Contents

o aQ @w »

Introduction

Preliminaries and the Algorithm

2.1 Cliques o e
2.2 A Maximum Clique Algorithm
2.3 A Maximum-Weight Clique Algorithm
2.4 Ordering the Vertices

Data Structures
3.1 Sets . ..o

Clique Searching
4.1 Clique-Searching Functions
4.2 Cliquer Options

Compiling Cliquer

5.1 Configuration Lo
5.1.1 Makefileo o
5.1.2 cliquerconfh 0

5.2 Compiling the Command-Line Utility

5.3 Writing Your Own Program

5.4 Assertions

Set-Handling Functions
Graph-Handling Functions
Ordering Functions

DIMACS Graph File Format
D.1 ASCII Format
D.2 Binary Format,

Example Programs

13

14

16

17
18
18

19

1 Introduction

Cliquer is a set of C routines for finding cliques in an arbitrary weighted
graph. It can search for maximum cliques, maximum-weight cliques, or
cliques whose size or weight is within a given range, optionally limiting the
search to maximal cliques. The cliques that are found can either be stored
in memory, or a user-defined function can be called for each clique. Cliquer
is re-entrant, that is, one may use the clique-searching routines again from
the user-defined function. The package also contains a command-line utility
c1, which can be used to find cliques from graphs in DIMACS-format files.

Cliquer uses an exact branch-and-bound algorithm developed by the sec-
ond author [10, 11] for the maximum clique and maximum-weight clique
problems, and suitably modified versions for other clique searches. The pa-
pers cited also contain comparisons with some other common algorithms.

Cliquer has been developed on Linux and it should compile without mod-
ification on most modern UNIX systems. Other systems may require minor
changes to the source code.

Cliques and important problems related to these are defined in Section 2,
where the algorithm used by Cliquer is also briefly discussed. The data
structures and clique-searching functions are described in Sections 3 and 4,
respectively. Section 5 contains information on how to configure and com-
pile Cliquer. Appendices A, B, and C document functions that are useful
for manipulating sets, graphs, and vertex orders (functions of the last type
affect the efficiency of the search), respectively. The DIMACS graph file
format is described in Appendix D, and example programs are presented in
Appendix E.

Cliquer is flexible and easy to use and still competes with the fastest clique
programs it is indeed the fastest for several types of graphs [10, 11]. Bug
reports and other feedback should be directed to the corresponding author.

2 Preliminaries and the Algorithm

In this section, central concepts are introduced and the algorithm used by
Cliquer is shortly described. For a more extensive treatment, we refer to
[10, 11]. Note, however, that the vertex numbering used by Cliquer is the
reverse of that described in the references. The algorithm is described here
as Cliquer uses it.

This section is not necessary for using Cliquer, but Section 2.4 may be
useful for understanding the vertex ordering functions.

2.1 Cliques

We denote an undirected graph by G = (V| E), where V is the set of vertices
and F is the set of edges, such that each edge is a set of two vertices in V
(which are said to be adjacent). The number of vertices, |V, is called the
order of G. We denote the weight of a vertex v € V' by w(v), and the sum
of vertex weights in a set W C V' by w(W).

A clique in (G is a subset S C V of vertices, all of which are adjacent to
each other. A clique is said to be mazimal if it is not the subset of any larger
clique, and maximum if there are no larger cliques in the graph.

In the mazimum clique problem one wants to find a maximum clique in
an arbitrary undirected graph. Since this is an NP-hard problem [6], no
polynomial time algorithms are known to exist. Cliquer uses a branch-and-
bound algorithm developed by the second author [11], which is based on an
algorithm by Carraghan and Pardalos |3|. It adds more efficient pruning
methods by storing in memory the maximum clique size of subgraphs that it
has discovered. In many cases, it is faster than other known algorithms [11].

