAFree deallocates memory for the IDAS solver.

Usage: IDAFree

63

4.2 Function types

IDAResFn

PURPOSE

IDAResFn - type for residual function
SYNOPSIS

This is a script file.

DESCRIPTION

IDAResFn - type for residual function

The function DAEFUN must be defined as

FUNCTION [R, FLAG] = DAEFUN(T, YY, YP)
and must return a vector R corresponding to f(t,yy,yp).
If a user data structure DATA was specified in IDAInit, then
DAEFUN must be defined as

FUNCTION [R, FLAG, NEW_DATA] = DAEFUN(T, YY, YP, DATA)
If the local modifications to the user data structure are needed
in other user-provided functions then, besides setting the vector YD,
the DAEFUN function must also set NEW_DATA. Otherwise, it should set
NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

The function DAEFUN must set FLAG=0 if successful, FLAG&1lt;0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also IDAInit

IDASensResFn

PURPOSE

IDASensRhsFn - type for user provided sensitivity RHS function.
SYNOPSIS

This is a script file.

DESCRIPTION

IDASensRhsFn - type for user provided sensitivity RHS function.

The function DAESFUN must be defined as

FUNCTION [RS, FLAG] = DAESFUN(T,YY,YP,YYS,YPS)
and must return a matrix RS corresponding to £S(t,yy,yp,yyS,ypS).
If a user data structure DATA was specified in IDAInit, then
DAESFUN must be defined as

FUNCTION [RS, FLAG, NEW_DATA] = DAESFUN(T,YY,YP,YYS,YPS,DATA)

64

If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the matrix YSD,
the ODESFUN function must also set NEW_DATA. Otherwise, it should
set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

The function DAESFUN must set FLAG=0 if successful, FLAG<0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also IDASetFSAOptions

NOTE: DAESFUN is specified through the property FSAResFn to
IDASetFSAOptions.

IDAQuadRhsFn

PURPOSE

IDAQuadRhsFn - type for user provided quadrature RHS function.
SYNOPSIS

This is a script file.

DESCRIPTION

IDAQuadRhsFn - type for user provided quadrature RHS function.

The function QFUN must be defined as

FUNCTION [YQD, FLAG] = QFUN(T, YY, YP)
and must return a vector YQD corresponding to fQ(t,yy,yp), the
integrand for the integral to be evaluated.
If a user data structure DATA was specified in IDAInit, then
QFUN must be defined as

FUNCTION [YQD, FLAG, NEW_DATA] = QFUN(T, YY, YP, DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the vector YQD,
the QFUN function must also set NEW_DATA. Otherwise, it should set
NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying).

The function QFUN must set FLAG=0 if successful, FLAG<0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also IDAQuadInit

IDARootFn

PURPOSE

IDARootFn - type for user provided root-finding function.
SYNOPSIS

This is a script file.

DESCRIPTION

65

IDARootFn - type for user provided root-finding function.

The function ROOTFUN must be defined as

FUNCTION [G, FLAG] = ROOTFUN(T,YY,YP)
and must return a vector G corresponding to g(t,yy,yp).
If a user data structure DATA was specified in IDAInit, then
ROOTFUN must be defined as

FUNCTION [G, FLAG, NEW_DATA] = ROOTFUN(T,YY,YP,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the vector G,
the ROOTFUN function must also set NEW_DATA. Otherwise, it should
set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

The function ROOTFUN must set FLAG=0 if successful, or FLAG™=0 if
a failure occurred.

See also IDASetOptions
NOTE: ROOTFUN is specified through the RootsFn property in

IDASetOptions and is used only if the property NumRoots is a
positive integer.

IDADenseJacFn

PURPOSE

IDADenseJacFn - type for dense Jacobian function.
SYNOPSIS

This is a script file.

DESCRIPTION

IDADenseJacFn - type for dense Jacobian function.

The function DJACFUN must be defined as

FUNCTION [J, FLAG] = DJACFUN(T, YY, YP, RR, CJ)
and must return a matrix J corresponding to the Jacobian
(df/dyy + cj*df/dyp) .
The input argument RR contains the current value of f(t,yy,yp).
If a user data structure DATA was specified in IDAInit, then
DJACFUN must be defined as

FUNCTION [J, FLAG, NEW_DATA] = DJACFUN(T, YY, YP, RR, CJ, DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the matrix J,
the DJACFUN function must also set NEW_DATA. Otherwise, it should
set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

The function DJACFUN must set FLAG=0 if successful, FLAG<0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

66

See also IDASetOptions

NOTE: DJACFUN is specified through the property JacobianFn to
IDASetOptions and is used only if the property LinearSolver
was set to ’Dense’.

IDABandJacFn

PURPOSE

IDABandJacFn - type for banded Jacobian function.
SYNOPSIS

This is a script file.

DESCRIPTION

IDABandJacFn - type for banded Jacobian function.

The function BJACFUN must be defined as

FUNCTION [J, FLAG] = BJACFUN(T, YY, YP, RR, CJ)
and must return a matrix J corresponding to the banded Jacobian
(df/dyy + cj*df/dyp) .
The input argument RR contains the current value of f(t,yy,yp).
If a user data structure DATA was specified in IDAInit, then
BJACFUN must be defined as

FUNCTION [J, FLAG, NEW_DATA] = BJACFUN(T, YY, YP, RR, CJ, DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the matrix J,
the BJACFUN function must also set NEW_DATA. Otherwise, it should
set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

The function BJACFUN must set FLAG=0 if successful, FLAG<0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also IDASetOptions

See the IDAS user guide for more information on the structure of
a banded Jacobian.

NOTE: BJACFUN is specified through the property JacobianFn to
IDASetOptions and is used only if the property LinearSolver
was set to ’Band’.

IDAJacTimesVecFn

PURPOSE

IDAJacTimesVecFn - type for Jacobian times vector function.
SYNOPSIS

This is a script file.

DESCRIPTION

67

IDAJacTimesVecFn - type for Jacobian times vector function.

The function JTVFUN must be defined as

FUNCTION [JV, FLAG] = JTVFUN(T,YY,YP,RR,V,CJ)
and must return a vector JV corresponding to the product of the
Jacobian (df/dyy + cj * df/dyp) with the vector v.
The input argument RR contains the current value of f(t,yy,yp).
If a user data structure DATA was specified in IDAInit, then
JTVFUN must be defined as

FUNCTION [JV, FLAG, NEW_DATA] = JTVFUN(T,YY,YP,RR,V,CJ,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the vector JV,
the JTVFUN function must also set NEW_DATA. Otherwise, it should set
NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying).

The function JTVFUN must set FLAG=0 if successful, or FLAG"=0 if
a failure occurred.

See also IDASetOptions
NOTE: JTVFUN is specified through the property JacobianFn to

IDASetOptions and is used only if the property LinearSolver
was set to ’GMRES’, ’BiCGStab’, or ’TFQMR’.

IDAPrecSetupFn

PURPOSE

IDAPrecSetupFn - type for preconditioner setup function.
SYNOPSIS

This is a script file.

DESCRIPTION

IDAPrecSetupFn - type for preconditioner setup function.

The user-supplied preconditioner setup function PSETFUN and

the user-supplied preconditioner solve function PSOLFUN

together must define a preconditoner matrix P which is an
approximation to the Newton matrix M = J_yy - cj*J_yp.

Here J_yy = df/dyy, J_yp = df/dyp, and cj is a scalar proportional
to the integration step size h. The solution of systems P z = r,
is to be carried out by the PrecSolve function, and PSETFUN

is to do any necessary setup operations.

The user-supplied preconditioner setup function PSETFUN
is to evaluate and preprocess any Jacobian-related data
needed by the preconditioner solve function PSOLFUN.
This might include forming a crude approximate Jacobian,
and performing an LU factorization on the resulting
approximation to M. This function will not be called in

68

advance of every call to PSOLFUN, but instead will be called
only as often as necessary to achieve convergence within the
Newton iteration. If the PSOLFUN function needs no
preparation, the PSETFUN function need not be provided.

Each call to the PSETFUN function is preceded by a call to
DAEFUN with the same (t,yy,yp) arguments. Thus the PSETFUN
function can use any auxiliary data that is computed and
saved by the DAEFUN function and made accessible to PSETFUN.

The function PSETFUN must be defined as

FUNCTION FLAG = PSETFUN(T,YY,YP,RR,CJ)
If successful, it must return FLAG=0. For a recoverable error (in
which case the setup will be retried) it must set FLAG to a positive
integer value. If an unrecoverable error occurs, it must set FLAG
to a negative value, in which case the integration will be halted.
The input argument RR contains the current value of f(t,yy,yp).

If a user data structure DATA was specified in IDASetUserData, then
PSETFUN must be defined as

FUNCTION [FLAG,NEW_DATA] = PSETFUN(T,YY,YP,RR,CJ,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the flag
FLAG, the PSETFUN function must also set NEW_DATA. Otherwise, it
should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead
to unnecessary copying).

See also IDAPrecSolveFn, IDASetOptions
NOTE: PSETFUN and PSETFUNB are specified through the property

PrecSetupFn to IDASet(Options and are used only if the property
LinearSolver was set to ’GMRES’, ’BiCGStab’, or ’TFQMR’.

IDAPrecSolveFn

PURPOSE

IDAPrecSolveFn - type for preconditioner solve function.

SYNOPSIS

This is a script file.

DESCRIPTION

IDAPrecSolveFn - type for preconditioner solve function.

The user-supplied preconditioner solve function PSOLFUN
is to solve a linear system P z = r, where P is the
preconditioner matrix.

The function PSOLFUN must be defined as

FUNCTION ([Z, FLAG] = PSOLFUN(T,YY,YP,RR,R)
and must return a vector Z containing the solution of Pz=r.

69

If PSOLFUN was successful, it must return FLAG=0. For a recoverable
error (in which case the step will be retried) it must set FLAG to a
positive value. If an unrecoverable error occurs, it must set FLAG
to a negative value, in which case the integration will be halted.
The input argument RR contains the current value of f(t,yy,yp).

If a user data structure DATA was specified in IDAInit, then
PSOLFUN must be defined as

FUNCTION [Z, FLAG, NEW_DATA] = PSOLFUN(T,YY,YP,RR,R,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the vector Z and
the flag FLAG, the PSOLFUN function must also set NEW_DATA. Otherwise,
it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would
lead to unnecessary copying).

See also IDAPrecSetupFn, IDASetOptions
NOTE: PSOLFUN and PSOLFUNB are specified through the property

PrecSolveFn to IDASetOptions and are used only if the property
LinearSolver was set to ’GMRES’, ’BiCGStab’, or ’TFQMR’.

IDAGcommFn

PURPOSE

IDAGcommFn - type for communication function (BBDPre).
SYNOPSIS

This is a script file.

DESCRIPTION

IDAGcommFn - type for communication function (BBDPre).

The function GCOMFUN must be defined as

FUNCTION FLAG = GCOMFUN(T, YY, YP)
and can be used to perform all interprocess communication necessary
to evaluate the approximate residual function for the BBDPre
preconditioner module.
If a user data structure DATA was specified in IDAInit, then
GCOMFUN must be defined as

FUNCTION [FLAG, NEW_DATA] = GCOMFUN(T, YY, YP, DATA)
If the local modifications to the user data structure are needed
in other user-provided functions then the GCOMFUN function must also
set NEW_DATA. Otherwise, it should set NEW_DATA=[] (do not set
NEW_DATA = DATA as it would lead to unnecessary copying).

The function GCOMFUN must set FLAG=0 if successful, FLAG<0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also IDAGlocalFn, IDASetOptions

70

NOTES:
GCOMFUN is specified through the GcommFn property in IDASetOptions
and is used only if the property PrecModule is set to ’BBDPre’.

Each call to GCOMFUN is preceded by a call to the residual function
DAEFUN with the same arguments T, YY, and YP.

Thus GCOMFUN can omit any communication done by DAEFUN if relevant
to the evaluation of G by GLOCFUN. If all necessary communication
was done by DAEFUN, GCOMFUN need not be provided.

IDAGlocalFn

PURPOSE

IDAGlocalFn - type for RES approximation function (BBDPre).
SYNOPSIS

This is a script file.

DESCRIPTION

IDAGlocalFn - type for RES approximation function (BBDPre).

The function GLOCFUN must be defined as

FUNCTION [GLOC, FLAG] = GLOCFUN(T,YY,YP)
and must return a vector GLOC corresponding to an approximation to f(t,yy,yp)
which will be used in the BBDPRE preconditioner module. The case where
G is mathematically identical to F is allowed.
If a user data structure DATA was specified in IDAInit, then
GLOCFUN must be defined as

FUNCTION [GLOC, FLAG, NEW_DATA] = GLOCFUN(T,YY,YP,DATA)
If the local modifications to the user data structure are needed
in other user-provided functions then, besides setting the vector G,
the GLOCFUN function must also set NEW_DATA. Otherwise, it should set
NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

The function GLOCFUN must set FLAG=0 if successful, FLAG&1lt;0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also IDAGcommFn, IDASetOptions
NOTE: GLOCFUN and GLOCFUNB are specified through the GlocalFn property

in IDASetOptions and are used only if the property PrecModule
is set to ’BBDPre’.

IDAMonitorFn

PURPOSE

IDAMonitorFn - type for monitoring function.
SYNOPSIS

This is a script file.

DESCRIPTION

71

IDAMonitorFn - type for monitoring function.

The function MONFUN must be defined as
FUNCTION [] = MONFUN(CALL, T, YY, YP, YQ, YYS, YPS)

To enable monitoring using a given monitor function MONFUN,
use IDASetOptions to set the property ’MonitorFn" to ’MONFUN’
(or to @MONFUN).

