
Contents1 Introdution 12 Preliminaries and the Algorithm 12.1 Cliques . 22.2 A Maximum Clique Algorithm 32.3 A Maximum-Weight Clique Algorithm 32.4 Ordering the Verties . 33 Data Strutures 43.1 Sets . 43.2 Graphs . 53.3 Limitations . 54 Clique Searhing 54.1 Clique-Searhing Funtions . 54.2 Cliquer Options . 75 Compiling Cliquer 95.1 Con�guration . 95.1.1 Make�le . 105.1.2 liqueronf.h . 105.2 Compiling the Command-Line Utility 115.3 Writing Your Own Program 115.4 Assertions . 12A Set-Handling Funtions 13B Graph-Handling Funtions 14C Ordering Funtions 16D DIMACS Graph File Format 17D.1 ASCII Format . 18D.2 Binary Format . 18E Example Programs 19

1 IntrodutionCliquer is a set of C routines for �nding liques in an arbitrary weightedgraph. It an searh for maximum liques, maximum-weight liques, orliques whose size or weight is within a given range, optionally limiting thesearh to maximal liques. The liques that are found an either be storedin memory, or a user-de�ned funtion an be alled for eah lique. Cliqueris re-entrant, that is, one may use the lique-searhing routines again fromthe user-de�ned funtion. The pakage also ontains a ommand-line utilityl, whih an be used to �nd liques from graphs in DIMACS-format �les.Cliquer uses an exat branh-and-bound algorithm developed by the se-ond author [10, 11℄ for the maximum lique and maximum-weight liqueproblems, and suitably modi�ed versions for other lique searhes. The pa-pers ited also ontain omparisons with some other ommon algorithms.Cliquer has been developed on Linux and it should ompile without mod-i�ation on most modern UNIX systems. Other systems may require minorhanges to the soure ode.Cliques and important problems related to these are de�ned in Setion 2,where the algorithm used by Cliquer is also brie�y disussed. The datastrutures and lique-searhing funtions are desribed in Setions 3 and 4,respetively. Setion 5 ontains information on how to on�gure and om-pile Cliquer. Appendies A, B, and C doument funtions that are usefulfor manipulating sets, graphs, and vertex orders (funtions of the last typea�et the e�ieny of the searh), respetively. The DIMACS graph �leformat is desribed in Appendix D, and example programs are presented inAppendix E.Cliquer is �exible and easy to use and still ompetes with the fastest liqueprograms�it is indeed the fastest for several types of graphs [10, 11℄. Bugreports and other feedbak should be direted to the orresponding author.2 Preliminaries and the AlgorithmIn this setion, entral onepts are introdued and the algorithm used byCliquer is shortly desribed. For a more extensive treatment, we refer to[10, 11℄. Note, however, that the vertex numbering used by Cliquer is thereverse of that desribed in the referenes. The algorithm is desribed hereas Cliquer uses it.This setion is not neessary for using Cliquer, but Setion 2.4 may beuseful for understanding the vertex ordering funtions.1

2.1 CliquesWe denote an undireted graph by G = (V,E), where V is the set of vertiesand E is the set of edges, suh that eah edge is a set of two verties in V(whih are said to be adjaent). The number of verties, |V |, is alled theorder of G. We denote the weight of a vertex v ∈ V by w(v), and the sumof vertex weights in a set W ⊆ V by w(W).A lique in G is a subset S ⊆ V of verties, all of whih are adjaent toeah other. A lique is said to be maximal if it is not the subset of any largerlique, and maximum if there are no larger liques in the graph.In the maximum lique problem one wants to �nd a maximum lique inan arbitrary undireted graph. Sine this is an NP-hard problem [6℄, nopolynomial time algorithms are known to exist. Cliquer uses a branh-and-bound algorithm developed by the seond author [11℄, whih is based on analgorithm by Carraghan and Pardalos [3℄. It adds more e�ient pruningmethods by storing in memory the maximum lique size of subgraphs that ithas disovered. In many ases, it is faster than other known algorithms [11℄.The maximum lique problem is omputationally equivalent to some otherimportant problems. An independent set (also alled a stable set) of a graphis a set of verties, none of whih are adjaent. By taking the omplementof a graph, the maximum independent set problem is transformed into themaximum lique problem. For a given independent set of a graph, any edgein the graph is inident to a vertex that is not in this set. Therefore, the min-imum vertex over problem is another omputationally equivalent problem.For weighted graphs, we get analogous problems. For an extensive surveyof the maximum lique problem and related issues, see [1℄. This survey alsolists a wide variety of appliations.Clique algorithms an be used, for example, to �nd error-orreting odesof maximum size [9, 12℄. Take one vertex for eah word in the given spae,and let verties whose mutual distane is at least d, a presribed parameter,be adjaent. Then maximum liques in the onstruted graph orrespond toerror-orreting odes of maximum size. An example of �nding odes withCliquer is given in Appendix E. Maximum-weight liques have appliationsin the searh for odes with presribed automorphism groups [2, 8, 10℄. Insearhing for ombinatorial objets, one may want to use the program nauty[7℄ for isomorphism tests. Cliquer has been designed to respet nauty, soboth routines an be used in the same program.
2