The maximum clique problem is computationally equivalent to some other
important problems. An independent set (also called a stable set) of a graph
is a set of vertices, none of which are adjacent. By taking the complement
of a graph, the mazimum independent set problem is transformed into the
maximum clique problem. For a given independent set of a graph, any edge
in the graph is incident to a vertex that is not in this set. Therefore, the min-
imum vertex cover problem is another computationally equivalent problem.
For weighted graphs, we get analogous problems. For an extensive survey
of the maximum clique problem and related issues, see [1|. This survey also
lists a wide variety of applications.

Clique algorithms can be used, for example, to find error-correcting codes
of maximum size [9, 12|. Take one vertex for each word in the given space,
and let vertices whose mutual distance is at least d, a prescribed parameter,
be adjacent. Then maximum cliques in the constructed graph correspond to
error-correcting codes of maximum size. An example of finding codes with
Cliquer is given in Appendix E. Maximum-weight cliques have applications
in the search for codes with prescribed automorphism groups [2, 8, 10]. In
searching for combinatorial objects, one may want to use the program nauty
|7| for isomorphism tests. Cliquer has been designed to respect nauty, so
both routines can be used in the same program.

2.2 A Maximum Clique Algorithm

We assume some order for the vertices V. = {vy,vq,...,0,}. Let S; =
{v1,v9,...,v;} € V. We define the function c(i) to be the size of the
maximum clique in the subgraph induced by S;. Obviously, for every ¢ =
1,...,mn — 1 we have either ¢(i + 1) = ¢(i) or c¢(i + 1) = ¢(i) + 1. Moreover,
c(i+1) = c(i) + 1 iff there exists a clique in S;,; of size ¢(i) + 1 that includes
vertex v;y.

Cliquer calculates the values of ¢(7) starting from ¢(1) = 1 up, and stores
the values found. This enables a pruning strategy not found in old algorithms,
such as [3]. Namely, when Cliquer is calculating ¢(i + 1) (that is, searching
for a clique of size ¢(i) + 1 within S;;1), and it has formed a clique W and
is considering adding vertex v;, it can prune the search if |W| + ¢(j) < ¢(4).
As j is chosen to be the largest index in the set of vertices to be considered,
it follows that a clique of size ¢(i) + 1 that contains W cannot exist in S;;;.
Trivially, if it finds a clique of size ¢(i) + 1, it can prune the whole search and
start calculating c(i + 2).

When searching for all maximum cliques, Cliquer first determines the
size of the maximum cliques, and then starts the search again at the suitable
position.

The order of the vertices has a major impact on the speed of the algorithm.
Therefore it is beneficial to use some time in devising the order of the vertices.
This ordering is discussed further in Section 2.4.

2.3 A Maximum-Weight Clique Algorithm

The algorithm used with weighted cliques is described in [10], and it is
very similar to the unweighted case. The same kind of pruning is used
when considering additional vertices, that is, the search can be pruned if
w(W)+C(j) < C(i), where v; is the vertex being considered and C(37) is the
maximum weight of a clique in 5.

However, finding a clique of greater weight than C'(¢) in S;; is insufficient,
as it is not necessarily the maximum-weight clique of S;;. Therefore, the
search is continued until all combinations have been checked, or a clique with
weight C'(7) + w(v;41) is found.

2.4 Ordering the Vertices

The order of the vertices in the search has a major impact on the speed of
the search. Cliquer allows ordering the vertices using a variety of functions,
or by defining one’s own order.

Note that the vertex numbering used by Cliquer is the reverse of that in
[11] and [10], since there S; is defined as {v;,...,v,} instead of {vy,...,v;}.
It is very much an open research problem to try to find proper vertex or-
ders. The following two heuristics have experimentally been found to be
effective |10, 11].

In a vertex coloring of a graph, two adjacent vertices must be assigned
different colors. In both the unweighted and the weighted case, the graph is
colored one color at a time, adding vertices to a color class as long as possible
before creating a new color class. In the unweighted case, the vertex chosen
is always the one with the largest degree within the uncolored graph. In the
weighted case, the vertex is chosen from the vertices with smallest weight,
and has the largest sum of weights adjacent to the vertex in the uncolored
graph. The vertices are labelled vy, vs,...,v, in the order that they are
chosen during the coloring.