MONFUN is called with the following input arguments:

o CALL indicates the phase during the integration process at which

MONFUN is called:

CALL=1 : MONFUN was called at the initial time; this can be either
after IDAInit or after IDARelnit.
(typically, MONFUN should perform its own initialization)

CALL=2 : MONFUN was called right before a solver reinitializtion.
(typically, MONFUN should decide whether to initialize
itself or else to continue monitoring)

CALL=3 : MONFUN was called during solver finalization.
(typically, MONFUN should finalize monitoring)

CALL=0 : MONFUN was called after the solver took a successful
internal step.
(typically, MONFUN should collect and/or display data)

o T is the current integration time

o YY and YP are vectors containing the solution and solution
derivative at time T

o YQ is a vector containing the quadrature variables at time T

o YYS and YPS are matrices containing the forward sensitivities
and their derivatives, respectively, at time T.

If additional data is needed inside a MONFUN function, then it must
be defined as
FUNCTION NEW_MONDATA = MONFUN(CALL, T, YY, YP, YQ, YYS, YPS, MONDATA)

In this case, the MONFUN function is passed the additional argument
MONDATA, the same as that specified through the property ’MonitorData’

in IDASetOptions. If the local modifications to the monitor data structure
need to be saved (e.g. for future calls to MONFUN), then MONFUN must set
NEW_MONDATA. Otherwise, it should set NEW_MONDATA=[] (do not set
NEW_MONDATA = DATA as it would lead to unnecessary copying).

NOTES:
1. MONFUN is specified through the MonitorFn property in IDASetOptions.
If this property is not set, or if it is empty, MONFUN is not used.

MONDATA is specified through the MonitorData property in IDASetOptions.

2. If quadrature integration is not enabled, YQ is empty. Similarly, if
forward sensitivity analysis is not enabled, YYS and YPS are empty.

72

3. When CALL = 2 or 3, all arguments YY, YP, YQ, YYS, and YPS are empty.
Moreover, when CALL = 3, T = 0.0

4. If MONFUN is used on the backward integration phase, YYS and YPS are
always empty.

See also IDASetOptions, IDAMonitor

IDAResFnB

PURPOSE

IDAResFnb - type for residual function for backward problems
SYNOPSIS

This is a script file.

DESCRIPTION

IDAResFnb - type for residual function for backward problems

The function DAEFUNB must be defined either as

FUNCTION [RB, FLAG] = DAEFUNB(T, YY, YP, YYB, YPB)
or as

FUNCTION [RB, FLAG, NEW_DATA] = DAEFUNB(T, YY, YP, YYB, YPB, DATA)
depending on whether a user data structure DATA was specified in
IDAInit. In either case, it must return the vector RB
corresponding to fB(t,yy,yp,yyB,ypB).

The function DAEFUNB must set FLAG=0 if successful, FLAG&1lt;0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also IDAInitB, IDARhsFn

IDAQuadRhsFnB

PURPOSE

IDAQuadRhsFnB - type for quadrature RHS function for backward problems
SYNOPSIS

This is a script file.

DESCRIPTION

IDAQuadRhsFnB - type for quadrature RHS function for backward problems
The function QFUNB must be defined either as

FUNCTION [YQBD, FLAG] = QFUNB(T, YY, YP, YYB, YPB)
or as

73

FUNCTION [YQBD, FLAG, NEW_DATA] = QFUNB(T, YY, YP, YYB, YPB, DATA)
depending on whether a user data structure DATA was specified in
IDAInit. In either case, it must return the vector YQBD
corresponding to fQB(t,yy,yp,yyB,ypB), the integrand for the integral to be
evaluated on the backward phase.

The function QFUNB must set FLAG=0 if successful, FLAG&1lt;0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error

occurred.

See also IDAQuadInitB

IDADenseJacFnB

PURPOSE

IDADenseJacFnb - type for dense Jacobian function for backward problems.
SYNOPSIS

This is a script file.

DESCRIPTION

IDADenseJacFnb - type for dense Jacobian function for backward problems.

The function DJACFUNB must be defined either as
FUNCTION [JB, FLAG] = DJACFUNB(T, YY, YP, YYB, YPB, RRB, CJB)
or as
FUNCTION [JB,FLAG,NEW_DATA] = DJACFUNB(T,YY,YP,YYB,YPB,RRB,CJB,DATA)
depending on whether a user data structure DATA was specified in
IDAInit. In either case, it must return the matrix JB, the
Jacobian (dfB/dyyB + cjb*dfB/dypB). The input argument RRB contains
the current value of f(t,yy,yp,yyB,ypB).

The function DJACFUNB must set FLAG=0 if successful, FLAG&1lt;0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also IDADenseJacFn, IDASetOptions
NOTE: DJACFUNB is specified through the property JacobianFn to

IDASetOptions and is used only if the property LinearSolver was
set to ’Dense’.

IDABandJacFnB

PURPOSE

IDABandJacFnB - type for banded Jacobian function for backward problems.
SYNOPSIS

This is a script file.

DESCRIPTION

74

IDABandJacFnB - type for banded Jacobian function for backward problems.

The function BJACFUNB must be defined either as

FUNCTION [JB, FLAG] = BJACFUNB(T, YY, YP, YYB, YPB, RRB, CJB)
or as

FUNCTION [JB,FLAG,NEW_DATA] = BJACFUNB(T,YY,YP,YYB,YPB,RRB,CJB)
depending on whether a user data structure DATA was specified in
IDAInit. In either case, it must return the matrix JB, the
Jacobian (dfB/dyyB + cjB*dfB/dypB)of fB(t,y,yB). The input argument
RRB contains the current value of f(t,yy,yp,yyB,ypB).

The function BJACFUNB must set FLAG=0 if successful, FLAG&1lt;0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also IDASetOptions

See the IDAS user guide for more information on the structure of
a banded Jacobian.

NOTE: BJACFUNB is specified through the property JacobianFn to
IDASetOptions and is used only if the property LinearSolver
was set to ’Band’.

IDAJacTimesVecFnB

PURPOSE

IDAJacTimesVecFn - type for Jacobian times vector function for backward problems.
SYNOPSIS

This is a script file.

DESCRIPTION

IDAJacTimesVecFn - type for Jacobian times vector function for backward problems.

The function JTVFUNB must be defined either as
FUNCTION [JVB,FLAG] = JTVFUNB(T,YY,YP,YYB,YPB,RRB,VB,CJB)
or as
FUNCTION [JVB,FLAG,NEW_DATA] = JTVFUNB(T,YY,YP,YYB,YPB,RRB,VB,CJB,DATA)
depending on whether a user data structure DATA was specified in
IDAInit. In either case, it must return the vector JVB, the
product of the Jacobian (dfB/dyyB + cj * dfB/dypB) and a vector
vB. The input argument RRB contains the current value of f(t,yy,yp,yyB,ypB).

The function JTVFUNB must set FLAG=0 if successful, or FLAG™=0 if
a failure occurred.

See also IDASetOptions
NOTE: JTVFUNB is specified through the property JacobianFn to IDASetOptions

and is used only if the property LinearSolver was set to ’GMRES’, ’BiCGStab’,
or *TFQMR’.

75

IDAPrecSetupFnB

PURPOSE
IDAPrecSetupFnB - type for preconditioner setup function for backward problems.
SYNOPSIS
This is a script file.
DESCRIPTION
IDAPrecSetupFnB - type for preconditioner setup function for backward problems.
The function PSETFUNB must be defined either as
FUNCTION FLAG = PSETFUNB(T,YY,YP,YYB,YPB,RRB,CJB)
or as
FUNCTION [FLAG,NEW_DATA] = PSETFUNB(T,YY,YP,YYB,YPB,RRB,CJB,DATA)

depending on whether a user data structure DATA was specified in
IDASetUserData.

See also IDAPrecSolveFnB, IDAPrecSetupFn, IDASetOptions
NOTE: PSETFUN and PSETFUNB are specified through the property

PrecSetupFn to IDASetOptions and are used only if the property
LinearSolver was set to ’GMRES’, ’BiCGStab’, or ’TFQMR’.

IDAPrecSolveFnB

PURPOSE

IDAPrecSolveFnB - type for preconditioner solve function.

SYNOPSIS

This is a script file.

DESCRIPTION

IDAPrecSolveFnB - type for preconditioner solve function.
The user-supplied preconditioner solve function PSOLFUNB

is to solve a linear system P z = r, where P is the
preconditioner matrix.

The function PSOLFUNB must be defined either as

FUNCTION [ZB,FLAG] = PSOLFUNB(T,YY,YP,YYB,YPB,RRB,RB)
or as

FUNCTION [ZB,FLAG,NEW_DATA] = PSOLFUNB(T,YY,YP,YYB,YPB,RRB,RB,DATA)
depending on whether a user data structure DATA was specified in
IDAInit. In either case, it must return the vector ZB and the
flag FLAG.

See also IDAPrecSetupFnB, IDAPrecSolveFn, IDASetOptions
NOTE: PSOLFUN and PSOLFUNB are specified through the property

PrecSolveFn to IDASetOptions and are used only if the property
LinearSolver was set to ’GMRES’, ’BiCGStab’, or ’TFQMR’.

76

IDAGcommFnB

PURPOSE

IDAGcommFnB - type for communication function (BBDPre) for backward problems.
SYNOPSIS

This is a script file.

DESCRIPTION

IDAGcommFnB - type for communication function (BBDPre) for backward problems.

The function GCOMFUNB must be defined either as

FUNCTION FLAG = GCOMFUNB(T, YY, YP, YYB, YPB)
or as

FUNCTION [FLAG, NEW_DATA] = GCOMFUNB(T, YY, YP, YYB, YPB, DATA)
depending on whether a user data structure DATA was specified in
IDAInit.

The function GCOMFUNB must set FLAG=0 if successful, FLAG<0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also IDAGlocalFnB, IDAGcommFn, IDASetOptions

NOTES:
GCOMFUNB is specified through the GcommFn property in IDASetOptions
and is used only if the property PrecModule is set to ’BBDPre’.

Each call to GCOMFUNB is preceded by a call to the residual function
DAEFUN with the same arguments T, YY, YP and YYB and YPB.

Thus GCOMFUNB can omit any communication done by DAEFUNB if relevant
to the evaluation of G by GLOCFUNB. If all necessary communication
was done by DAEFUNB, GCOMFUNB need not be provided.

IDAGlocalFnB

PURPOSE

IDAGlocalFnB - type for RES approximation function (BBDPre) for backward problems.
SYNOPSIS

This is a script file.

DESCRIPTION

IDAGlocalFnB - type for RES approximation function (BBDPre) for backward problems.
The function GLOCFUNB must be defined either as

FUNCTION [GLOCB, FLAG] = GLOCFUNB(T,YY,YP,YYB,YPB)
or as

7

FUNCTION [GLOCB, FLAG, NEW_DATA] = GLOCFUNB(T,YY,YP,YYB,YPB,DATA)
depending on whether a user data structure DATA was specified in
IDAInit. In either case, it must return the vector GLOCB
corresponding to an approximation to fB(t,yy,yp,yyB,ypB).

The function GLOCFUNB must set FLAG=0 if successful, FLAG&1lt;0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also IDAGcommFnB, IDAGlocalFn, IDASetOptions
NOTE: GLOCFUN and GLOCFUNB are specified through the GlocalFn property

in IDASetOptions and are used only if the property PrecModule
is set to ’BBDPre’.

IDAMonitorFnB

PURPOSE

IDAMonitorFnB - type of monitoring function for backward problems.
SYNOPSIS

This is a script file.

DESCRIPTION

IDAMonitorFnB - type of monitoring function for backward problems.

The function MONFUNB must be defined as

FUNCTION [] = MONFUNB(CALL, IDXB, T, Y, YQ)
It is called after every internal IDASolveB step and can be used to
monitor the progress of the solver. MONFUNB is called with CALL=0
from IDAInitB at which time it should initialize itself and it
is called with CALL=2 from IDAFree. Otherwise, CALL=1.

It receives as arguments the index of the backward problem (as
returned by IDAInitB), the current time T, solution vector Y,
and, if it was computed, the quadrature vector YQ. If quadratures
were not computed for this backward problem, YQ is empty here.

If additional data is needed inside MONFUNB, it must be defined
as
FUNCTION NEW_MONDATA = MONFUNB(CALL, IDXB, T, Y, YQ, MONDATA)
If the local modifications to the user data structure need to be
saved (e.g. for future calls to MONFUNB), then MONFUNB must set
NEW_MONDATA. Otherwise, it should set NEW_MONDATA=[]
(do not set NEW_MONDATA = DATA as it would lead to unnecessary copying).

A sample monitoring function, IDAMonitorB, is provided with CVODES.
See also IDASetOptions, IDAMonitorB

NOTES:

78

MONFUNB is specified through the MonitorFn property in IDASetOptions.
If this property is not set, or if it is empty, MONFUNB is not used.
MONDATA is specified through the MonitorData property in IDASetOptions.

See IDAMonitorB for an implementation example.

79

5 MATLAB Interface to KINSOL

The MATLAB interface to KINSOL provides access to all functionality of the KINSOL solver.

The interface consists of 5 user-callable functions. The user must provide several required and
optional user-supplied functions which define the problem to be solved. The user-callable functions
and the types of user-supplied functions are listed in Table 9 and fully documented later in this section.
For more in depth details, consult also the KINSOL user guide [1].

To illustrate the use of the KINSOL MATLAB interface, several example problems are provided with
SUNDIALSTB, both for serial and parallel computations. Most of them are MATLAB translations of
example problems provided with KINSOL.

Table 9: KINSOL MATLAB interface functions

2 KINSetOptions | creates an options structure for KINSOL.

S KINInit | allocates and initializes memory for KINSOL.

g KINSol | solves the nonlinear problem.

= KINGetStats | returns statistics for the KINSOL solver.

KINFree | deallocates memory for the KINSOL solver.