2.2 A Maximum Clique AlgorithmWe assume some order for the verties V = {v1, v2, . . . , vn}. Let Si =
{v1, v2, . . . , vi} ⊆ V . We de�ne the funtion c(i) to be the size of themaximum lique in the subgraph indued by Si. Obviously, for every i =
1, . . . , n − 1 we have either c(i + 1) = c(i) or c(i + 1) = c(i) + 1. Moreover,
c(i+1) = c(i)+1 i� there exists a lique in Si+1 of size c(i)+1 that inludesvertex vi+1.Cliquer alulates the values of c(i) starting from c(1) = 1 up, and storesthe values found. This enables a pruning strategy not found in old algorithms,suh as [3℄. Namely, when Cliquer is alulating c(i + 1) (that is, searhingfor a lique of size c(i) + 1 within Si+1), and it has formed a lique W andis onsidering adding vertex vj, it an prune the searh if |W | + c(j) ≤ c(i).As j is hosen to be the largest index in the set of verties to be onsidered,it follows that a lique of size c(i) + 1 that ontains W annot exist in Si+1.Trivially, if it �nds a lique of size c(i)+1, it an prune the whole searh andstart alulating c(i + 2).When searhing for all maximum liques, Cliquer �rst determines thesize of the maximum liques, and then starts the searh again at the suitableposition.The order of the verties has a major impat on the speed of the algorithm.Therefore it is bene�ial to use some time in devising the order of the verties.This ordering is disussed further in Setion 2.4.2.3 A Maximum-Weight Clique AlgorithmThe algorithm used with weighted liques is desribed in [10℄, and it isvery similar to the unweighted ase. The same kind of pruning is usedwhen onsidering additional verties, that is, the searh an be pruned if
w(W)+C(j) ≤ C(i), where vj is the vertex being onsidered and C(i) is themaximum weight of a lique in Si.However, �nding a lique of greater weight than C(i) in Si+1 is insu�ient,as it is not neessarily the maximum-weight lique of Si+1. Therefore, thesearh is ontinued until all ombinations have been heked, or a lique withweight C(i) + w(vi+1) is found.2.4 Ordering the VertiesThe order of the verties in the searh has a major impat on the speed ofthe searh. Cliquer allows ordering the verties using a variety of funtions,or by de�ning one's own order. 3

Note that the vertex numbering used by Cliquer is the reverse of that in[11℄ and [10℄, sine there Si is de�ned as {vi, . . . , vn} instead of {v1, . . . , vi}.It is very muh an open researh problem to try to �nd proper vertex or-ders. The following two heuristis have experimentally been found to bee�etive [10, 11℄.In a vertex oloring of a graph, two adjaent verties must be assigneddi�erent olors. In both the unweighted and the weighted ase, the graph isolored one olor at a time, adding verties to a olor lass as long as possiblebefore reating a new olor lass. In the unweighted ase, the vertex hosenis always the one with the largest degree within the unolored graph. In theweighted ase, the vertex is hosen from the verties with smallest weight,and has the largest sum of weights adjaent to the vertex in the unoloredgraph. The verties are labelled v1, v2, . . . , vn in the order that they arehosen during the oloring.The order of the verties is de�ned in lique_options, whih is passedto the lique searhing funtions. See Setion 4.2 for details.3 Data StruturesCliquer de�nes data strutures for sets and graphs, explained in the followingsetions. In addition, the data type boolean (de�ned as an int) and theexpressions TRUE and FALSE are de�ned for use in boolean variables.3.1 SetsA setelement is an unsigned integer data type, whih is either 16, 32 or 64bits in length, as set at ompile-time (see Setion 5.1). ELEMENTSIZE is thenumber of bits in one setelement.A set (by whih we always mean a subset of X = {0, 1, . . . , n − 1}) isrepresented by an array of setelements, whih ontains one bit for eah valuethe set may hold. The type for sets is set_t (equivalent to setelement *),and sets should be de�ned as �set_t s� (not �set_t *s�).One initialized, set_t s ontains a representative bit for eah valueit an ontain, whih is 1 if the value is in the set, 0 otherwise. Values
{0, . . . , ELEMENTSIZE-1} are stored in s[0℄, the next ELEMENTSIZE values ins[1℄, and so forth. Within a setelement, the smallest value is stored inthe least-signi�ant bit. In addition, the size n of the superset X (giving thetotal number of 0s and 1s) is stored in s[-1℄. It is reommended that oneuses the maros and funtions listed in Appendix A for set manipulation.4