The order of the vertices is defined in clique_options, which is passed
to the clique searching functions. See Section 4.2 for details.

3 Data Structures

Cliquer defines data structures for sets and graphs, explained in the following
sections. In addition, the data type boolean (defined as an int) and the
expressions TRUE and FALSE are defined for use in boolean variables.

3.1 Sets

A setelement is an unsigned integer data type, which is either 16, 32 or 64
bits in length, as set at compile-time (see Section 5.1). ELEMENTSIZE is the
number of bits in one setelement.

A set (by which we always mean a subset of X = {0,1,...,n — 1}) is
represented by an array of setelements, which contains one bit for each value
the set may hold. The type for sets is set_t (equivalent to setelement *),
and sets should be defined as “set_t s” (not “set_t *s”).

Once initialized, set_t s contains a representative bit for each value
it can contain, which is 1 if the value is in the set, 0 otherwise. Values
{0,...,ELEMENTSIZE-1} are stored in s[0], the next ELEMENTSIZE values in
s[1], and so forth. Within a setelement, the smallest value is stored in
the least-significant bit. In addition, the size n of the superset X (giving the
total number of Os and 1s) is stored in s[-1]. Tt is recommended that one
uses the macros and functions listed in Appendix A for set manipulation.

For performance reasons, the set handling routines are defined in set.h
as static functions, so that the compiler can inline them. This may cause
warnings of unused functions on some compilers, which may be safely ignored.
See Section 5.1 for details.

3.2 Graphs
Graphs in Cliquer are handled with the data type graph_t *. The vertices
are numbered {0, 1,...,n— 1}, where n is the number of vertices. The struc-

ture graph_t contains an array of n sets, each of which tells what vertices are
adjacent to that vertex, and an array of n ints containing the vertex weights.
The adjacency matrix is required to be symmetric (that is, the graph must
not be directed) and anti-reflexive, and all vertex weights must be positive.
The structure contains the following members:

int n Number of vertices in the graph.

set_t *edges A list of n sets, where edges[i] contains the vertices that
are adjacent to vertex i.

int *weights A list of n ints which contain the vertex weights.

It is recommended that a program should only use the type graph_t x*,
and use the functions described in Appendix B for graph manipulation.

3.3 Limitations

The data structures used in Cliquer are dynamically allocated, and do not
impose restrictions on graph or set sizes. The only limitations are made by
available memory and the integer data type size. Specifically, the total weight
of a graph must be less than the maximum value that can be stored in an
int, and the maximum size of a set must fit into one setelement. As most
modern systems have at least 32-bit integers, this should not be a limitation.

4 Clique Searching

This section contains the core of this user’s manual, the clique-searching
functions and their options.

4.1 Clique-Searching Functions

Cliquer includes six functions that search for cliques, all of which begin with
“clique_”. Cliques are returned as sets (of type set_t) of the vertices form-
ing the clique. The size of the superset X always equals the number of
vertices in the graph. The search functions are as follow:

int clique_max_weight (g, opts)
Returns the largest weight that any clique in graph g has. Note that
using this function is no faster than using clique_find_single(g,
0,0,FALSE,opts) to actually find a maximum-weight clique.

set_t clique_find_single(g,min_weight,max_weight,maximal,opts)
Returns a single clique in graph g fulfilling the weight requirements
given (see below for details). If such a clique does not exist in the
graph, the function returns NULL. Note that the clique storage methods
in opts are not used.

int clique_find_all(g,min_weight,max_weight,maximal,opts)
Searches for all cliques in graph g fulfilling the weight requirements
given (see below for details). The cliques are stored as defined in opts.
The return value is the number of cliques found.

int clique_unweighted_max_weight(g,opts)

set_t clique_unweighted_find_single(g,min,max,maximal,opts)

int clique_unweighted_find_all(g,min,max,maximal,opts)
These functions are identical to the three above, except that they as-
sume that all vertex weights are 1. This is useful if one has a weighted
graph and wishes to find cliques based on size instead of weight. The
first three functions automatically use these functions for unweighted
graphs.