2 KINSysFn | system function

e KINDenseJacFn | dense Jacobian function

= KINBandJacFn | banded Jacobian function

-2 || KINJacTimesVecFn | Jacobian times vector function

= KINPrecSetupFn | preconditioner setup function

= KINPrecSolveFn | preconditioner solve function
KINGlocalFn | system approximation function (BBDPre)

KINGcommFn | communication function (BBDPre)

80

5.1 Interface functions

KINSetOptions

PURPOSE

KINSetOptions creates an options structure for KINSOL.
SYNOPSIS

function options = KINSetOptions(varargin)
DESCRIPTION

KINSetOptions creates an options structure for KINSOL.
Usage:

options = KINSetOptions(’NAME1’,VALUE1, ’NAME2’ ,VALUE2,...) creates a KINSOL
options structure options in which the named properties have the

specified values. Any unspecified properties have default values. It is
sufficient to type only the leading characters that uniquely identify the
property. Case is ignored for property names.

options = KINSetOptions(oldoptions,’NAME1’,VALUE1l,...) alters an existing
options structure oldoptiomns.

options = KINSetOptions(oldoptions,newoptions) combines an existing options
structure oldoptions with a new options structure newoptions. Any new
properties overwrite corresponding old properties.

KINSetOptions with no input arguments displays all property names and their
possible values.

KINSetOptions properties
(See also the KINSOL User Guide)

UserData - User data passed unmodified to all functions [empty]
If UserData is not empty, all user provided functions will be
passed the problem data as their last input argument. For example,
the SYS function must be defined as FY = SYSFUN(Y,DATA).

MaxNumIter - maximum number of nonlinear iterations [scalar | 200]
Specifies the maximum number of iterations that the nonlinar solver is allowed
to take.

FuncRelErr - relative residual error [scalar | eps]

Specifies the realative error in computing f(y) when used in difference
quotient approximation of matrix-vector product J(y)*v.

FuncNormTol - residual stopping criteria [scalar | eps”(1/3)]

Specifies the stopping tolerance on ||fscalexABS(f(y))||_L-infinity

ScaledStepTol - step size stopping criteria [scalar | eps~(2/3) 1]
Specifies the stopping tolerance on the maximum scaled step length:

[y_(k+1) -y .k ||

81

[l - || _L-infinity
[l ly_(k+1)| + yscale ||

MaxNewtonStep - maximum Newton step size [scalar | 0.0]

Specifies the maximum allowable value of the scaled length of the Newton step.

InitialSetup - initial call to linear solver setup [false | true]

Specifies whether or not KINSol makes an initial call to the linear solver
setup function.

MaxNumSetups - [scalar | 10]

Specifies the maximum number of nonlinear iterations between calls to the
linear solver setup function (i.e. Jacobian/preconditioner evaluation)

MaxNumSubSetups - [scalar | 5]

Specifies the maximum number of nonlinear iterations between checks by the
nonlinear residual monitoring algorithm (specifies length of subintervals).
NOTE: MaxNumSetups should be a multiple of MaxNumSubSetups.

MaxNumBetaFails - maximum number of beta-condition failures [scalar | 10]
Specifies the maximum number of beta-condiiton failures in the line search
algorithm.

EtaForm - Inexact Newton method [Constant | Type2 | Typel 1]

Specifies the method for computing the eta coefficient used in the calculation

of the linear solver convergence tolerance (used only if strategy=’InexactNEwton’

in the call to KINSol):

lintol = (eta + eps)*||fscale*f(y)||_L2
which is the used to check if the following inequality is satisfied:

| lfscalex (£ (y)+J(y)*p) | |_L2 &1t;= lintol
Valid choices are:

[TEGoe+)) L2 - [y R +I(y_ k) *p_k| | _L2 |
EtaForm="Typel’ eta = ---—-—-—————————————————————————
[1£(y_k) | |_L2

[I1£(y_(k+1))[|_L2]~alpha
EtaForm=’Type2’ eta = gamma * [-—————-——-——————-]
[lf@yll_L2]
EtaForm=’Constant’
Eta - constant value for eta [scalar | 0.1]
Specifies the constant value for eta in the case EtaForm=’Constant’.
EtaAlpha - alpha parameter for eta [scalar | 2.0]
Specifies the parameter alpha in the case EtaForm=’Type2’
EtaGamma - gamma parameter for eta [scalar | 0.9]
Specifies the parameter gamma in the case EtaForm=’Type2’
MinBoundEps - lower bound on eps [false | true]
Specifies whether or not the value of eps is bounded below by 0.0l1*FuncNormtol.
Constraints - solution constraints [vector]
Specifies additional constraints on the solution components.
Constraints(i) 0 : no constrain on y(i)
Constraints(i) 1 : y(i) >= 0
Constraints(i) = -1 : y(i) <= 0
Constraints(i) 2 @ y(i) > O
Constraints (i) -2 : y(i) &1t; O
If Constraints is not specified, no constraints are applied to y.

LinearSolver - Type of linear solver [Dense | Band | GMRES | BiCGStab | TFQMR]
Specifies the type of linear solver to be used for the Newton nonlinear solver.
Valid choices are: Dense (direct, dense Jacobian), GMRES (iterative, scaled
preconditioned GMRES), BiCGStab (iterative, scaled preconditioned stabilized

82

BiCG), TFQMR (iterative, scaled preconditioned transpose-free QMR) .
The GMRES, BiCGStab, and TFQMR are matrix-free linear solvers.

JacobianFn - Jacobian function [function]
This propeerty is overloaded. Set this value to a function that returns
Jacobian information consistent with the linear solver used (see Linsolver).
If not specified, KINSOL uses difference quotient approximations.
For the Dense linear solver, JacobianFn must be of type KINDenseJacFn and must
return a dense Jacobian matrix. For the iterative linear solvers, GMRES,
BiCGStab, or TFQMR, JacobianFn must be of type KINJactimesVecFn and must return
a Jacobian-vector product.

KrylovMaxDim - Maximum number of Krylov subspace vectors [scalar | 10]
Specifies the maximum number of vectors in the Krylov subspace. This property
is used only if an iterative linear solver, GMRES, BiCGStab, or TFQMR is used
(see LinSolver).

MaxNumRestarts - Maximum number of GMRES restarts [scalar | 0]
Specifies the maximum number of times the GMRES (see LinearSolver) solver
can be restarted.

PrecModule - Built-in preconditioner module [BBDPre | UserDefined]
If the PrecModule = ’UserDefined’, then the user must provide at least a
preconditioner solve function (see PrecSolveFn)
KINSOL provides a built-in preconditioner module, BBDPre which can only be used
with parallel vectors. It provide a preconditioner matrix that is block-diagonal
with banded blocks. The blocking corresponds to the distribution of the variable
vector among the processors. Each preconditioner block is generated from the
Jacobian of the local part (on the current processor) of a given function g(t,y)
approximating f(y) (see GlocalFn). The blocks are generated by a difference
quotient scheme on each processor independently. This scheme utilizes an assumed
banded structure with given half-bandwidths, mldq and mudq (specified through
LowerBwidthDQ and UpperBwidthDQ, respectively). However, the banded Jacobian
block kept by the scheme has half-bandwiths ml and mu (specified through
LowerBwidth and UpperBwidth), which may be smaller.

PrecSetupFn - Preconditioner setup function [function]
PrecSetupFn specifies an optional function which, together with PrecSolve,
defines a right preconditioner matrix which is an aproximation
to the Newton matrix. PrecSetupFn must be of type KINPrecSetupFn.

PrecSolveFn - Preconditioner solve function [function]
PrecSolveFn specifies an optional function which must solve a linear system
Pz = r, for given r. If PrecSolveFn is not defined, the no preconditioning will
be used. PrecSolveFn must be of type KINPrecSolveFn.

GlocalFn - Local right-hand side approximation funciton for BBDPre [function]
If PrecModule is BBDPre, GlocalFn specifies a required function that
evaluates a local approximation to the system function. GlocalFn must
be of type KINGlocalFn.

GcommFn - Inter-process communication function for BBDPre [function]
If PrecModule is BBDPre, GcommFn specifies an optional function
to perform any inter-process communication required for the evaluation of
GlocalFn. GcommFn must be of type KINGcommFn.

LowerBwidth - Jacobian/preconditioner lower bandwidth [scalar | 0]
This property is overloaded. If the Band linear solver is used (see LinSolver),
it specifies the lower half-bandwidth of the band Jacobian approximation.
If one of the three iterative linear solvers, GMRES, BiCGStab, or TFQMR is used
(see LinSolver) and if the BBDPre preconditioner module in KINSOL is used
(see PrecModule), it specifies the lower half-bandwidth of the retained
banded approximation of the local Jacobian block.

83

LowerBwidth defaults to O (no sub-diagonals).

UpperBwidth - Jacobian/preconditioner upper bandwidth [scalar | 0]
This property is overloaded. If the Band linear solver is used (see LinSolver),
it specifies the upper half-bandwidth of the band Jacobian approximation.
If one of the three iterative linear solvers, GMRES, BiCGStab, or TFQMR is used
(see LinSolver) and if the BBDPre preconditioner module in KINSOL is used
(see PrecModule), it specifies the upper half-bandwidth of the retained
banded approximation of the local Jacobian block.
UpperBwidth defaults to O (no super-diagonals).

LowerBwidthDQ - BBDPre preconditioner DQ lower bandwidth [scalar | 0]
Specifies the lower half-bandwidth used in the difference-quotient Jacobian
approximation for the BBDPre preconditioner (see PrecModule).

UpperBwidthDQ - BBDPre preconditioner DQ upper bandwidth [scalar | 0]
Specifies the upper half-bandwidth used in the difference-quotient Jacobian
approximation for the BBDPre preconditioner (see PrecModule).

Verbose - verbose output [true | false]
Specifies whether or not KINSOL should output additional information
ErrorMessages - Post error/warning messages [false | true]
Note that any errors in KINInit will result in a Matlab error, thus
stoping execution. Only subsequent calls to KINSOL functions will respect
the value specified for ’ErrorMessages’.

See also
KINDenseJacFn, KINJacTimesVecFn
KINPrecSetupFn, KINPrecSolveFn
KINGlocalFn, KINGcommFn

KINInit

PURPOSE

KINInit allocates and initializes memory for KINSOL.
SYNOPSIS

function status = KINInit(fct, n, options)
DESCRIPTION

KINInit allocates and initializes memory for KINSOL.
Usage: KINInit (SYSFUN, N [, OPTIONS]);

SYSFUN is a function defining the nonlinear problem f(y) = O.
This function must return a column vector FY containing the
current value of the residual

N is the (local) problem dimension.

OPTIONS is an (optional) set of integration options, created with
the KINSetOptions function.

See also: KINSetOptions, KINSysFn

84

KINSol

PURPOSE

KINSol solves the nonlinear problem.

SYNOPSIS

function [status, y] = KINSol(yO, strategy, yscale, fscale)
DESCRIPTION

KINSol solves the nonlinear problem.
Usage: [STATUS, Y] = KINSol(YO, STRATEGY, YSCALE, FSCALE)

KINSol manages the computational process of computing an approximate
solution of the nonlinear system. If the initial guess (initial value
assigned to vector YO) doesn’t violate any user-defined constraints,
then KINSol attempts to solve the system f(y)=0. If an iterative linear
solver was specified (see KINSetOptions), KINSol uses a nonlinear Krylov
subspace projection method. The Newton-Krylov iterations are stopped

if either of the following conditions is satisfied:

[1£(y) || _L-infinity &1lt;= 0.01*fnormtol
[ly[i+1] - y[il||_L-infinity <= scsteptol

However, if the current iterate satisfies the second stopping
criterion, it doesn’t necessarily mean an approximate solution
has been found since the algorithm may have stalled, or the
user-specified step tolerance may be too large.

STRATEGY specifies the global strategy applied to the Newton step if it is
unsatisfactory. Valid choices are ’None’ or ’LineSearch’.

YSCALE is a vector containing diagonal elements of scaling matrix for vector
Y chosen so that the components of YSCALE*Y (as a matrix multiplication) all
have about the same magnitude when Y is close to a root of f(y)

FSCALE is a vector containing diagonal elements of scaling matrix for f(y)
chosen so that the components of FSCALExf(Y) (as a matrix multiplication)
all have roughly the same magnitude when u is not too near a root of f(y)

On return, status is one of the following:

KINSol succeeded

The initial y0 already satisfies the stopping criterion given above
Stopping tolerance on scaled step length satisfied

-1: An error occurred (see printed error message)

N~ O

See also KINSetOptions, KINGetstats

KINGetStats

85

PURPOSE

KINGetStats returns statistics for the main KINSOL solver and the linear
SYNOPSIS

function [si, status] = KINGetStats()

DESCRIPTION

KINGetStats returns statistics for the main KINSOL solver and the linear
solver used.

Usage: STATS = KINGetStats

Fields in the structure STATS

o nfe - total number evaluations of the nonlinear system function SYSFUN

o nni - total number of nonlinear iteratioms

o nbcf - total number of beta-condition failures

o nbops - total number of backtrack operations (step length adjustments)
performed by the line search algorithm

o fnorm - scaled norm of the nonlinear system function f(y) evaluated at the
current iterate: ||fscalexf(y)||_L2

o step - scaled norm (or length) of the step used during the previous
iteration: ||uscalexp||_L2

o LSInfo - structure with linear solver statistics

The structure LSinfo has different fields, depending on the linear solver used.
Fields in LSinfo for the ’Dense’ linear solver

o name - ’Dense’

o njeD - number of Jacobian evaluations

o nfeD - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’GMRES’ or ’BiCGStab’ linear solver

o name - ’GMRES’ or ’BiCGStab’

o nli - number of linear solver iterations

o npe - number of preconditioner setups

o nps - number of preconditioner solve function calls

o ncfl - number of linear system convergence test failures
KINFree

PURPOSE

KINFree deallocates memory for the KINSOL solver.
SYNOPSIS
function KINFree()

DESCRIPTION

86

KINFree deallocates memory for the KINSOL solver.

Usage: KINFree

87

5.2 Function types

KINSysFn

PURPOSE

KINSysFn - type for user provided system function
SYNOPSIS

This is a script file.

DESCRIPTION

KINSysFn - type for user provided system function

The function SYSFUN must be defined as

FUNCTION [FY, FLAG] = SYSFUN(Y)
and must return a vector FY corresponding to f(y).
If a user data structure DATA was specified in KINInit, then
SYSFUN must be defined as

FUNCTION [FY, FLAG, NEW_DATA] = SYSFUN(Y,DATA)
If the local modifications to the user data structure are needed
in other user-provided functions then, besides setting the vector FY,
the SYSFUN function must also set NEW_DATA. Otherwise, it should set
NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying).