For performane reasons, the set handling routines are de�ned in set.has stati funtions, so that the ompiler an inline them. This may ausewarnings of unused funtions on some ompilers, whih may be safely ignored.See Setion 5.1 for details.3.2 GraphsGraphs in Cliquer are handled with the data type graph_t *. The vertiesare numbered {0, 1, . . . , n−1}, where n is the number of verties. The stru-ture graph_t ontains an array of n sets, eah of whih tells what verties areadjaent to that vertex, and an array of n ints ontaining the vertex weights.The adjaeny matrix is required to be symmetri (that is, the graph mustnot be direted) and anti-re�exive, and all vertex weights must be positive.The struture ontains the following members:int n Number of verties in the graph.set_t *edges A list of n sets, where edges[i℄ ontains the verties thatare adjaent to vertex i.int *weights A list of n ints whih ontain the vertex weights.It is reommended that a program should only use the type graph_t *,and use the funtions desribed in Appendix B for graph manipulation.3.3 LimitationsThe data strutures used in Cliquer are dynamially alloated, and do notimpose restritions on graph or set sizes. The only limitations are made byavailable memory and the integer data type size. Spei�ally, the total weightof a graph must be less than the maximum value that an be stored in anint, and the maximum size of a set must �t into one setelement. As mostmodern systems have at least 32-bit integers, this should not be a limitation.4 Clique SearhingThis setion ontains the ore of this user's manual, the lique-searhingfuntions and their options.
5

4.1 Clique-Searhing FuntionsCliquer inludes six funtions that searh for liques, all of whih begin with�lique_�. Cliques are returned as sets (of type set_t) of the verties form-ing the lique. The size of the superset X always equals the number ofverties in the graph. The searh funtions are as follow:int lique_max_weight(g,opts)Returns the largest weight that any lique in graph g has. Note thatusing this funtion is no faster than using lique_find_single(g,0,0,FALSE,opts) to atually �nd a maximum-weight lique.set_t lique_find_single(g,min_weight,max_weight,maximal,opts)Returns a single lique in graph g ful�lling the weight requirementsgiven (see below for details). If suh a lique does not exist in thegraph, the funtion returns NULL. Note that the lique storage methodsin opts are not used.int lique_find_all(g,min_weight,max_weight,maximal,opts)Searhes for all liques in graph g ful�lling the weight requirementsgiven (see below for details). The liques are stored as de�ned in opts.The return value is the number of liques found.int lique_unweighted_max_weight(g,opts)set_t lique_unweighted_find_single(g,min,max,maximal,opts)int lique_unweighted_find_all(g,min,max,maximal,opts)These funtions are idential to the three above, exept that they as-sume that all vertex weights are 1. This is useful if one has a weightedgraph and wishes to �nd liques based on size instead of weight. The�rst three funtions automatially use these funtions for unweightedgraphs.The arguments min_weight, max_weight, and maximal de�ne what kindof liques are searhed for. The struture opts ontains information abouthow the verties are to be ordered during the searh, how the liques arestored, and how the progress of the routine is reported. All arguments aretreated read-only, though opts may ontain pointers to areas that are mod-i�ed. The meanings of the parameters are as follows:graph_t *g The graph in whih liques are searhed for.int min_weight Minimumweight of liques to searh for. If min_weight=0,then the funtions searh for maximum-weight liques.6

int max_weight Maximumweight of liques to searh for. If max_weight=0,then no upper limit is used. If min_weight=0, then also max_weightmust be 0.If max_weight> 0, then it is required that min_weight ≤ max_weight.See Setion 5.4 for details.boolean maximal If TRUE, requires the liques to be maximal.lique_options *opts Details how to store the liques, how to order theverties during the searh, and how to report the progress of the routine(see Setion 4.2 below for details). If opts=NULL, then the defaultoptions in lique_default_options are used.4.2 Cliquer OptionsThe lique_options struture ontains information that does not a�etwhat kinds of liques are searhed for, but a�ets the speed of the algorithm,how results are stored, and how progress is reported. Note that when usingdi�erent vertex orderings, lique_find_single may �nd di�erent liquesful�lling the weight requirements. The default options are de�ned in theglobal variable lique_default_options, whih an also be modi�ed. Thestruture ontains the following �elds:int *(*reorder_funtion)(graph_t *, boolean)int *reorder_mapThese variables de�ne the order of the verties used in the searh. Thismay greatly a�et the speed of the searh. Either one of these variablesmust be NULL. If both are NULL, no reordering will be arried out (thatis, the order follows that of the reated graph). See Setion 2.4 fordetails on vertex orders.If reorder_funtion is non-NULL, it is alled with the graph as anargument to get the order of verties to use in the searh. The funtionde�nition should be int *funtion(graph_t *g,boolean weighted),where g is the graph and weighted tells whether a weighted or un-weighted searh is being done. The funtion should return an array ofg->n ints alloated with mallo(), whih ontains eah of the values
{0, 1, . . . , g->n-1} exatly one. Cliquer has several ordering funtionsprede�ned, whih are doumented in Appendix C.Alternatively, the vertex order an be given in reorder_map. In thisase, the array is not freed. 7