The arguments min_weight, max_weight, and maximal define what kind
of cliques are searched for. The structure opts contains information about
how the vertices are to be ordered during the search, how the cliques are
stored, and how the progress of the routine is reported. All arguments are
treated read-only, though opts may contain pointers to areas that are mod-
ified. The meanings of the parameters are as follows:

graph_t *g The graph in which cliques are searched for.

int min_weight Minimum weight of cliques to search for. If min_weight—=0,
then the functions search for maximum-weight cliques.

int max_weight Maximum weight of cliques to search for. If max_weight=0,
then no upper limit is used. If min_weight 0, then also max_weight
must be 0.

If max_weight> 0, then it is required that min_weight < max_weight.
See Section 5.4 for details.

boolean maximal If TRUE, requires the cliques to be maximal.

clique_options *opts Details how to store the cliques, how to order the
vertices during the search, and how to report the progress of the routine
(see Section 4.2 below for details). If opts—NULL, then the default
options in clique_default_options are used.

4.2 Cliquer Options

The clique_options structure contains information that does not affect
what kinds of cliques are searched for, but affects the speed of the algorithm,
how results are stored, and how progress is reported. Note that when using
different vertex orderings, clique_find_single may find different cliques
fulfilling the weight requirements. The default options are defined in the
global variable clique_default_options, which can also be modified. The
structure contains the following fields:

int *(*reorder_function) (graph_t *, boolean)

int *reorder_map
These variables define the order of the vertices used in the search. This
may greatly affect the speed of the search. Either one of these variables
must be NULL. If both are NULL, no reordering will be carried out (that
is, the order follows that of the created graph). See Section 2.4 for
details on vertex orders.

If reorder_function is non-NULL, it is called with the graph as an
argument to get the order of vertices to use in the search. The function
definition should be int *function(graph_t *g,boolean weighted),
where g is the graph and weighted tells whether a weighted or un-
weighted search is being done. The function should return an array of
g->n ints allocated with malloc(), which contains each of the values
{0,1,...,g->n-1} exactly once. Cliquer has several ordering functions
predefined, which are documented in Appendix C.

Alternatively, the vertex order can be given in reorder_map. In this
case, the array is not freed.

The default is to have reorder_function as reorder_by_greedy_
coloring and reorder_map as NULL.

boolean (*time_function) (...)
FILE *xoutput
If non-NULL, this function is called at every base-level recursion. The
function definition should be
boolean function(int level,int i,int n,int max,
double cputime,double realtime,
clique_options *opts),
where level is the re-entrance level (increased by one every time a
clique-searching function is called, and decreased when it returns; 1 for
the first clique-searching call), 1 is the level of the current recursion, n
is the total number of recursion levels (the size of the graph), max is
the weight of the heaviest clique found so far (but see later remarks),
cputime is the CPU time used by this program in the recursion so far,
realtime is the total amount of time the recursion has taken so far,
and opts is the option structure. The values of cputime and realtime
should be approximately the same if there are no other time-consuming
processes being run on the computer. The function should return TRUE
to continue the search, or FALSE to abort.

The definition of max given above has the following exception. If search-
ing for more than a single clique in a weight interval, max stops growing
when it has reached min_weight-1. Also note that when searching for
all maximum cliques, the search will first process the whole graph (to
find the size of the maximum clique) and then continue the search for all
such graphs from an earlier point; this affects the value of 7 accordingly.