The function SYSFUN must set FLAG=0 if successful, FLAG&1lt;0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also KINInit

NOTE: SYSFUN is specified through the KINInit function.

KINDenseJacFn

PURPOSE

KINDenseJacFn - type for user provided dense Jacobian function.
SYNOPSIS

This is a script file.

DESCRIPTION

KINDenseJacFn - type for user provided dense Jacobian function.
The function DJACFUN must be defined as

FUNCTION [J, FLAG] = DJACFUN(Y,FY)
and must return a matrix J corresponding to the Jacobian of f(y).

88

The input argument FY contains the current value of f(y).
If a user data structure DATA was specified in KINInit, then
DJACFUN must be defined as

FUNCTION [J, FLAG, NEW_DATA] = DJACFUN(Y,FY,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the matrix J and
the flag FLAG, the DJACFUN function must also set NEW_DATA. Otherwise,
it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead
to unnecessary copying).

The function DJACFUN must set FLAG=0 if successful, FLAG<0 if an

unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also KINSetOptions

NOTE: DJACFUN is specified through the property JacobianFn to KINSetOptions
and is used only if the property LinearSolver was set to ’Dense’.

KINBandJacFn

PURPOSE

KINBandJacFn - type for user provided banded Jacobian function.
SYNOPSIS

This is a script file.

DESCRIPTION

KINBandJacFn - type for user provided banded Jacobian function.

The function BJACFUN must be defined as

FUNCTION [J, FLAG] = BJACFUN(Y, FY)
and must return a matrix J corresponding to the banded Jacobian of f(y).
The input argument FY contains the current value of f(y).
If a user data structure DATA was specified in KINInit, then
BJACFUN must be defined as

FUNCTION [J, FLAG, NEW_DATA] = BJACFUN(Y, FY, DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the matrix J and
the flag FLAG, the BJACFUN function must also set NEW_DATA. Otherwise,
it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead
to unnecessary copying) .

The function BJACFUN must set FLAG=0 if successful, FLAG<0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also KINSetOptions

NOTE: BJACFUN is specified through the property JacobianFn to KINSetOptions
and is used only if the property LinearSolver was set to ’Band’.

89

KINJacTimesVecFn

PURPOSE

KINJacTimesVecFn - type for user provided Jacobian times vector function.
SYNOPSIS

This is a script file.

DESCRIPTION

KINJacTimesVecFn - type for user provided Jacobian times vector function.

The function JTVFUN must be defined as
FUNCTION [JV, NEW_Y, FLAG] = JTVFUN(Y, V, NEW_Y)
and must return a vector JV corresponding to the product of the
Jacobian of f(y) with the vector v. On input, NEW_Y indicates if
the iterate has been updated in the interim. JV must be update
or reevaluated, if appropriate, unless NEW_Y=false. This flag must
be reset by the user.
If a user data structure DATA was specified in KINInit, then
JTVFUN must be defined as
FUNCTION [JV, NEW_Y, FLAG, NEW_DATA] = JTVFUN(Y, V, NEW_Y, DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the vector JV, and
flags NEW_Y and FLAG, the JTVFUN function must also set NEW_DATA. Otherwise,
it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

If successful, FLAG should be set to 0. If an error occurs, FLAG should
be set to a nonzero value.

See also KINSetOptions

NOTE: JTVFUN is specified through the property JacobianFn to KINSetOptions
and is used only if the property LinearSolver was set to ’GMRES’ or ’BiCGStab’.

KINPrecSetupFn

PURPOSE

KINPrecSetupFn - type for user provided preconditioner setup function.
SYNOPSIS

This is a script file.

DESCRIPTION

90

KINPrecSetupFn - type for user provided preconditioner setup function.

The user-supplied preconditioner setup subroutine should compute
the right-preconditioner matrix P used to form the scaled preconditioned
linear system:

(DExJ () *(P-1)*(Dy~-1)) * (Dy*Pxx) = Df*(-F(y))

where Dy and Df denote the diagonal scaling matrices whose diagonal elements
are stored in the vectors YSCALE and FSCALE, respectively.

The preconditioner setup routine (referenced by iterative linear
solver modules via pset (type KINSpilsPrecSetupFn)) will not be
called prior to every call made to the psolve function, but will
instead be called only as often as necessary to achieve convergence
of the Newton iteration.

NOTE: If the PRECSOLVE function requires no preparation, then a
preconditioner setup function need not be given.

The function PSETFUN must be defined as

FUNCTION FLAG = PSETFUN(Y, YSCALE, FY, FSCALE)
The input argument FY contains the current value of f(y), while YSCALE
and FSCALE are the scaling vectors for solution and system function,
respectively (as passed to KINSol)

If a user data structure DATA was specified in KINInit, then
PSETFUN must be defined as

FUNCTION [FLAG, NEW_DATA] = PSETFUN(Y, YSCALE, FY, FSCALE, DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the flag FLAG,
the PSETFUN function must also set NEW_DATA. Otherwise, it should
set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead
to unnecessary copying) .

If successful, PSETFUN must return FLAG=0. For a recoverable error (in
which case the setup will be retried) it must set FLAG to a positive
integer value. If an unrecoverable error occurs, it must set FLAG

to a negative value, in which case the solver will halt.

See also KINPrecSolveFn, KINSetOptions, KINSol

NOTE: PSETFUN is specified through the property PrecSetupFn to KINSetOptions
and is used only if the property LinearSolver was set to ’GMRES’ or ’BiCGStab’.

KINPrecSolveFn

PURPOSE

KINPrecSolveFn - type for user provided preconditioner solve function.
SYNOPSIS

This is a script file.

DESCRIPTION

91

KINPrecSolveFn - type for user provided preconditioner solve function.

The user-supplied preconditioner solve function PSOLFN
is to solve a linear system P z = r in which the matrix P is
the preconditioner matrix (possibly set implicitely by PSETFUN)

The function PSOLFUN must be defined as

FUNCTION [Z, FLAG] = PSOLFUN(Y, YSCALE, FY, FSCALE, R)
and must return a vector Z containing the solution of Pz=r.
The input argument FY contains the current value of f(y), while YSCALE
and FSCALE are the scaling vectors for solution and system function,
respectively (as passed to KINSol)

If a user data structure DATA was specified in KINInit, then
PSOLFUN must be defined as

FUNCTION [Z, FLAG, NEW_DATA] = PSOLFUN(Y,YSCALE,FY,FSCALE,R,DATA)
If the local modifications to the user data structure are needed in
other user-provided functions then, besides setting the vector Z and
the flag FLAG, the PSOLFUN function must also set NEW_DATA. Otherwise,
it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would
lead to unnecessary copying) .

If successful, PSOLFUN must return FLAG=0. For a recoverable error it
must set FLAG to a positive value (in which case the solver will attempt
to correct). If an unrecoverable error occurs, it must set FLAG

to a negative value, in which case the solver will halt.

See also KINPrecSetupFn, KINSetOptions

NOTE: PSOLFUN is specified through the property PrecSolveFn to KINSetOptions
and is used only if the property LinearSolver was set to ’GMRES’ or ’BiCGStab’.

KINGcommFn

PURPOSE

KINGcommFn - type for user provided communication function (BBDPre).
SYNOPSIS

This is a script file.

DESCRIPTION

KINGcommFn - type for user provided communication function (BBDPre).

The function GCOMFUN must be defined as

FUNCTION FLAG = GCOMFUN(Y)
and can be used to perform all interprocess communication necessary
to evaluate the approximate right-hand side function for the BBDPre
preconditioner module.
If a user data structure DATA was specified in KINInit, then
GCOMFUN must be defined as

FUNCTION [FLAG, NEW_DATA] = GCOMFUN(Y, DATA)

92

If the local modifications to the user data structure are needed

in other user-provided functions then the GCOMFUN function must also
set NEW_DATA. Otherwise, it should set NEW_DATA=[] (do not set
NEW_DATA = DATA as it would lead to unnecessary copying).

The function GCOMFUN must set FLAG=0 if successful, FLAG&1lt;0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also KINGlocalFn, KINSetOptions

NOTES:
GCOMFUN is specified through the GcommFn property in KINSetOptions
and is used only if the property PrecModule is set to ’BBDPre’.

Each call to GCOMFUN is preceded by a call to the system function

SYSFUN with the same argument Y. Thus GCOMFUN can omit any communication
done by SYSFUN if relevant to the evaluation of G by GLOCFUN. If all
necessary communication was done by SYSFUN, GCOMFUN need not be provided.

KINGlocalFn

PURPOSE

KINGlocalFn - type for user provided RHS approximation function (BBDPre) .
SYNOPSIS

This is a script file.

DESCRIPTION

KINGlocalFn - type for user provided RHS approximation function (BBDPre).

The function GLOCFUN must be defined as

FUNCTION [G, FLAG] = GLOCFUN(Y)
and must return a vector G corresponding to an approximation to f(y)
which will be used in the BBDPRE preconditioner module. The case where
G is mathematically identical to F is allowed.
If a user data structure DATA was specified in KINInit, then
GLOCFUN must be defined as

FUNCTION [G, FLAG, NEW_DATA] = GLOCFUN(Y, DATA)
If the local modifications to the user data structure are needed
in other user-provided functions then, besides setting the vector G,
the GLOCFUN function must also set NEW_DATA. Otherwise, it should set
NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to
unnecessary copying) .

The function GLOCFUN must set FLAG=0 if successful, FLAG<0 if an
unrecoverable failure occurred, or FLAG>0 if a recoverable error
occurred.

See also KINGcommFn, KINSetOptions

NOTE: GLOCFUN is specified through the GlocalFn property in KINSetOptions
and is used only if the property PrecModule is set to ’BBDPre’.

93

6 Supporting modules

This section describes two additional modules in SUNDIALSTB, NVECTOR and PUTILS. The functions
in NVECTOR perform various operations on vectors. For serial vectors, all of these operations default
to the corresponding MATLAB functions. For parallel vectors, they can be used either on the local
portion of the distributed vector or on the global vector (in which case they will trigger an MPI
Allreduce operation). The functions in PUTILS are used to run parallel SUNDIALSTB applications.
The user should only call the function mpirun to launch a parallel MATLAB application. See one of
the paralel SUNDIALSTB examples for usage.

The functions in these two additional modules are listed in Table 10 and described in detail in the
remainder of this section.

Table 10: The NVECTOR and PUTILS functions

N_VMax | returns the largest element of x
~ N_VMaxNorm | returns the maximum norm of x
8 N_VMin | returns the smallest element of x
3 N_VDotProd | returns the dot product of two vectors
E N_VWrmsNorm | returns the weighted root mean square norm of x
N_VWL2Norm | returns the weighted Euclidean L2 norm of x
N_VL1Norm | returns the L1 norm of x
n mpirun | runs parallel examples
E mpiruns | runs the parallel example on a child MATLAB process
z mpistart | lamboot and MPI_Init master (if required)

94

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

6.1 NVECTOR functions

N_VDotProd

PURrRPOSE

N_VDotProd returns the dot product of two vectors
SYNOPSIS

function ret = N_VDotProd(x,y,comm)

DESCRIPTION

N_VDotProd returns the dot product of two vectors
Usage: RET = N_VDotProd (X, Y [, COMM])

If COMM is not present, N_VDotProd returns the dot product of the
local portions of X and Y. Otherwise, it returns the global dot
product.

SOURCE CODE
function ret = N_VDotProd(x,y,comm)
% Radu Serban <radu@llnl.gov>

% LLNS Copyright Start
% Copyright (c¢) 2014, Lawrence Livermore National Security

% This work was performed under the auspices of the U.S. Department
% of Energy by Lawrence Livermore National Laboratory in part under
% Contract W=7405—Eng—48 and in part under Contract DE-AC52—07TNA27344.

% Produced at the Lawrence Livermore National Laboratory.
% All rights reserved.

% For details , see the LICENSE file.

% LLNS Copyright End

% $Revision: 4075 $Date$

if nargin = 2
ret = dot(x,y);
else

ldot = dot(x,y);

gdot = 0.0;
MPI_Allreduce (1dot , gdot , 'SUM’ ,comm) ;
ret = gdot;

end

N_VL1Norm

95

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

PURPOSE

N_VL1Norm returns the L1 norm of x

SYNOPSIS

function ret = N_VL1iNorm(x,comm)

DESCRIPTION

N_VL1Norm returns the L1 norm of x

Usage: RET = N_VLiNorm (X [, COMM])

If COMM is not present, N_VL1Norm returns the L1 norm of
the local portion of X. Otherwise, it returns the global
L1 norm..

SOURCE CODE

function ret = N_VLI1Norm/(x ,comm)

%
%
%
%
%
%
%
%
%
%
%

Radu Serban <radu@llnl.gov>

LLNS Copyright Start

Copyright (c¢) 2014, Lawrence Livermore National Security

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory in part under
Contract W=7405—Eng—48 and in part under Contract DE-AC52—07NA27344.
Produced at the Lawrence Livermore National Laboratory.

All rights reserved.

For details , see the LICENSE file .

LLNS Copyright End

$Revision: 4075 $Date$

if nargin =1

ret = norm(x,1);

else

Intm = norm(x,1);

gntm = 0.0;

MPI_Allreduce (lnrm , gnrm, 'MAX’ comm) ;
ret = gnrm;

end

N_VMax

PURPOSE

N_VMax returns the largest element of x

SYNOPSIS

function ret = N_VMax(x,comm)

DESCRIPTION

96

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

N_VMax returns the largest element of x

Usage: RET = N_VMax (X [, cOMM])

If COMM is not present, N_VMax returns the maximum value of
the local portion of X. Otherwise, it returns the global
maximum value.