The default is to have reorder_funtion as reorder_by_greedy_oloring and reorder_map as NULL.boolean (*time_funtion)(...)FILE *outputIf non-NULL, this funtion is alled at every base-level reursion. Thefuntion de�nition should beboolean funtion(int level,int i,int n,int max,double putime,double realtime,lique_options *opts),where level is the re-entrane level (inreased by one every time alique-searhing funtion is alled, and dereased when it returns; 1 forthe �rst lique-searhing all), i is the level of the urrent reursion, nis the total number of reursion levels (the size of the graph), max isthe weight of the heaviest lique found so far (but see later remarks),putime is the CPU time used by this program in the reursion so far,realtime is the total amount of time the reursion has taken so far,and opts is the option struture. The values of putime and realtimeshould be approximately the same if there are no other time-onsumingproesses being run on the omputer. The funtion should return TRUEto ontinue the searh, or FALSE to abort.The de�nition of max given above has the following exeption. If searh-ing for more than a single lique in a weight interval, max stops growingwhen it has reahed min_weight-1. Also note that when searhing forall maximum liques, the searh will �rst proess the whole graph (to�nd the size of the maximum lique) and then ontinue the searh for allsuh graphs from an earlier point; this a�ets the value of i aordingly.Cliquer de�nes two funtions that an be used as progress indiatingfuntions. The funtion lique_print_time prints a line indiatingthe progress if over 0.1 seonds have elapsed from the previous time aline has been printed or if one of the other arguments has hanged. Itindents the line with two spaes for every re-entrane. The funtionlique_print_time_always works in the same way, exept that itprints the line on every all. The time printed by these funtions is thereal time spent in the algorithm. They print to the �le stream output,or stdout if it is NULL.The default value for time_funtion is lique_print_time and NULLfor output.
8

boolean (*user_funtion)(set_t,graph_t *,lique_options *)void *user_dataWhen searhing for multiple liques, user_funtion is alled for everylique found, if non-NULL. The funtion de�nition should be booleanfuntion(set_t s,graph_t *g,lique_options *opts), where s isthe lique, g is the graph, and opts is the option struture used. Thefuntion should return TRUE to ontinue the searh or FALSE to abortand return to the aller. Note that there is no way of telling fromthe return values of the lique-searhing funtions whether the searhwas ompleted or aborted in a user-de�ned funtion; if distintion isneessary, a user-de�ned global variable an be used.Cliquer is re-entrant, so it is safe to use the lique searhing funtionsfrom user_funtion. However, lique_default_options is the samefor all instanes, so one may need to de�ne one's own options struture.The variable user_data is ignored by Cliquer, and an be used to passdata to user_funtion.set_t *lique_listint lique_list_lengthWhen searhing for multiple liques, the liques found are stored inlique_list, if non-NULL. This should be an array of at least lique_list_length unalloated sets of type set_t. At most lique_list_length liques are stored, after that the searh ontinues, but theliques are not stored.Both user_funtion and lique_list an be de�ned at the same time.If neither is de�ned, the only result of lique_find_all is the number ofliques in the graph. Note that if either user_funtion or time_funtionreturns FALSE, the searh is aborted. In this ase, lique_find_all re-turns the number of liques found so far, lique_find_single returns NULL,and lique_max_weight returns 0. The funtions lique_print_time andlique_print_time_always always return TRUE.5 Compiling Cliquer5.1 Con�gurationCliquer is on�gured in two �les: Makefile and liqueronf.h. The usershould in all ases read Makefile for on�guration options. The on�gura-tion options in liqueronf.h have reasonable defaults, and one should beable to ompile Cliquer without modi�ations.9