Cliquer defines two functions that can be used as progress indicating
functions. The function clique_print_time prints a line indicating
the progress if over 0.1 seconds have elapsed from the previous time a
line has been printed or if one of the other arguments has changed. It
indents the line with two spaces for every re-entrance. The function
clique_print_time_always works in the same way, except that it
prints the line on every call. The time printed by these functions is the
real time spent in the algorithm. They print to the file stream output,
or stdout if it is NULL.

The default value for time_function is clique_print_time and NULL
for output.

boolean (*user_function) (set_t,graph_t *,clique_options *)

void *user_data
When searching for multiple cliques, user_function is called for every
clique found, if non-NULL. The function definition should be boolean
function(set_t s,graph_t *g,clique_options *opts), where s is
the clique, g is the graph, and opts is the option structure used. The
function should return TRUE to continue the search or FALSE to abort
and return to the caller. Note that there is no way of telling from
the return values of the clique-searching functions whether the search
was completed or aborted in a user-defined function; if distinction is
necessary, a user-defined global variable can be used.

Cliquer is re-entrant, so it is safe to use the clique searching functions
from user_function. However, clique_default_options is the same
for all instances, so one may need to define one’s own options structure.

The variable user_data is ignored by Cliquer, and can be used to pass
data to user_function.

set_t *clique_list

int clique_list_length
When searching for multiple cliques, the cliques found are stored in
clique_list, if non-NULL. This should be an array of at least clique_
list_length unallocated sets of type set_t. At most clique_list_
length cliques are stored, after that the search continues, but the
cliques are not stored.

Both user_function and clique_list can be defined at the same time.
If neither is defined, the only result of clique_find_all is the number of
cliques in the graph. Note that if either user_function or time_function
returns FALSE, the search is aborted. In this case, clique_find_all re-
turns the number of cliques found so far, clique_find_single returns NULL,
and clique_max_weight returns 0. The functions clique_print_time and
clique_print_time_always always return TRUE.

5 Compiling Cliquer

5.1 Configuration

Cliquer is configured in two files: Makefile and cliquerconf.h. The user
should in all cases read Makefile for configuration options. The configura-
tion options in cliquerconf.h have reasonable defaults, and one should be
able to compile Cliquer without modifications.

5.1.1 Makefile

The makefile contains mainly compilation options. The user must define the
compiler to be used by setting the CC variable, and the compilation flags
in CFLAGS. One may also leave CFLAGS blank, but in this case no code
optimization will be done.

The variable LONGOPTS is added to the compilation flags when compil-
ing the cl program. It should be set to -DENABLE_LONG_OPTIONS if long
command line options are desired (for example, “c1 --help”). Otherwise
only one-character options will be recognized (“c1 -h”). Use of long options
requires the getopt_long() function, which is a GNU extension. If compi-
lation stops with errors about long options, comment out this variable.

The default options are suitable for compiling with GNU C, with long
options enabled.

5.1.2 cliquerconf.h

The file cliquerconf .h contains configuration options, which are used in all
programs using Cliquer. If some option is not defined in cliquerconf.h, the
default is used. The file contains the following options:

setelement

ELEMENTSIZE
A setelement is the basic unsigned integer data type used in sets. It is
often fastest to be as long an integer as can fit in the general registers
of the CPU. ELEMENTSIZE is the number of bits in one setelement.
It must be 16, 32 or 64, otherwise some modifications to the source
code are necessary. One must either define both in cliquerconf.h, or
neither.

The default is to use “unsigned long int” as setelement, and try
to determine its size from ULONG_MAX defined in limits.h. If using
the default, it is recommended to run “make test” to check successful
detection.

INLINE Many compilers can inline simple functions to make faster code.
This option is added in the declaration of several simple functions to
instruct the compiler to inline them. If function inlining is not desired,
or the compiler does not support it, define it empty.

The default is to use “inline”, which is recognized by most modern
compilers.

10

UNUSED_FUNCTION For performance reasons, the set handling functions are
defined in the file set.h as static functions. This may cause spurious
warnings about unused functions when compiling. Some compilers,
such as GNU C, allow the user to add an “attribute” to the function
constraining these warnings.