SOURCE CODE

function ret = N_VMax(x,comm)
% Radu Serban <radu@llnl.gov>
% LLNS Copyright Start
% Copyright (c¢) 2014, Lawrence Livermore National Security
% This work was performed under the auspices of the U.S. Department
% of Energy by Lawrence Livermore National Laboratory in part under
% Contract W=7405—Eng—48 and in part under Contract DE-AC52—07TNA27344.
% Produced at the Lawrence Livermore National Laboratory.
% All rights reserved.
% For details , see the LICENSE file.
% LLNS Copyright End
% $Revision: 4075 $Date$
if nargin =1

ret = max(x);
else

Ilmax = max(x);

gmax = 0.0;

MPI_Allreduce (lmax , gmax, 'MAX’ ,comm) ;

ret = gmax;
end

N_VMaxNorm

PURPOSE

N_VMaxNorm returns the L-infinity norm of x

SYNOPSIS

function ret = N_VMaxNorm(x, comm)

DESCRIPTION

N_VMaxNorm returns the L-infinity norm of x

Usage: RET = N_VMaxNorm (X [, COMM])

If COMM is not present, N_VMaxNorm returns the L-infinity norm
of the local portion of X. Otherwise, it returns the global

L_

infinity norm..

97

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

10

11

12

SOURCE CODE

function ret = N_-VMaxNorm(x, comm)

% Radu Serban <radu@llnl.gov>

% LLNS Copyright Start

% Copyright (c) 2014, Lawrence Livermore National Security

% This work was performed under the auspices of the U.S. Department
% of Energy by Lawrence Livermore National Laboratory in part under
% Contract W=7405—Eng—48 and in part under Contract DE-AC52—07TNA27344.
% Produced at the Lawrence Livermore National Laboratory.

% All rights reserved.

% For details, see the LICENSE file .

% LLNS Copyright End

% $Revision: 4075 $Date$

if nargin = 1
ret = norm(x, inf’);
else

Intm = norm(x, ’inf’);

gnrm = 0.0;
MPI_Allreduce (Inrm , gnrm, 'MAX’ ,comm) ;
ret = gnrm;
end
N_VMin
PURPOSE

N_VMin returns the smallest element of x
SYNOPSIS

function ret = N_VMin(x,comm)
DESCRIPTION

N_VMin returns the smallest element of x
Usage: RET = N_VMin (X [, COMM])

If COMM is not present, N_VMin returns the minimum value of
the local portion of X. Otherwise, it returns the global
minimum value.

SOURCE CODE

function ret = N_VMin(x,comm)
% Radu Serban <radu@llnl.gov>
% LLNS Copyright Start

% Copyright (c¢) 2014, Lawrence Livermore National Security
% This work was performed under the auspices of the U.S. Department

98

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

11

12

13

14

16

17

18

19

% of Energy by Lawrence Livermore National Laboratory in part under
% Contract W=7405—Eng—48 and in part under Contract DE-AC52—07TNA27344.
% Produced at the Lawrence Livermore National Laboratory.

% All rights reserved.

% For details , see the LICENSE file.
% LLNS Copyright End

% $Revision: 4075 $Date$

if nargin = 1

ret = min(x);
else

lmin = min(x);

gmin = 0.0;

MPI_Allreduce (lmin , gmin, "MIN’ ,comm) ;

ret = gmin;
end

N_VWL2Norm

PURPOSE

N_VWL2Norm returns the weighted Euclidean L2 norm of x
SYNOPSIS

function ret = N_VWL2Norm(x,w,comm)

DESCRIPTION

N_VWL2Norm returns the weighted Euclidean L2 norm of x
with weight vector w:
sqrt [(sum (i = 0 to N-1) (x[il*w[il)"2)]

Usage: RET = N_VWL2Norm (X, W [, COMM])

If COMM is not present, N_VWL2Norm returns the weighted L2
norm of the local portion of X. Otherwise, it returns the
global weighted L2 norm..

SOURCE CODE

function ret = N_VWL2Norm/(x ,w,comm)

% Radu Serban <radu@llnl.gov>
% LLNS Copyright Start

% Copyright (c¢) 2014, Lawrence Livermore National Security

% This work was performed under the auspices of the U.S. Department

% of Energy by Lawrence Livermore National Laboratory in part under

% Contract W=7405—Eng—48 and in part under Contract DE-AC52—07TNA27344.
% Produced at the Lawrence Livermore National Laboratory.

% All rights reserved.

99

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

11

12

13

14

15

16

17

18

19

20

21

% For details , see the LICENSE file.
% LLNS Copyright End
% $Revision: 4075 $Date$

if nargin = 2

ret = dot(x."2,w."2);
ret = sqrt(ret);

else
Intm = dot(x."2,w."2);
gnrm = 0.0;
MPI_Allreduce (lnrm , gnrm, 'SUM’ ;comm) ;

ret = sqrt(gnrm);

end

N_VWrmsNorm

PURPOSE

N_VWrmsNorm returns the weighted root mean square norm of x
SYNOPSIS

function ret = N_VWrmsNorm(x,w,comm)

DESCRIPTION

N_VWrmsNorm returns the weighted root mean square norm of x
with weight vector w:
sqrt [(sum (i = 0 to N-1) (x[i]*w[i])"2)/N]

Usage: RET = N_VWrmsNorm (X, W [, COMM])

If COMM is not present, N_VWrmsNorm returns the WRMS norm
of the local portion of X. Otherwise, it returns the global
WRMS norm. .

SOURCE CODE

function ret = N_-VWrmsNorm(x,w,comm)

% Radu Serban <radu@llnl.gov>
% LLNS Copyright Start

% Copyright (c¢) 2014, Lawrence Livermore National Security

% This work was performed under the auspices of the U.S. Department

% of Energy by Lawrence Livermore National Laboratory in part under

% Contract W=7405—Eng—48 and in part under Contract DE-AC52—07TNA27344.
% Produced at the Lawrence Livermore National Laboratory.

% All rights reserved.
% For details, see the LICENSE file .
% LLNS Copyright End

100

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

% $Revision: 4075 $Date$

if nargin = 2

ret = dot(x."2,w."2);
ret = sqrt(ret/length(x));

else
Intm = dot(x."2,w."2);
gnrm = 0.0;
MPI_Allreduce (lnrm , gnrm, 'SUM’ ,comm) ;
In = length(x);
gn = 0;
MPI_Allreduce (In,gn, ’SUM’ ,comm) ;
ret = sqrt(gnrm/gn);

end

101

6.2 Parallel utilities

mpirun

PURPOSE

MPIRUN runs parallel examples.
SYNOPSIS

function [] = mpirun(fct,npe,dbg)
DESCRIPTION

MPIRUN runs parallel examples.
Usage: MPIRUN (FCT , NPE [, DBG])

FCT - function to be executed on all MATLAB processes.
NPE - number of processes to be used (including the master).
DBG - flag for debugging [true | false]
If true, spawn MATLAB child processes with a visible xterm.

mpiruns

PURPOSE

MPIRUNS runs the parallel example on a child MATLAB process.
SYNOPSIS

function [] = mpiruns(fct)

DESCRIPTION

MPIRUNS runs the parallel example on a child MATLAB process.
Usage: MPIRUNS (FCT)

This function should not be called directly. It is called
by mpirun on the spawned child processes.

mpistart

PURPOSE

MPISTART invokes lamboot (if required) and MPI_Init (if required).
SYNOPSIS

function mpistart(nslaves, rpi, hosts)

DESCRIPTION

102

MPISTART invokes lamboot (if required) and MPI_Init (if required).
Usage: MPISTART [(NSLAVES [, RPI [, HOSTS] 1)]

MPISTART boots LAM and initializes MPI to match a given number of slave
hosts (and rpi) from a given list of hosts. All three args optional.

If they are not defined, HOSTS are taken from a builtin HOSTS list
(edit HOSTS at the beginning of this file to match your cluster)
or from the bhost file if defined through LAMBHOST (in this order).

If not defined, RPI is taken from the builtin variable RPI (edit it

to suit your needs) or from the LAM_MPI_SSI_rpi environment variable
(in this order).

103

A Implementation of CVodeMonitor.m

CVodeMonitor

PURPOSE

CVodeMonitor is the default CVODES monitoring function.
SYNOPSIS

function [new_data] = CVodeMonitor(call, T, Y, YQ, YS, data)
DESCRIPTION

CVodeMonitor is the default CVODES monitoring function.
To use it, set the Monitor property in CVodeSetOptions to
’CVodeMonitor’ or to @CVodeMonitor and ’MonitorData’ to mondata
(defined as a structure).

With default settings, this function plots the evolution of the step
size, method order, and various counters.

Various properties can be changed from their default values by passing
to CVodeSetOptions, through the property ’MonitorData’, a structure
MONDATA with any of the following fields. If a field is not defined,
the corresponding default value is used.

Fields in MONDATA structure:
o stats [true | false]
If true, report the evolution of the step size and method order.
o cntr [true | false]
If true, report the evolution of the following counters:
nst, nfe, nni, netf, ncfn (see CVodeGetStats)
o mode [’graphical’ | ’text’ | ’both’]
In graphical mode, plot the evolutions of the above quantities.
In text mode, print a table.
o sol [true | false]
If true, plot solution components.
o sensi [true | false]
If true and if FSA is enabled, plot sensitivity components.
o select [array of integers]
To plot only particular solution components, specify their indeces in
the field select. If not defined, but sol=true, all components are plotted.
o updt [integer | 50]
Update frequency. Data is posted in blocks of dimension n.
o skip [integer | 0]
Number of integrations steps to skip in collecting data to post.
o post [true | false]
If false, disable all posting. This option is necessary to disable
monitoring on some processors when running in parallel.

See also CVodeSetOptions, CVMonitorFn
NOTES:
1. The argument mondata is REQUIRED. Even if only the default options

are desired, set mondata=struct; and pass it to CVodeSetOptions.
2. The yQ argument is currently ignored.

104

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

T4

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

SOURCE CODE
function [new_data] = CVodeMonitor(call, T, Y, YQ, YS, data)

% Radu Serban <radu@llnl.gov>

% LLNS Copyright Start

% Copyright (c¢) 2014, Lawrence Livermore National Security

% This work was performed under the auspices of the U.S. Department
% of Emnergy by Lawrence Livermore National Laboratory in part under
% Contract W=7405—Eng—48 and in part under Contract DE-AC52—07TNA27344.
% Produced at the Lawrence Livermore National Laboratory.

% All rights reserved.

% For details , see the LICENSE file .

% LLNS Copyright End

% $Revision: 4075 $Date: 2007/05/11 18:51:32 §

if (nargin "= 6)
error ("Monitor_data._not._defined.’);
end
new_data = [];
if call =0

% Initialize unspecified fields to default values.
data = initialize_data (data);

% Open figure windows
if data.post

if data.grph

if data.stats | data.cntr
data.hfg = figure;
end
% Number of subplots in figure hfg

if data.stats
data.npg = data.npg + 2;
end
if data.cntr
data.npg = data.npg + 1;
end
end

if data.text
if data.cntr | data.stats
data.hft = figure;
end
end

if data.sol | data.sensi
data.hfs = figure;

end

end

105

% Initia
data . i
data.n
data .t

lize other private data
= 0;
= zeros (1,data.updt);

if data.stats

data
data
end

.h = zeros(1,data.updt);
.q = zeros (1,data.updt);

if data.cntr

data.nst = zeros(1,data.updt);
data.nfe = zeros(1,data.updt);
data.nni = zeros(1,data.updt);
data.netf = zeros(1,data.updt);
data.ncfn = zeros(1,data.updt);
end
data. first = true; % the next one will be the first
data.initialized = false; % the graphical windows were not
new_data = data;
return;
else
% If this is the first call "= 0,
% use Y and YS for additional initializations

if data.first

if isempty (YS)

data.sensi = false;

end

if data.sol | data.sensi
if isempty(data.select)

data.N = length(Y);
data.select = [1:data.N]J;

else

data.N = length (data.select);

end

if

data.sol

data.y = zeros(data.N,data.updt);

data.nps = data.nps + 1;

end

if

data.sensi
data.Ns = size (YS,2);

106

call =1
initalized

data.ys = zeros(data.N, data.Ns, data.updt);
data.nps = data.nps + data.Ns;
end
end
data. first = false;
end

% Extract variables from data

hfg
hft
hfs
npg
nps
i

nst
nfe
nni
netf
ncfn

end

% Load current

if call

if i

data .
.hft;
data .
data.
data.
= data.
data.n
data .
data .
data .
data .
VS
data .
data .
data .
data.
.nni;
data .
data .

data

data

data

:1

0

hfg ;

hfs;

npg;
nps;

q;
nst ;
nfe ;

netf;
ncin;

statistics?

i=1i-1;
data.i = i;
new_data = data;
return ;

end

si = CVodeGetStats;
t(n) =

si.tcur;

if data.stats

h(n) = si.hlast;
q(n) = si.qlast;
end

107

if data.cntr

nst(n) = si.nst;
nfe(n) = si.nfe;
nni(n) = si.nnij;
netf(n) = si.netf;
ncfn (n) = si.ncfn;

end

if data.sol
for j = 1:N

y(j,n) = Y(data.select(j));

end

end

if data.sensi
for k = 1:Ns

for j = 1:N
ys(j,k,n) = YS(data.select (j),k);
end
end
end
end

% Is it time to post?
if data.post & (n = data.updt | call==2)
if call = 2
n =n—1;
end
if “data.initialized

if (data.stats | data.cntr) & data.grph

graphical_init (n, hfg, npg, data.stats, data.cntr,
t, h, q, nst, nfe, nni, netf, ncfn);

end

if (data.stats | data.cntr) & data.text
text_init (n, hft, data.stats, data.cntr,
t, h, q, nst, nfe, nni, netf, ncfn);
end

if data.sol | data.sensi
sol_init (n, hfs, nps, data.sol, data.sensi,
N, Ns, t, vy, ys);
end

data.initialized = true;

else

108

259

261

262

263

264

266

267

269

270

271

272

274

275

276

277

279

280

281

282

284

285

286

287

289

290

291

292

294

295

296

297

299

300

301

302

304

305

306

307

309

310

312

if (data.stats | data.

graphical _update (n,

end

if (data.stats | data.