5.1.1 Make�leThe make�le ontains mainly ompilation options. The user must de�ne theompiler to be used by setting the CC variable, and the ompilation �agsin CFLAGS. One may also leave CFLAGS blank, but in this ase no odeoptimization will be done.The variable LONGOPTS is added to the ompilation �ags when ompil-ing the l program. It should be set to -DENABLE_LONG_OPTIONS if longommand line options are desired (for example, �l --help�). Otherwiseonly one-harater options will be reognized (�l -h�). Use of long optionsrequires the getopt_long() funtion, whih is a GNU extension. If ompi-lation stops with errors about long options, omment out this variable.The default options are suitable for ompiling with GNU C, with longoptions enabled.5.1.2 liqueronf.hThe �le liqueronf.h ontains on�guration options, whih are used in allprograms using Cliquer. If some option is not de�ned in liqueronf.h, thedefault is used. The �le ontains the following options:setelementELEMENTSIZEA setelement is the basi unsigned integer data type used in sets. It isoften fastest to be as long an integer as an �t in the general registersof the CPU. ELEMENTSIZE is the number of bits in one setelement.It must be 16, 32 or 64, otherwise some modi�ations to the soureode are neessary. One must either de�ne both in liqueronf.h, orneither.The default is to use �unsigned long int� as setelement, and tryto determine its size from ULONG_MAX de�ned in limits.h. If usingthe default, it is reommended to run �make test� to hek suessfuldetetion.INLINE Many ompilers an inline simple funtions to make faster ode.This option is added in the delaration of several simple funtions toinstrut the ompiler to inline them. If funtion inlining is not desired,or the ompiler does not support it, de�ne it empty.The default is to use �inline�, whih is reognized by most modernompilers. 10

UNUSED_FUNCTION For performane reasons, the set handling funtions arede�ned in the �le set.h as stati funtions. This may ause spuriouswarnings about unused funtions when ompiling. Some ompilers,suh as GNU C, allow the user to add an �attribute� to the funtiononstraining these warnings.The default is to use �__attribute__((unused))� when ompilingwith GNU C, or blank otherwise.ASSERT(ond) De�ning this blank disables all assertions. This is disour-aged, beause it allows bugs to go unnotied easier. See Setion 5.4 fordetails.5.2 Compiling the Command-Line UtilityAfter on�guration, the ommand-line utility program l an be ompiled bysimply typing �make all�. With the program l one an searh for liquesfrom the ommand line by providing the graph from a �le or standard input.One an use all the features in Cliquer by di�erent ommand-line options.Type �l -h� for information on the available options. It is useful for simplelique searhing and for testing Cliquer.Additionally, �make test� ompiles and exeutes a series of unit tests,that is, tests most of the features in Cliquer with a variety of graphs. Run-ning it is reommended to make sure that ompilation was suessful andon�guration options are orretly set. If any of the tests returns an error,hek on�guration options and try again.5.3 Writing Your Own ProgramAll programs using Cliquer should inlude liquer.h. This in turn inludesthe �les set.h, graph.h, reorder.h, mis.h, and liqueronf.h. The pro-grams should be linked together with liquer.o, graph.o, and reorder.o.The easiest way to do this is by -o basi basi. liquer. graph. reorder.where basi is replaed by the name of the program. Adding ompiler-spei� optimization �ags will make the resulting program faster.When using Cliquer a lot, it is easiest to make an entry for the programin Makefile. The lines
11

basi: basi.o liquer.o graph.o reorder.o$(CC) $(LDFLAGS) -o $� basi.o liquer.o graph.o reorder.owith basi replaed by the program name should be enough for most needs.Note that the seond line must start with a tab, not eight spaes. One anthen ompile the program by typing �make basi� (where basi is replaedby the program name).5.4 AssertionsCliquer de�nes the maro ASSERT(ond), whih veri�es that the spei�edondition is true. If ond evaluates to FALSE, an error message ontainingthe �le name, the line number, and the ondition of the assertion is printed,and the program exeution is terminated. Assertions an be used to hekthe validness of funtion arguments and internal variables. For instane, onean hek the internal onsisteny of a graph byASSERT(graph_test(g,NULL));This is reommended after reating or modifying a graph. Aborting theprogram exeution is justi�ed by the fat that if an assertion fails, it mostertainly is the result of a bug in the program. Changing NULL in the aboveexample to, for instane, stderr would also write a line stating the validnessand graph parameters to stderr.Cliquer uses assertions mainly in the lique searhing funtions. Most setand graph funtions do not use them for performane reasons. Even thoughdisabling assertions is possible from liqueronf.h, this is disouraged, asit allows bugs to go unnotied easier.Note that the lique searhing funtions assert that min_weight ≤max_weight if max_weight > 0, even though there exists the �orret� answerthat no suh liques exist. This is beause asking for liques with a mini-mum weight that is larger than the maximum weight is in most ases due to abug in the ode (for example, speifying min_weight and max_weight in thewrong order). On the other hand, testing for omplete graph validness withgraph_test() is not performed automatially, sine the hek is an O(n2)operation.
12