The default is to use “__attribute__((unused))” when compiling
with GNU C, or blank otherwise.

ASSERT(cond) Defining this blank disables all assertions. This is discour-
aged, because it allows bugs to go unnoticed easier. See Section 5.4 for
details.

5.2 Compiling the Command-Line Utility

After configuration, the command-line utility program c1 can be compiled by
simply typing “make all”. With the program cl one can search for cliques
from the command line by providing the graph from a file or standard input.
One can use all the features in Cliquer by different command-line options.
Type “cl -h” for information on the available options. It is useful for simple
clique searching and for testing Cliquer.

Additionally, “make test” compiles and executes a series of unit tests,
that is, tests most of the features in Cliquer with a variety of graphs. Run-
ning it is recommended to make sure that compilation was successful and
configuration options are correctly set. If any of the tests returns an error,
check configuration options and try again.

5.3 Writing Your Own Program

All programs using Cliquer should include cliquer.h. This in turn includes
the files set.h, graph.h, reorder.h, misc.h, and cliquerconf.h. The pro-
grams should be linked together with cliquer.o, graph.o, and reorder.o.
The easiest way to do this is by

cc -o basic basic.c cliquer.c graph.c reorder.c
where basic is replaced by the name of the program. Adding compiler-
specific optimization flags will make the resulting program faster.

When using Cliquer a lot, it is easiest to make an entry for the program
in Makefile. The lines

11

basic: basic.o cliquer.o graph.o reorder.o
$(cC) $(LDFLAGS) -o $@ basic.o cliquer.o graph.o reorder.o

with basic replaced by the program name should be enough for most needs.
Note that the second line must start with a tab, not eight spaces. One can
then compile the program by typing “make basic” (where basic is replaced
by the program name).

5.4 Assertions

Cliquer defines the macro ASSERT (cond), which verifies that the specified
condition is true. If cond evaluates to FALSE, an error message containing
the file name, the line number, and the condition of the assertion is printed,
and the program execution is terminated. Assertions can be used to check
the validness of function arguments and internal variables. For instance, one
can check the internal consistency of a graph by

ASSERT (graph_test (g,NULL)) ;

This is recommended after creating or modifying a graph. Aborting the
program execution is justified by the fact that if an assertion fails, it most
certainly is the result of a bug in the program. Changing NULL in the above
example to, for instance, stderr would also write a line stating the validness
and graph parameters to stderr.

Cliquer uses assertions mainly in the clique searching functions. Most set
and graph functions do not use them for performance reasons. Even though
disabling assertions is possible from cliquerconf .h, this is discouraged, as
it allows bugs to go unnoticed easier.

Note that the clique searching functions assert that min_weight <
max_weight if max_weight > 0, even though there exists the “correct” answer
that no such cliques exist. This is because asking for cliques with a mini-
mum weight that is larger than the maximum weight is in most cases due to a
bug in the code (for example, specifying min_weight and max_weight in the
wrong order). On the other hand, testing for complete graph validness with
graph_test () is not performed automatically, since the check is an O(n?)
operation.

12

Appendices
A Set-Handling Functions

The following routines are defined in set.h for set manipulation:

set_t set_new(int size) Returns a set which can contain the values
{0,1,...,size-1}. It can be freed using set_free() (not free()).
The value of size must be greater than zero.

void set_free(set_t s) Frees the memory associated with the set s.

set_t set_resize(set_t s,int size) Resizes the set s to a subset of
{0,1,...,size-1}. If the set contains elements with a value greater
than or equal to size, they are removed from the set. The value size
must be greater than zero. The return value is the new set (the old set
should not be used anymore).

SET_ADD_ELEMENT (s, i)

SET_DEL_ELEMENT (s, i)

SET_CONTAINS(s,1i)

SET_CONTAINS_FAST(s,1i)
Macros that add, remove and test for element i in the set s. SET_
CONTAINS(s,i) works for all i > 0 (returning FALSE if i is greater
than the set size), while the others assume that 0 < i < SET_MAX_
SIZE(s)-1. Apart from the allowed range, SET_CONTAINS_FAST is
equivalent to SET_CONTAINS.