t,

text_update (n, hft,
t, h, q, nst, nfe, nni, netf, ncfn);

sol_update (n, hfs, nps, data.sol, data.sensi, N, Ns, t, y, ys);

end
if data.sol
end

end

if call = 2

hfg , npg,

data.stats

cntr) & data.grph

data.stats ,
h, g, nst, nfe, nni, netf, ncfn);

)

cntr) & data.text

data.cntr

if (data.stats | data.cntr) & data.grph
graphical_final (hfg, npg, data.cntr, data.stats);

end

if data.sol | data.sensi
sol_final (hfs, nps, data.sol, data.sensi, N, Ns);

end
return;

end

end

% Save updated values

data. i = data.skip;
data.n = n;
data.npg = npg;
data.t = t;
data.y =vy;
data.ys = ys;
data.h = h;
data.q = q;
data.nst = nst;
data.nfe = nfe;
data.nni = nni;
data.netf = netf;
data.ncfn = ncfn;

in

data

109

)

data.cntr

new_data = data;

return ;

%

function data = initialize_data (data)

if “isfield (data, mode’)
data.mode = ’'graphical ’;

end

if “isfield (data, updt’)
data.updt = 50;

end

if “isfield (data, skip’)
data.skip = 0;

end

if “isfield (data,’stats’)
data.stats = true;

end

if “isfield (data, cntr’)
data.cntr = true;

end

if “isfield (data,’sol”)
data.sol = false;

end

if “isfield (data,’sensi’)
data.sensi = false;

end

if “isfield (data, select’)
data.select = [];

end

if “isfield (data, post’)
data.post = true;

end

data.grph = true;

data.text = true;

if strecmp(data.mode, ’graphical ”)
data.text = false;

end

if stremp(data.mode, text)
data.grph = false;

end

if “data.sol & “data.sensi
data.select = [];
end

% Other initializations
data.npg = 0;
data.nps = 0;
data.hfg = 0;

110

data. hft =
data . hfs
data.h =
data.q =
data . nst
data . nfe
data . =
data.netf =
data.ncfn =
data.N = 0;
data.Ns = 0;
data.y = 0;
data.ys = 0;

|
=

I ool

=
E.
|l
o O

\
o o~

%

function [] = graphical_init(n, hfg, npg, stats, cntr,
t, h, q, nst, nfe, nni, netf, ncfn)

fig_name = 'CVODES_run.statistics ’;

% If this is a parallel job, look for the MPI rank in the global
% workspace and append it to the figure name

global sundials_MPI_rank

if “isempty (sundials_MPI_rank)

fig_-name = sprintf(' %s.(PE.%d) ', fig.-name ,sundials_ MPI_rank);

end

figure (hfg);

set (hfg, 'Name’ ,fig_name);
set (hfg, color’ ,[1 1 1]);
pl = 0;

% Time label and figure title

tlab = ’\rightarrow.._t_..\rightarrow ’;

% Step size and order
if stats
pl = pl+1;
subplot (npg,1,pl)
semilogy (t (1:n),abs(h(1l:n)),’=");
hold on;
box on;
grid on;
xlabel (tlab);
ylabel (7| Step.size|’);

pl = pl+1;

subplot (npg,1,pl)

plot (t (1:n),q(l:n), =7);
hold on;

111

box on;

grid on;

xlabel (tlab);

ylabel (’Order’);
end

% Counters

if cntr
pl = pl+1;
subplot (npg,1,pl)

plot (t(1:n),nst(1l:n), ’k=");
hold on;
plot(t(1l:n),nfe(l:n), b—");
plot(t(l:n),nni(l:n),’r=");
plot (t(1:n),netf(1:n), ' g—");
plot(t(:n),ncfn (l:n), ¢c=");
box on

grid on,

xlabel (tlab);
ylabel (’Counters’);

end
drawnow ;
%
function [] = graphical_update(n, hfg, npg, stats, cntr,
t, h, q, nst, nfe, nni, netf, ncfn)
figure (hfg);
pl = 0;
% Step size and order
if stats
pl = pl+1;
subplot (npg,1,pl)
hc = get(gca, Children ’)
xd = [get (hc, XData’) t(l:n)];
yd = [get (hc, "YData’) abs((1:n))];
set (he, 'XData’, xd, ’YData’, yd);
pl = pl+1;
subplot (npg,1,pl)
he = get(gca,’ Children’);
xd = [get (hc, 'XData’) t(1l:n)];
yd = [get (hc, 'YData’) gq(l:n)];
set (hc, 'XData’, xd, ’YData’, yd);
end

% Counters
if cntr
pl = pl+1;
subplot (npg,1,pl)
he = get(gca,’ Children’);

112

475

477

478

479

480

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

%

Attention: Children are loaded in reverse

xd = [get (he(1l), XData’) t(1l:n)];
yd = [get (hc(1l),’YData’) ncfn(l:n)];
set (he (1), 'XData’, xd, ’YData’, yd);
yd = [get(hc(2), YData’) netf(1l:n)];
set (he(2), ’XData’, xd, ’YData’, yd);
yd = [get (hc(3), YData’) nni(l:n)];
set (he(3), ’XData’, xd, ’YData’, yd);
yd = [get(hc(4), YData’) nfe(1:n)];
set (he(4), 'XData’, xd, ’'YData’, yd);
yd = [get (hc(5), YData’) nst(1l:n)];
set (he(5), ’XData’, xd, ’YData’, yd);

end

drawnow ;

%

function [] = graphical_final (hfg ,npg,stats

figure (hfg);
pl = 0;

if stats

pl = pl+1;

subplot (npg,1,pl)

he = get(gea, Children’);

xd = get (he, 'XData’);

set (gea, 'XLim’ ,sort ([xd(1) xd(end)]));

pl = pl+1;

subplot (npg,1,pl)

ylim = get(gca, YLim’);
ylim (1) = ylim (1) — 1;
ylim(2) = ylim(2) + 1;
set (gca, 'YLim’ ,ylim);
set (geca, 'XLim’ ,sort ([xd(1) xd(end)]));

)

end

if cntr

pl = pl+1;

subplot (npg,1,pl)

hec = get(gea, Children’);

xd = get (he(1), XData’);

set (geca, 'XLim’ ,sort ([d(l) d(end)]));

legend ("nst’, 'nfe’, ’nni’, 'netf’, 'ncfn’ ,2);

end

%

function

fig_.name = 'CVODES_run.statistics ’;

113

[] = text_init (n,hft,stats ,cntr,t,h,q,nst,nfe ,nni,netf,ncfn)

% If this is a parallel job, look for the MPI rank in the global
% workspace and append it to the figure name

global sundials_MPI_rank

if “isempty(sundials_ MPI_rank)
fig_-name = sprintf(' %s_.(PE.%d) ', fig.-name ,sundials_ MPI_rank);
end

figure (hft);

set (hft , 'Name’ ,fig_name)
set (hft , "color’,[1 1 1])
set (hft , "MenuBar’, "none’
set (hft, "Resize’, off 7);

)

)i

% Create text box

margins=[10 10 50 50]; % left , right, top, bottom

pos=get (hft , "position’);

tbpos=[margins (1) margins(4) pos(3)—margins(l)—margins(2)
pos(4)—margins(3)—margins (4)];

thbpos (thpos <1)=1;

htb=uicontrol (hft , style’, ’listbox’, position’ ,tbpos, 'tag’, textbox’);
set (htb, ’BackgroundColor’ ,[1 1 1]);

set (htb, ’SelectionHighlight ’, off 7);

set (htb, "FontName’,’courier ’);

% Create table head

tpos = [tbpos(1) tbpos(2)+tbpos(4)+10 tbpos(3) 20];

ht=uicontrol (hft, style’, text’, position’,tpos,’tag’, 'text’);

set (ht, ’BackgroundColor’ ,[1 1 1]);

set (ht, "HorizontalAlignment ', left 7);

set (ht, "FontName’, ’courier ’);

newline = ’___time___.______ stepocoooo order..|....nst_._..nfe___.nni__netf__necfn’;

set (ht, ’String’,newline);
% Create OK button

bsize =[60,28];
badjustpos=[0,25];
bpos=[pos(3)/2—Dbsize(1)/24+badjustpos (1) —bsize(2)/2+badjustpos (2)...
bsize (1) bsize (2)];
bpos=round (bpos);
bpos (bpos <1)=1;
hb=uicontrol (hft, ’style’, pushbutton’,’ position’ ,bpos,...
"string ', 'Close’, "tag’, ’okaybutton’);
set (hb, "callback ', close 7);

)

% Save handles

handles=guihandles (hft);
guidata (hft ,handles);

114

for i = 1:n
newline = 7 ;
if stats
newline = sprintf(’%10.3e...%10.3eccoae Yoldecoo] 7,6 (1) ,h(1),q(i));
end
if cntr
newline = sprintf ("%s _-%5d _%5d -%5d -%5d . %5d " ...
newline ,nst(i),nfe(i),nni(i),netf(i),ncfn(i));
end
string = get(handles.textbox,’String’);
string {end+1}=newline;
set (handles.textbox ,’String’,string);
end

drawnow

%

function [] = text_update(n,hft, stats,cntr,t,h,q,nst,nfe, nni,netf, ncfn)
figure (hft);
handles=guidata (hft);

for i = 1:n
if stats
newline = sprintf(’%10.3e...%10.3e..... Joldeccc] 7yt (i), h(i),q(i));
end
if cntr
newline = sprintf ("%s_%5d_%5d_%5d _%5d_%5d" ...
newline ,nst (i),nfe(i),nni(i),netf(i),ncfn(i));
end
string = get (handles.textbox ,’String’);
string {end+1}=newline;
set (handles.textbox ,’String’,string);
end

drawnow

%

function [] = sol_init(n, hfs, nps, sol, sensi, N, Ns, t, y, ys)
fig_name = ’CVODES_solution ’;

% If this is a parallel job, look for the MPI rank in the global
% workspace and append it to the figure name

global sundials_MPI _rank
if Tisempty (sundials_MPI_rank)

fig_-name = sprintf(" %s_(PE.%d)’,fig.-name ,sundials_ MPI_rank);
end

115

figure (hfs);
set (hfs, 'Name’ ,fig_name);
set (hfs, color’ ,[1 1 1]);

% Time label
tlab = ’\rightarrow._._t_..\rightarrow ’;

% Get number of colors in colormap
map = colormap;
ncols = size (map,1);

% Initialize current subplot counter
pl = 0;

if sol

pl = pl+1;
subplot (nps,1,pl);
hold on;

for i = 1:N
hp = plot(t(1l:n),y(i,l:n),’=");
ic = 14+(i—1)*floor (ncols/N);
set (hp, "Color’ ,map(ic ,:));

end

box on;

grid on;

xlabel (tlab);

ylabel ('y");

title (’Solution’);

end
if sensi
for is = 1:Ns

pl = pl+1;
subplot (nps,1,pl);
hold on;

ys_crt = ys(:,is,l:n);

for i = 1:N
hp = plot (t(1:n),ys_crt(i,l:n),’'=");
ic = 14(i—1)*floor (ncols/N);
set (hp, "Color’ ;map(ic ,:));

end

box on;

grid on;

xlabel (tlab);

str = sprintf(’s_{%d}’,is); ylabel(str);

116

691

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

741

742

743

744

str = sprintf(’Sensitivity %d’,is);

end

end

drawnow ;

%

title (str);

function [] = sol_update(n, hfs, nps, sol,

figure (hfs);

if sol

pl = pl+1;

subplot (nps,1,pl);

he = get(gca, ’ Children’);
xd = [get (he(1l),’XData’) t(1l:n)];

% Attention: Children

yd = [get (hc(i), YData’) y(N-i+1,1:n)];

"YData’, yd);

xd = [get (he (1), XData’) t(1:n)];

for i = 1:N
set (he(i), ’XData’, xd,
end
end
if sensi
for is = 1:Ns
pl = pl+1;
subplot (nps,1,pl);
ys_crt = ys(:,is ,:);
he = get(gca, Children’);
% Attention: Children

for 1 = 1:N

are loaded in reverse

sensi, N, Ns, t, y, ys)

are loaded in reverse order!

order!

yd = [get(hc(i),’YData’) ys_crt (N-i+1,1:n)];

set (he(i),
end

end

end

"XData’, xd,

"YData’, yd);

117

drawnow ;

0,

function [] = sol_final(hfs, nps, sol, sensi, N, Ns)
figure (hfs);

pl = 0;

if sol

pl = pl +1;
subplot (nps,1,pl);

)

he = get(gca,’ Children)
xd = get (he(1), XData’);
set (geca, 'XLim’ ,sort ([xd(1) xd(end)]));
ylim = get(gca, YLim’);

addon = 0.1xabs(ylim(2)—ylim (1));

ylim (1) = ylim (1) 4 sign(ylim(1))xaddon;
ylim (2) = ylim (2) + sign(ylim(2))x*addon;
set (geca, "YLim’ ,ylim);

for i = 1:N
cstring{i} = sprintf('y {%d}’,i);
end

legend (cstring);
end
if sensi

for is = 1:Ns

pl = pl+1;
subplot (nps,1,pl);

bl

1) xd(end)]));

he = get(gca, Children’
xd = get (he (1), XData’)
set (geca, 'XLim’ ,sort ([xd

:
(

ylim = get(gca, 'YLim’);

addon = 0.1xabs(ylim(2)—ylim (1));

ylim (1) = ylim (1) + sign(ylim(1))+*addon;
ylim (2) = ylim(2) + sign(ylim(2))+*addon;
set (geca, "YLim’ ,ylim);

for i = 1:N
cstring{i} = sprintf(’s%d_{%d}’ ,is,i);
end

legend (cstring);

118

799

801

802

804

end

end

drawnow

CVodeMonitorB

PURPOSE

CVodeMonitorB is the default CVODES monitoring function for backward problems.
SYNOPSIS

function [new_data] = CVodeMonitorB(call, idxB, T, Y, YQ, data)

DESCRIPTION

CVodeMonitorB is the default CVODES monitoring function for backward problems.
To use it, set the Monitor property in CVodeSetOptions to
’CVodeMonitorB’ or to @CVodeMonitorB and ’MonitorData’ to mondata
(defined as a structure).