AppendiesA Set-Handling FuntionsThe following routines are de�ned in set.h for set manipulation:set_t set_new(int size) Returns a set whih an ontain the values
{0, 1, . . . , size-1}. It an be freed using set_free() (not free()).The value of size must be greater than zero.void set_free(set_t s) Frees the memory assoiated with the set s.set_t set_resize(set_t s,int size) Resizes the set s to a subset of
{0, 1, . . . , size-1}. If the set ontains elements with a value greaterthan or equal to size, they are removed from the set. The value sizemust be greater than zero. The return value is the new set (the old setshould not be used anymore).SET_ADD_ELEMENT(s,i)SET_DEL_ELEMENT(s,i)SET_CONTAINS(s,i)SET_CONTAINS_FAST(s,i)Maros that add, remove and test for element i in the set s. SET_CONTAINS(s,i) works for all i ≥ 0 (returning FALSE if i is greaterthan the set size), while the others assume that 0 ≤ i ≤ SET_MAX_SIZE(s)-1. Apart from the allowed range, SET_CONTAINS_FAST isequivalent to SET_CONTAINS.SET_MAX_SIZE(s)SET_ARRAY_LENGTH(s)Maros that return the superset size and the setelement array lengthof the set s, respetively.int set_size(set_t s) Returns the number of elements that the set sontains.void set_empty(set_t s) Removes all elements from the set s.set_t set_dupliate(set_t s) Returns a dupliate of the set s.set_t set_opy(set_t dest,set_t sr) Makes the set dest ontain thesame elements as sr. If dest is NULL, this performs the equivalent ofset_dupliate(sr). If dest is smaller than sr, dest is resized to13

the size of sr. Return value is either dest or the set alloated in itsstead; use as dest=set_opy(dest,sr) to ensure orret behavior.int set_return_next(set_t s, int n) Returns the smallest element ofthe set s whih is greater than n, or -1 if suh an element does notexist. One an iterate though all elements in s withint i=-1;while ((i=set_return_next(s,i)) >= 0) {/* i is in set s. */}set_t set_intersetion(set_t res,set_t a,set_t b)set_t set_union(set_t res,set_t a,set_t b)Stores the intersetion or union of the sets a and b in the set res, whihis resized (or reated if NULL) to be at least the size of the larger soureoperand. Return value is res or the set alloated in its stead. It is notallowed that res be either a or b.void set_print(set_t s) Prints size and ontents of the set s to stdout.Mainly useful for debugging or simple output.B Graph-Handling FuntionsThe following routines are de�ned in graph.h for graph manipulation:graph_t *graph_new(int n)Creates a new graph with n verties. There are no edges in the graphand all vertex weights are set to 1. The value of n must be greater thanzero.void graph_free(graph_t *g)Frees the memory used by the graph g.GRAPH_ADD_EDGE(g,i,j)GRAPH_DEL_EDGE(g,i,j)GRAPH_IS_EDGE(g,i,j)GRAPH_IS_EDGE_FAST(g,i,j)Maros that add, remove and hek for an edge between verties iand j in the graph g. GRAPH_IS_EDGE(g,i,j) works for all i, j ≥ 0(returning FALSE if i or j exeeds the order of the graph), while theothers assume that 0 ≤ i, j ≤ g->n-1. The order of the parameters i14

and j is insigni�ant. Apart from the allowed range, GRAPH_IS_EDGE_FAST is equivalent to GRAPH_IS_EDGE.void graph_resize(graph_t *g,int size)Resizes the graph g to ontain size verties. If size < g->n, thenthe verties {size, . . . , g->n-1} will be removed from the graph. Thevalue of size must be greater than zero.void graph_rop(graph_t *g)Removes the highest valued isolated verties from the graph g, so thatthe highest valued vertex is not isolated.graph_t *graph_read_dimas_file(har *file)graph_t *graph_read_dimas(FILE *fp)Reads a DIMACS-format graph �le [4, 5℄ from the �le stream fp orfrom the �le file. Automatially detets whether the �le is in ASCII orbinary format. Returns a newly-alloated graph if suessful, otherwiseprints an error message to stderr and returns NULL.The �le format is desribed in Appendix D. The vertex weights areread from the 'n' lines of the preamble. The 'd', 'v', and 'x' lines aresilently ignored. All other unknown lines produe a warning messageand are ignored.boolean graph_write_dimas_asii(g,omment,fp)boolean graph_write_dimas_asii_file(g,omment,file)boolean graph_write_dimas_binary(g,omment,fp)boolean graph_write_dimas_binary_file(g,omment,file)Types: graph *g, har *omment, FILE *fp, har *fileThese funtions write the graph g in DIMACS ASCII or binary formatto the �le stream fp or the �le file. If omment is non-NULL, then itis added to the �le as a omment. omment may not ontain newlines.int graph_edge_ount(graph_t *g)Returns the number of edges in the graph g.int graph_vertex_degree(graph_t *g, int v)Returns the degree (the number of adjaent verties) of vertex v in thegraph g.boolean graph_test(graph_t *g,FILE *output)Returns TRUE i� the graph g is a valid graph (symmetri, anti-re�exive,15