SET_MAX_SIZE(s)

SET_ARRAY_LENGTH(s)
Macros that return the superset size and the setelement array length
of the set s, respectively.

int set_size(set_t s) Returns the number of elements that the set s
contains.

void set_empty(set_t s) Removes all elements from the set s.
set_t set_duplicate(set_t s) Returns a duplicate of the set s.

set_t set_copy(set_t dest,set_t src) Makes the set dest contain the
same elements as src. If dest is NULL, this performs the equivalent of
set_duplicate(src). If dest is smaller than src, dest is resized to

13

the size of src. Return value is either dest or the set allocated in its
stead; use as dest=set_copy(dest,src) to ensure correct behavior.

int set_return_next(set_t s, int n) Returns the smallest element of
the set s which is greater than n, or -1 if such an element does not
exist. One can iterate though all elements in s with

int i=-1;
while ((i=set_return_next(s,i)) >= 0) {
/* 1 is in set s. */

}

set_t set_intersection(set_t res,set_t a,set_t b)

set_t set_union(set_t res,set_t a,set_t b)
Stores the intersection or union of the sets a and b in the set res, which
is resized (or created if NULL) to be at least the size of the larger source
operand. Return value is res or the set allocated in its stead. It is not
allowed that res be either a or b.

void set_print(set_t s) Printssize and contents of the set s to stdout.
Mainly useful for debugging or simple output.

B Graph-Handling Functions

The following routines are defined in graph.h for graph manipulation:

graph_t *graph_new(int n)
Creates a new graph with n vertices. There are no edges in the graph
and all vertex weights are set to 1. The value of n must be greater than
7€T0.

void graph_free(graph_t *g)
Frees the memory used by the graph g.

GRAPH_ADD_EDGE(g,1i,j)

GRAPH_DEL_EDGE(g,1i,j)

GRAPH_IS_EDGE(g,1,]j)

GRAPH_IS_EDGE_FAST(g,i,j)
Macros that add, remove and check for an edge between vertices i
and j in the graph g. GRAPH_IS_EDGE(g,i,j) works for all i, j > 0
(returning FALSE if i or j exceeds the order of the graph), while the
others assume that 0 < i, j < g->n-1. The order of the parameters i

14

and j is insignificant. Apart from the allowed range, GRAPH_IS_EDGE_
FAST is equivalent to GRAPH_IS_EDGE.

void graph_resize(graph_t *g,int size)
Resizes the graph g to contain size vertices. If size < g->n, then
the vertices {size,...,g->n-1} will be removed from the graph. The
value of size must be greater than zero.

void graph_crop(graph_t *g)
Removes the highest valued isolated vertices from the graph g, so that
the highest valued vertex is not isolated.

graph_t *graph_read_dimacs_file(char x*file)
graph_t *graph_read_dimacs(FILE *fp)
Reads a DIMACS-format graph file [4, 5| from the file stream fp or

binary format. Returns a newly-allocated graph if successful, otherwise
prints an error message to stderr and returns NULL.

The file format is described in Appendix D. The vertex weights are
read from the 'n’ lines of the preamble. The ’d’, ’v’, and X’ lines are
silently ignored. All other unknown lines produce a warning message
and are ignored.

boolean graph_write_dimacs_ascii(g,comment,fp)

boolean graph_write_dimacs_ascii_file(g,comment,file)

boolean graph_write_dimacs_binary(g,comment,fp)

boolean graph_write_dimacs_binary_file(g,comment,file)
Types: graph *g, char *comment, FILE *fp, char *file
These functions write the graph g in DIMACS ASCII or binary format
to the file stream fp or the file file. If comment is non-NULL, then it
is added to the file as a comment. comment may not contain newlines.

int graph_edge_count(graph_t *g)
Returns the number of edges in the graph g.

int graph_vertex_degree(graph_t *g, int v)
Returns the degree (the number of adjacent vertices) of vertex v in the
graph g.

boolean graph_test(graph_t *g,FILE *output)
Returns TRUE iff the graph g is a valid graph (symmetric, anti-reflexive,

15

positive weights, total weight less than INT_MAX). If output is non-
NULL, prints a message noting errors or validness to file descriptor
output.