With default settings, this function plots the evolution of the step
size, method order, and various counters.

Various properties can be changed from their default values by passing
to CVodeSetOptions, through the property ’MonitorData’, a structure
MONDATA with any of the following fields. If a field is not defined,
the corresponding default value is used.

Fields in MONDATA structure:
o stats [true | false]
If true, report the evolution of the step size and method order.
o cntr [true | false]
If true, report the evolution of the following counters:
nst, nfe, nni, netf, ncfn (see CVodeGetStats)
o mode [’graphical’ | ’text’ | ’both’]
In graphical mode, plot the evolutions of the above quantities.
In text mode, print a table.
o sol [true | false]
If true, plot solution components.
o select [array of integers]
To plot only particular solution components, specify their indeces in
the field select. If not defined, but sol=true, all components are plotted.
o updt [integer | 50]
Update frequency. Data is posted in blocks of dimension n.
o skip [integer | 0 1]
Number of integrations steps to skip in collecting data to post.
o post [true | false]
If false, disable all posting. This option is necessary to disable
monitoring on some processors when running in parallel.

119

See also CVodeSetOptions, CVMonitorFnB

NOTES:
1. The argument mondata is REQUIRED. Even if only the default options
are desired, set mondata=struct; and pass it to CVodeSetOptions.
2. The yQ argument is currently ignored.

B Implementation of IDAMonitor.m

IDAMonitor

PURPOSE

IDAMonitor is the default IDAS monitoring function.
SYNOPSIS

function [new_data] = IDAMonitor(call, T, Y, YQ, YS, data)
DESCRIPTION

IDAMonitor is the default IDAS monitoring function.
To use it, set the Monitor property in IDASetOptions to
’IDAMonitor’ or to ©@IDAMonitor and ’MonitorData’ to mondata
(defined as a structure).

With default settings, this function plots the evolution of the step
size, method order, and various counters.

Various properties can be changed from their default values by passing
to IDASetOptions, through the property ’MonitorData’, a structure
MONDATA with any of the following fields. If a field is not defined,
the corresponding default value is used.

Fields in MONDATA structure:
o stats [true | false]
If true, report the evolution of the step size and method order.
o cntr [true | false]
If true, report the evolution of the following counters:
nst, nfe, nni, netf, ncfn (see IDAGetStats)
o mode [’graphical’ | ’text’ | ’both’]
In graphical mode, plot the evolutions of the above quantities.
In text mode, print a table.
o sol [true | false]
If true, plot solution components.
o sensi [true | false]
If true and if FSA is enabled, plot sensitivity components.
o select [array of integers]
To plot only particular solution components, specify their indeces in
the field select. If not defined, but sol=true, all components are plotted.
o updt [integer | 50]
Update frequency. Data is posted in blocks of dimension n.
o skip [integer | 0]

120

45

46

47

48

49

50

51

52

53

54

56

57

58

59

60

61

62

63

64

66

67

68

69

70

71

72

73

T4

75

76

7

78

79

80

81

82

83

84

Number of integrations steps to skip in collecting data to post.

o post [true | false]
If false, disable all posting. This option is necessary to disable
monitoring on some processors when running in parallel.

See also IDASetOptions, IDAMonitorFn

NOTES:
1. The argument mondata is REQUIRED. Even if only the default options
are desired, set mondata=struct; and pass it to IDASetOptions.
2. The yQ argument is currently ignored.

SOURCE CODE
function [new_data] = IDAMonitor(call, T, Y, YQ, YS, data)

% Radu Serban <radu@llnl.gov>

% LLNS Copyright Start

% Copyright (c¢) 2014, Lawrence Livermore National Security

% This work was performed under the auspices of the U.S. Department
% of Energy by Lawrence Livermore National Laboratory in part under
% Contract W=7405—Eng—48 and in part under Contract DE-AC52—07TNA27344.
% Produced at the Lawrence Livermore National Laboratory.

% All rights reserved.

% For details , see the LICENSE file .

% LLNS Copyright End

% $Revision: 4075 $Date: 2007/08/21 17:38:42 §

if (nargin "= 6)
error ("Monitor_data._not._defined.’);
end
new_data = [];
if call =0

% Initialize unspecified fields to default values.
data = initialize_data (data);

% Open figure windows
if data.post

if data.grph

if data.stats | data.cntr
data.hfg = figure;
end
% Number of subplots in figure hfg

if data.stats
data.npg = data.npg + 2;
end
if data.cntr
data.npg = data.npg + 1;
end
end

121

85

86

87

88

89

90

91

92

93

94

96

97

98

99

100

101

102

103

if data.text

if data.cntr

data.hft = figure;

end
end

if data.sol

| data.sensi

data.hfs = figure;

end

end

% Initialize other

data.i =
data.n =
data.t =

if data.stats

0;
1;

| data.stats

private data

zeros (1,data.updt);

data.h = zeros(1,data.updt);
data.q = zeros(1,data.updt);

end
if data.cntr
data.nst = zeros(1,data.updt);
data.nfe = zeros(1,data.updt);
data.nni = zeros(1,data.updt);
data.netf = zeros(1,data.updt);
data.ncfn = zeros(1,data.updt);
end
data. first = true; % the next one will be the first
data.initialized = false; % the graphical windows were not
new_data = data;
return;
else

% If this

if data.first

is

the first call
% use Y and YS for additional initializations

if isempty (YS)
data.sensi = false;

end

if data.sol

| data.sensi

if isempty(data.select)

data.N = length (Y);
data.select = [1:data.N];

else

0,

122

call =1
initalized

end
if data.sol
data.y = zeros(data.N,data.updt);
data.nps = data.nps + 1;
end
if data.sensi
data.Ns = size (YS,2);
data.ys = zeros(data.N, data.Ns, data.updt);
data.nps = data.nps + data.Ns;
end
end
data.first = false;
end
% Extract variables from data
hfg = data.hfg;
hft = data.hft;
hfs = data.hfs;
npg = data.npg;
nps = data.nps;
i = data.i;
n = data.n;
t = data.t;
N = data.N;
Ns = data.Ns;
y = data.y;
vS = data.ys;
h = data.h;
q = data.q;
nst = data.nst;
nfe = data.nfe;
nni = data.nni;
netf = data.netf;
ncfn = data.ncfn;
end
% Load current statistics?

data.N = length (data.select);

if call =1
if 17 =0
= i1
data.1 =

)

123

new_data = data;
return;
end

si = IDAGetStats;

t(n) = si.tcur;

if data.stats
h(n) = si.hlast;
q(n) = si.qlast;

end

if data.cntr

nst(n) = si.nst;
nfe(n) = si.nfe;
nni(n) = si.nnij;
netf(n) = si.netf;
ncfn (n) = si.ncfn;

end

if data.sol
for j = 1:N

y(j,n) = Y(data.select(j));

end

end

if data.sensi

for k = 1:Ns
for j = 1:N
ys(j,k,n) = YS(data.select (j),k);
end
end
end

end
% Is it time to post?
if data.post & (n = data.updt | call==2)
if call = 2
n =n—1;
end
if “data.initialized
if (data.stats | data.cntr) & data.grph
graphical_init (n, hfg, npg, data.stats, data.cntr,
t, h, q, nst, nfe, nni, netf, ncfn);
end
if (data.stats | data.cntr) & data.text
text_init (n, hft, data.stats, data.cntr,

124

t, h, q, nst, nfe, nni, netf, ncfn);

end

if data.sol | data.sensi

sol_init (n, hfs, nps, data.sol, data.sensi,
N, Ns, t, vy, ys);

end

data.initialized

else

if (data.stats | data.
graphical_update (n,
t,

end

if (data.stats | data.
text_update(n, hft,

end

if data.sol

sol_update (n, hfs, nps, data.sol, data.sensi, N, Ns, t, vy,

end

end

if call =— 2

if (data.stats | data.cntr) & data.grph
graphical_final (hfg, npg, data.cntr, data.stats);

end

true ;

cntr) & data.grph

hfg , npg, data.stats,

h, q, nst, nfe, nni, netf, ncfn);

cntr) & data.text

data.stats ,

if data.sol | data.sensi

sol_final (hfs, nps, data.sol, data.sensi, N, Ns);

end
return ;

end

end

% Save updated values

data . i = data.skip;

in

data

125

data.cntr

data.cntr,
t, h, q, nst, nfe, nni, netf, ncfn);

data.n = n;

data.npg = npg;
data.t = t;
data.y =vy;
data.ys = ys;
data.h = h;
data.q = q;
data.nst = nst;
data.nfe = nfe;
data.nni = nni;
data.netf = netf;
data.ncfn = ncfn;
new_data = data;
return;

%

function data = initialize_data (data)

if “isfield (data, mode”)
data.mode = ’'graphical ’;

end

if “isfield (data, ’updt’)

data.updt = 50;
end

if “isfield (data, ’skip’)

data.skip = 0;

end

if “isfield (data, stats’)
data.stats = true;

end

if “isfield (data, ’cntr’)
data.cntr = true;

end

if “isfield (data, ’sol’)
data.sol = false;

end

if “isfield (data,’sensi’)
data.sensi = false;

end

if “isfield (data,’ select’)

data.select = [];
end

if “isfield (data, post’)

data.post = true;
end

data.grph = true;
data.text = true;

if strcmp(data.mode, ’graphical ”)

data.text = false;
end

126

405

406

407

408

if stremp(data.mode, "text)
data.grph = false;
end

if “data.sol & “data.sensi
data.select = [];
end

% Other initializations
data.npg = 0;

data.nps
data. hfg
data . hft
data. hfs
data.h =
data.q =
data.nst
data.nfe = 0;
data.nni = 0;
data.netf = 0;
data.ncfn = 0;

b
)

0
0
0;
0

b

ool

data.N = 0;
data.Ns = 0;
data.y = 0;
data.ys = 0;
%

function []

)

fig_.name = ’IDAS_run.statistics ’;

% If this is a parallel job, look for the MPI rank in the global
% workspace and append it to the figure name

global sundials_MPI_rank

if “isempty (sundials_ MPI_rank)

fig_.name = sprintf(%s.(PE.%d) ’,fig_-name ,sundials_MPI_rank);

end

figure (hfg);

set (hfg , 'Name’ , fig_name);

set (hfg, color’ ,[1 1 1]);

pl = 0;

% Time label and figure title

tlab = ’\rightarrow.__._t_._\rightarrow ’;
% Step size and order

if stats
pl = pl+1;

127

graphical_init (n, hfg, npg, stats, cntr,
t, h, g, nst, nfe, nni, netf, ncfn)

subplot (npg,1,pl)

semilogy (t(1:n),abs(h(1l:n)),’=");
hold on;

box on;

grid on;

xlabel (tlab);

ylabel (7| Step.size|’);

pl = pl+1;
subplot (npg,1,pl)
plot (t (1:n),q(l:n), =7);
hold on;
box on;
grid on;
xlabel (tlab);
ylabel (’Order’);
end

% Counters

if cntr
pl = pl+1;
subplot (npg,1,pl)
plot (t(1:n),nst(1l:n), k=");
hold on;
plot (t(1l:n),nfe(l:n), ’b=");
plot (t(1:n),nni(l:n), ' r=");
plot (t(1:n),netf(1l:n),’g—");
plot (t(1:n),ncfn(1l:n),’c—");
box on;
grid on;
xlabel (tlab);
ylabel (’Counters’);
end
drawnow ;
%
function [] = graphical_update(n, hfg, npg, stats, cntr,
t, h, q, nst, nfe, nni, netf, ncfn)
figure (hfg);
pl = 0;
% Step size and order
if stats
pl = pl+1;

subplot (npg,1,pl)

he = get(gca,’ Children’);

xd = [get (hc, 'XData’) t(1l:n)];

yd = [get (hc, ’YData’) abs(h(1l:n))];
set (hc, 'XData’, xd, ’YData’, yd);

pl = pl+1;

128

subplot (npg,1,pl)

he = get(gca,’ Children’

xd = [get (hc, 'XData’)

yd = [get (he, "YData’)

set (he, 'XData’, xd,
end

% Counters

if cntr
pl = pl+1;
subplot (npg,1,pl)

);
t(l:n)];
q(l:n)];
"YData’, yd);

he = get(gca,’ Children’);

% Attention: Children are loaded in
xd = [get (he(1),’XData’) t(1l:n)];
yd = [get (he(1),’YData’) ncfn(1:n)];
set (he (1), 'XData’, xd, ’'YData’, yd);
yd = [get (hc(2), YData’) netf(1l:n)];
set (he(2), ’XData’, xd, ’YData’, yd);
yd = [get (hc(3),’YData’) nni(l:n)];
set (he(3), 'XData’, xd, ’YData’, yd);
yd = [get (hc(4), YData’) nfe(1l:n)];
set (he(4), ’XData , xd, ’YData’, yd);
yd = [get (he(5), YData’) nst(l:n)];
set (he(5), ’XData’, xd, ’YData’, yd);

end

drawnow ;

%

function [] =

figure (hfg);
pl = 0;

if stats
pl = pl+1;
subplot (npg,1,pl)

graphical_final (hfg ,npg, stats ,

,sort ([xd(1) xd(end)]));

he = get(gca, Children’);
xd = get (hc, 'XData’);

set (gca, 'XLim’

pl = pl+1;

subplot (npg,1,pl)

ylim = get(gca, YLim’
ylim (1) = ylim (1) — 1;
ylim (2) = ylim (2) + 1;

set (gea, 'YLim’ ,ylim);
set (gea , "XLim”’

end

if cntr
pl = pl+1;

subplot (npg,1,pl)

,sort (7[xd(1)

d(end)]));

129

reverse

he = get(gca,’ Children’);

xd = get (he(1), ’XData’);
set (geca, 'XLim’ ,sort ([xd(1) xd(end)]));
legend ("nst’, 'nfe’, ’nni’, "netf’, 'ncfn’ ,2);
end
%
function [] = text_init(n,hft, stats,cntr,t,h,q,nst,nfe nni,netf, ncin)
fig_.name = ’'IDAS_run.statistics’;