positive weights, total weight less than INT_MAX). If output is non-NULL, prints a message noting errors or validness to �le desriptoroutput.It is reommended to add for example ASSERT(graph_test(g,NULL))after reating or modifying a graph to make sure it is internally orret.See Setion 5.4 for details on ASSERT.int graph_test_regular(graph_t *g)Returns the degree of the regular graph g, or -1 if g is not regular. Doesnot perform the graph onsisteny tests done by graph_test.boolean graph_weighted(graph_t *g)Returns FALSE i� all vertex weights in graph g are the same (not ne-essarily 1). To hek that all weights are equal to 1, use !graph_weighted(g) && g->weights[0℄==1.void graph_print(graph_t *g)Prints the graph g to stdout in a simple format. Useful mainly indebugging.C Ordering FuntionsCliquer de�nes the following funtions that an be used as reorder_funtionin the lique_options struture. Eah take as arguments the graph and aboolean value whih is TRUE if a weighted searh is being done, FALSE oth-erwise. They return a newly-alloated array of g->n ints de�ning the orderof the verties. They do not modify the graph.reorder_by_ident No reordering (identity mapping).reorder_by_reverse Orders verties in reverse order.reorder_by_degree Orders verties in order of asending degree.reorder_by_random Orders verties randomly. Uses the random numbergenerator rand() and seeds the value from the urrent time.reorder_by_weighted_greedy_oloring Orders verties as de�ned in Se-tion 2.4 in the weighted ase.reorder_by_unweighted_greedy_oloring Orders verties as de�ned inSetion 2.4 in the unweighted ase.16

reorder_by_greedy_oloring Either of the previous two, depending onwhether a weighted or unweighted searh is being performed.reorder_by_default The default ordering funtion, urrently reorder_by_greedy_oloring.Additionally, the following funtions are de�ned to allow for more omplexorderings.void reorder_set(set_t s,int *order) Orders the elements in the set saording to the mapping i 7→ order[i℄, 0 ≤ i≤ SET_MAX_SIZE(s)-1.void reorder_graph(graph_t s,int *order) Orders the verties of thegraph g aording to the mapping i 7→ order[i℄, 0 ≤ i ≤ g->n-1.int *reorder_dupliate(int *order,int n) Dupliates the mappingorder of size n.void reorder_invert(int *order,int n) Inverts the mapping order, sothat new[old[i℄℄ == i for all 0 ≤ i ≤ n-1.boolean reorder_is_bijetion(int *order,int n) Returns TRUE if themapping order is a bijetion in {0, 1, . . . , n-1}.For example, the following ode orders the verties of the graph g �rstrandomly, and after that with the default ordering funtion:int *order;set_t s;order=reorder_by_random(g,FALSE);reorder_graph(g,order);reorder_invert(order,g->n);s=lique_find_single(g,0,0,FALSE,NULL);reorder_set(s,order);set_print(s);D DIMACS Graph File FormatThe DIMACS �le format is a ommon format for desribing graphs. Thegraphs an either be in human-readable ASCII form [4℄ or in binary form [5℄.The binary form takes less spae for graphs with an edge density greater thanapproximately 1.2 %. The formats are desribed shortly here.17

D.1 ASCII FormatThe ASCII �les onsist of textual lines with �elds that are separated by atleast one blank spae. The �rst �eld of eah line onsists of one harater, anddesribes the line type. The verties in the �le are numbered {1, 2, . . . , n}.Cliquer automatially hanges the numbering to {0, 1, . . . , n−1} by dereas-ing the values by one when reading the �les, and inreasing by one whenwriting. The lines reognized by Cliquer are as follows: Comment line.Lines beginning with '' are omments and are ignored.p FORMAT NODES EDGESEah �le ontains one 'p' line, whih desribes the dimensions of thegraph. FORMAT is for onsisteny with older formats, and should on-tain the word �edge�. The number of verties and edges in the graphare given in the �elds NODES and EDGES, respetively. Cliquer ignoresthe FORMAT and EDGES �elds when reading a graph, but they must bepresent.n ID VALUEAssigns the vertex ID weight VALUE. Verties that have no orrespond-ing 'n' line will have the default weight of 1.e W VSpei�es that there is an edge between verties W and V. The line is notrepeated as �e V W�.d, v, xThe 'd', 'v', and 'x' lines de�ne parameters that were used to generatethe graph. Refer to [4℄ for details. These lines are ignored by Cliquer.When reading a graph, if a line starts with a one-harater �eld that isnot mentioned above, a warning message is printed to stderr and the lineis ignored.D.2 Binary FormatThe binary format �les onsist of three parts: the �rst line, a textual pream-ble, and a binary blok. The �rst line ontains an integer desribing thelength of the preamble, in haraters. Next, the preamble ontains the samelines as in the ASCII format, exept for the 'e' lines. (Cliquer also aepts'e' lines in the preamble, and adds extra edges orrespondingly.) Finally, the18

binary blok ontains the lower triangular part of the adjaeny matrix ofthe graph in binary format. There are ⌈i/8⌉ bytes orresponding to vertex
vi, where i ∈ {1, 2, . . . , n}. The bits are used in a �left-to-right� manner, sothat the �rst vertex is in the most signi�ant bit.Note that although not spei�ed in [5℄, Cliquer numbers the verties
{1, 2, . . . , n} in the preamble also in the binary ase. This is signi�antespeially for weighted graphs, when we need to list the weights.E Example ProgramsThe following program takes the name of a DIMACS graph �le on the om-mand line, reads it, searhes for a single maximum-weight lique, and thenprints it.The program an be ompiled as is explained in Setion 5.3. An examplerun might look like the following (rand-600-0.3.b in this example ontainsa random graph with 600 verties and edge density 0.3):The next example program �nds all binary odes with presribed length,size, and minimum distane.Using this program, we may ount the number of binary perfet odes oflength 7 and minimum distane 3.$./hamming 7 16 3Number of odes: 240Note that for this and other ombinatorial problems, the graph has alarge automorphism group. This group an be utilized to speed up the searhsigni�antly, whih is essential when searhing for larger odes [9, 12℄.AknowledgmentThis researh was supported in part by the Aademy of Finland under Grant100500. The authors would like to thank Harri Haanpää and Petteri Kaskifor many useful omments and suggestions.

19

Referenes[1℄ I. M. Bomze, M. Budinih, P. M. Pardalos, and M. Pelillo, The max-imum lique problem, in: D.-Z. Du and P. M. Pardalos (Eds.), Hand-book of Combinatorial Optimization, Supplement Volume A, Kluwer,Dordreht, 1999, pp. 1�74.[2℄ A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith, A newtable of onstant weight odes, IEEE Trans. Inform. Theory 36 (1990),1334�1380.[3℄ R. Carraghan and P. M. Pardalos, An exat algorithm for the maximumlique problem, Oper. Res. Lett. 9 (1990), 375�382.[4℄ DIMACS, Clique and oloring problems graph format, ftp://dimas.rutgers.edu/pub/hallenge/graph/do/format.dvi, 26.8.2002.[5℄ DIMACS, DIMACS format for storing undireted graphs in binary �les,ftp://dimas.rutgers.edu/pub/hallenge/graph/translators/binformat/README.binformat, 26.8.2002.[6℄ M. R. Garey and D. S. Johnson, Computers and Intratability: A Guideto the Theory of NP-ompleteness, Freeman, New York, 1979.[7℄ B.D. MKay, nauty user's guide (version 1.5), Computer Siene Depart-ment, Australian National University, Teh. Rep. TR-CS-90-02, 1990.[8℄ K. J. Nurmela, M. K. Kaikkonen, and P. R. J. Östergård, New onstantweight odes from linear permutation groups, IEEE Trans. Inform. The-ory 43 (1997), 1623�1630.[9℄ P. R. J. Östergård, Classi�ation of binary/ternary one-error-orretingodes, Disrete Math. 223 (2000), 253�262.[10℄ P. R. J. Östergård, A new algorithm for the maximum-weight liqueproblem, Nordi J. Comput. 8 (2001), 424�436.[11℄ P. R. J. Östergård, A fast algorithm for the maximum lique problem,Disrete Appl. Math. 120 (2002), 195�205.[12℄ P. R. J. Östergård, T. Baiheva, and E. Kolev, Optimal binary one-error-orreting odes of length 10 have 72 odewords, IEEE Trans. Inform.Theory 45 (1999), 1229�1231. 20