% If this is a parallel job, look for the MPI rank in the global
% workspace and append it to the figure name

global sundials_MPI_rank

if Tisempty (sundials MPI_rank)
fig_.name = sprintf(%s.(PE.%d) ’,fig_-name ,sundials_MPI_rank);
end

figure (hft);

set (hft , 'Name’ , fig_name)
set (hft, ’color’,[1 1 1])
set (hft , "MenuBar’, "none’
set (hft , "Resize’, off7);

k)

)i

% Create text box

margins=[10 10 50 50]; % left , right, top, bottom

pos=get (hft , ’position ’);

tbpos=[margins (1) margins(4) pos(3)—margins(l)—margins(2)
pos(4) —margins(3)—margins (4)];

thpos (thpos <1)=1;

htb=uicontrol (hft , style’,’listbox ’, position’ ,tbpos, 'tag’, textbox’);

set (htb, ’BackgroundColor’ ,[1 1 1]);
set (htb,’SelectionHighlight ’, " off 7);
set (htb, "FontName’,’courier ’);

% Create table head

tpos = [tbpos(l) tbpos(2)+tbpos(4)+10 tbpos(3) 20];
ht=uicontrol (hft, style’, text’, position’,tpos, 'tag’, text’);
set (ht, "BackgroundColor’ ,[1 1 1]);

set (ht, "HorizontalAlignment ', left ’);

set (ht, "FontName’, ’courier ’);

newline = oo timeoooooooos stepocooos order..|....nsto..nfe...nni_..netf_.necfn’;

set (ht,’String ’ ,newline);
% Create OK button

bsize =[60,28];
badjustpos =[0,25];

130

bpos=[pos(3)/2—Dbsize(1)/24+badjustpos (1) —bsize(2)/2+badjustpos (2)...
bsize (1) bsize (2)];
bpos=round (bpos);
bpos (bpos<1)=1;
hb=uicontrol (hft, style’, ’pushbutton’,’ position’ bpos,...
"string 7, ' Close’, "tag’, ’okaybutton’);
set (hb, "callback ', ’close 7);

)

% Save handles

handles=guihandles (hft);
guidata (hft ,handles);

for i = 1:n
newline = 7
if stats
newline = sprintf(’%10.3e...%10.3e..... Poldoccc] 7yt (i) ,h(1),q(i));
end
if cntr
newline = sprintf (%s_%5d_%5d_%5d _%5d_-%5d" ...
newline ,nst (i),nfe(i),nni(i),netf(i),ncfn(i));
end
string = get (handles.textbox , ' String’);
string {end+1}=newline;
set (handles.textbox ,’String’,string);
end

drawnow

%

function [] = text_update(n,hft, stats,cntr,t,h,q,nst,nfe,nni,netf 6 ncfn)
figure (hft);
handles=guidata (hft);

for i = 1:n
if stats
newline = sprintf(’%10.3e...%10.3e_oo_o Joldoooo|?,6(1),h(1),q(i));
end
if cntr
newline = sprintf ('%s_%5bd_%5d_%5d -%5d. . %5d 7 ...
newline ,nst (i),nfe(i),nni(i),netf(i),ncfn(i));
end
string = get (handles.textbox ,’String’);
string{end+1}=newline;
set (handles.textbox , ’String’,string);
end

drawnow

%

131

function [] = sol_init(n, hfs, nps, sol, sensi, N, Ns, t, y, ys)
fig_.name = ’IDAS_solution’

% 1f this is a parallel job,
% workspace and append it to the figure name

global sundials_MPI_rank

if “isempty(sundials_MPI_rank)
fig_-name = sprintf(' %s.(PE.%d)’,fig.-name ,sundials_ MPI_rank);

end

figure (hfs);

set (hfs, 'Name’ , fig_name);
set (hfs, "color’ ,[1 1 1]);

% Time label

look for

tlab = ’\rightarrow._._t___\rightarrow ’;

% Get number of colors

map = colormap;

ncols = size (map,1);

% Initialize current

pl = 0;
if sol

pl = pl+1;

subplot (nps,1,pl);

hold on;

for i = 1:N

hp = plot (t(1:n),y(i,l:n),’=7);
ic = 14+(i—1)*floor (ncols/N);
set (hp, "Color’ ;map(ic ,:));

end

box on;

grid on;
xlabel (tlab);
ylabel ('y’);

title (’Solution’);

end
if sensi
for is = 1:Ns

pl = pl+1;

subplot (nps,1,pl);

in colormap

subplot counter

132

the MPI rank in the global

hold on;

ys-crt = ys(:,is,l:n);
for i = 1:N

hp = plot (t(1:n),ys_crt(i,l:n),’=");

ic = 14(i—1)xfloor (ncols/N);
set (hp, "Color’ ;map(ic ,:));

end
box on;
grid on;

xlabel (tlab);

str = sprintf(’s_{%d}’,is); ylabel(str);

str = sprintf(’Sensitivity %d’,is);

end

end

drawnow ;

Y%

title (str);

function [] = sol_update(n, hfs, nps, sol,

figure (hfs);
pl = 0;
if sol

subplot (nps,1,pl);

he = get(gca,’ Children’);

xd = [get (he(1),’XData’) t(1l:n)];
% Attention: Children are loaded in

for i = 1:N

reverse order!

yd = [get (hc(i), YData’) y(N-i+1,1:n)];

set (he(i), ’XData’, xd, ’YData’,

end
end
if sensi
for is = 1:Ns

pl = pl+1;
subplot (nps,1,pl);

ys_crt = ys(:,is ,:);

hec = get(gca, ’ Children’);

133

yd);

sensi, N, Ns, t, y, ys)

xd = [get (hc (1), XData’) t(1:n)];
% Attention: Children are loaded in reverse order!
for i = 1:N
yd = [get (he(i), YData’) ys_crt (N-i+1,1:n)];
set (he(i), 'XData’, xd, ’YData’, yd);
end

end

end

drawnow ;

%

function [] = sol_final (hfs, nps, sol, sensi, N, Ns)
figure (hfs);

pl = 0;

if sol

pl = pl +1;
subplot (nps,1,pl);

)

i

1) xd(end)]));

he = get(gca, Children
xd = get (hc(1), ’XData’)
set (gea, 'XLim’ ,sort ([xd

:
(

ylim = get(gca, YLim’);

addon = 0.1xabs(ylim(2)—ylim (1));

ylim (1) = ylim (1) + sign(ylim(1))=*addon;
ylim(2) = ylim(2) + sign(ylim(2))+addon;
set (gea, 'YLim’ ,ylim);

for i = 1:N
cstring{i} = sprintf ("y {%d}’,i);
end

legend (cstring);
end
if sensi

for is = 1:Ns

pl = pl+1;
subplot (nps,1,pl);

hec = get(geca, ’ Children’);
xd = get (hc (1), XData’);

134

787

789

790

791

792

794

795

796

797

798

799

800

802

803

804

set (geca, 'XLim’ ,sort ([xd(1) xd(end)]));

ylim = get(gca, YLim’)

addon = 0.1xabs(ylim(2)—ylim (1));

ylim (1) = ylim (1) + sign(ylim(1))*addon;
ylim (2) = ylim(2) + sign(ylim (2))=*addon;
set (gca, "YLim’ ,ylim);

for i = 1:N
cstring{i} = sprintf(’s%d_{%d}’,is,i);
end

legend (cstring);
end
end

drawnow

IDAMonitorB

PURPOSE

IDAMonitorB is the default IDAS monitoring function for backward problems.
SYNOPSIS

function [new_data] = IDAMonitorB(call, idxB, T, Y, YQ, data)

DESCRIPTION

IDAMonitorB is the default IDAS monitoring function for backward problems.
To use it, set the Monitor property in IDASetOptions to
>IDAMonitorB’ or to @IDAMonitorB and ’MonitorData’ to mondata
(defined as a structure).

With default settings, this function plots the evolution of the step
size, method order, and various counters.

Various properties can be changed from their default values by passing
to IDASetOptions, through the property ’MonitorData’, a structure
MONDATA with any of the following fields. If a field is not defined,
the corresponding default value is used.

Fields in MONDATA structure:
o stats [true | false]
If true, report the evolution of the step size and method order.
o cntr [true | false]
If true, report the evolution of the following counters:
nst, nfe, nni, netf, ncfn (see IDAGetStats)
o mode [’graphical’ | ’text’ | ’both’]
In graphical mode, plot the evolutions of the above quantities.
In text mode, print a table.
o sol [true | false]

135

If true, plot solution components.
select [array of integers]
To plot only particular solution components, specify their indeces in
the field select. If not defined, but sol=true, all components are plotted.
updt [integer | 50]
Update frequency. Data is posted in blocks of dimension n.
skip [integer | 0]
Number of integrations steps to skip in collecting data to post.
post [true | false]
If false, disable all posting. This option is necessary to disable
monitoring on some processors when running in parallel.

See also IDASetOptions, IDAMonitorFnB
NOTES:
1. The argument mondata is REQUIRED. Even if only the default options

are desired, set mondata=struct; and pass it to IDASetOptions.

2. The yQ argument is currently ignored.

136

References

[1] A. M. Collier, A. C. Hindmarsh, R. Serban, and C.S. Woodward. User Documentation for KINSOL
v2.6.0. Technical Report UCRL-SM-208116, LLNL, 2009.

[2] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S.
Woodward. SUNDIALS, suite of nonlinear and differential /algebraic equation solvers. ACM Trans.
Math. Soft., (31):363-396, 2005.

[3] A. C. Hindmarsh and R. Serban. User Documentation for CVODES v2.6.0. Technical report,
LLNL, 2009. UCRL-SM-208111.

[4] R. Serban, C. Petra, and A.C. Hindmarsh. User Documentation for IDAS v1.0.0. Technical report,
LLNL, 2009. UCRL-SM-234051.

137

Index

CVBandJacFn, 28
CVBandJacFnB, 35
CVDenseJacFn, 27
CVDenseJacFnB, 35
CVGcommPFn, 31
CVGcommFnB, 38
CVGlocalFn, 32
CVGlocalFnB, 39
CVJacTimesVecFn, 28
CVJacTimesVecFnB, 36
CVMonitorFn, 33
CVMonitorFnB, 40
CVode, 17
CVodeAdjlnit, 13
CVodeAdjRelnit, 16
CVodeB, 18
CVodeFree, 24
CVodeGet, 22
CVodeGetStats, 19
CVodeGetStatsB, 21
CVodelnit, 11
CVodelnitB, 13
CVodeMonitor, 104
CVodeMonitorB, 119
CVodeQuadlInit, 12
CVodeQuadlInitB, 14
CVodeQuadRelnit, 15
CVodeQuadRelInitB, 17
CVodeQuadSetOptions, 9
CVodeRelnit, 14
CVodeRelnitB, 16
CVodeSenslInit, 12
CVodeSensRelnit, 15
CVodeSensSetOptions, 10
CVodeSensToggleOff, 19
CVodeSet, 23
CVodeSetB, 24
CVodeSetOptions, 4
CVPrecSetupFn, 29
CVPrecSetupFnB, 37
CVPrecSolveFn, 30
CVPrecSolveFnB, 38
CVQuadRhsFn, 26
CVQuadRhsFnB, 34
CVRhsFn, 25
CVRhsFnB, 34
CVRootFn, 26
CVSensRhsFn, 25

IDAAdjInit, 50
IDAAdjRelnit, 53
IDABandJacFn, 67
IDABandJacFnB, 74

IDACalclIC, 54
IDACalcICB, 56
IDADenseJacFn, 66
IDADenseJacFnB, 74
IDAFree, 63
IDAGcommFn, 70
IDAGcommFnB, 77
IDAGet, 61
IDAGetStats, 58
IDAGetStatsB, 60
IDAGlocalFn, 71
IDAGlocalFnB, 77
IDAInit, 49

IDAInitB, 51
IDAJacTimesVecFn, 67
IDAJacTimesVecFnB, 75
IDAMonitor, 120
IDAMonitorB, 135
IDAMonitorFn, 71
IDAMonitorFnB, 78
IDAPrecSetupFn, 68
IDAPrecSetupFnB, 76
IDAPrecSolveFn, 69
IDAPrecSolveFnB, 76
IDAQuadlInit, 49
IDAQuadInitB, 51
IDAQuadRelnit, 52
IDAQuadRelnitB, 54
IDAQuadRhsFn, 65
IDAQuadRhsFnB, 73
IDAQuadSetOptions, 46
IDARelnit, 52
IDARelnitB, 53
IDAResFn, 64
IDAResFnB, 73
IDARootFn, 65
IDASensInit, 50
IDASensRelnit, 53
IDASensResFn, 64
IDASensSetOptions, 47
IDASensToggleOff, 58
IDASet, 61

IDASetB, 62
IDASetOptions, 42
IDASolve, 56
IDASolveB, 57

KINBandJacFn, 89
KINDenseJacFn, 88
KINFree, 86
KINGcommFn, 92
KINGetStats, 85
KINGlocalFn, 93

138

KINTInit, 84
KINJacTimesVecFn, 90
KINPrecSetupFn, 90
KINPrecSolveFn, 91
KINSetOptions, 81
KINSol, 85

KINSysFn, 88

mpirun, 102
mpiruns, 102
mpistart, 102

N_VDotProd, 95
N_VL1Norm, 95
N_VMax, 96
N_VMaxNorm, 97
N_VMin, 98
N_VWL2Norm, 99
N_VWrmsNorm, 100

139

	Introduction
	Installation
	Compilation and installation of sundialsTB
	Configuring Matlab's startup
	Testing the installation

	matlab Interface to cvodes
	Interface functions
	Function types

	matlab Interface to idas
	Interface functions
	Function types

	matlab Interface to kinsol
	Interface functions
	Function types

	Supporting modules
	nvector functions
	Parallel utilities

	Implementation of CVodeMonitor.m
	Implementation of IDAMonitor.m
	References
	Index