It is recommended to add for example ASSERT (graph_test (g,NULL))
after creating or modifying a graph to make sure it is internally correct.
See Section 5.4 for details on ASSERT.

int graph_test_regular(graph_t *g)
Returns the degree of the regular graph g, or -1 if g is not regular. Does
not perform the graph consistency tests done by graph_test.

boolean graph_weighted(graph_t *g)
Returns FALSE iff all vertex weights in graph g are the same (not nec-
essarily 1). To check that all weights are equal to 1, use !graph_
weighted(g) && g->weights[0]==1.

void graph_print(graph_t *g)
Prints the graph g to stdout in a simple format. Useful mainly in
debugging.

C Ordering Functions

Cliquer defines the following functions that can be used as reorder_function
in the clique_options structure. Each take as arguments the graph and a
boolean value which is TRUE if a weighted search is being done, FALSE oth-
erwise. They return a newly-allocated array of g->n ints defining the order
of the vertices. They do not modify the graph.

reorder_by_ident No reordering (identity mapping).
reorder_by_reverse Orders vertices in reverse order.
reorder_by_degree Orders vertices in order of ascending degree.

reorder_by_random Orders vertices randomly. Uses the random number
generator rand () and seeds the value from the current time.

reorder_by_weighted_greedy_coloring Orders vertices as defined in Sec-
tion 2.4 in the weighted case.

reorder_by_unweighted_greedy_coloring Orders vertices as defined in
Section 2.4 in the unweighted case.

16

reorder_by_greedy_coloring FEither of the previous two, depending on
whether a weighted or unweighted search is being performed.

reorder_by_default The default ordering function, currently reorder_
by_greedy_coloring.

Additionally, the following functions are defined to allow for more complex
orderings.

void reorder_set(set_t s,int *order) Orders the elements in the set s
according to the mapping i — order[i], 0 <i < SET_MAX_SIZE(s)-1.

void reorder_graph(graph_t s,int *order) Orders the vertices of the
graph g according to the mapping i — order[i], 0 < i < g->n-1.

int *reorder_duplicate(int *order,int n) Duplicates the mapping
order of size n.

void reorder_invert(int *order,int n) Inverts the mapping order, so
that new[old[i]] == iforall0 < i <n-1.

boolean reorder_is_bijection(int *order,int n) Returns TRUE if the
mapping order is a bijection in {0,1,...,n-1}.

For example, the following code orders the vertices of the graph g first
randomly, and after that with the default ordering function:

int *order;
set_t s;

order=reorder_by_random(g,FALSE) ;
reorder_graph(g,order) ;

reorder_invert (order,g->n);
S=Clique_find_single(g,0,0,FALSE,NULL);
reorder_set(s,order);

set_print(s);

D DIMACS Graph File Format

The DIMACS file format is a common format for describing graphs. The
graphs can either be in human-readable ASCII form [4] or in binary form [5].
The binary form takes less space for graphs with an edge density greater than
approximately 1.2 %. The formats are described shortly here.

17

D.1 ASCII Format

The ASCII files consist of textual lines with fields that are separated by at
least one blank space. The first field of each line consists of one character, and
describes the line type. The vertices in the file are numbered {1,2,...,n}.
Cliquer automatically changes the numbering to {0,1,...,n— 1} by decreas-
ing the values by one when reading the files, and increasing by one when
writing. The lines recognized by Cliquer are as follows:

¢ Comment line.
Lines beginning with 'c’ are comments and are ignored.

p FORMAT NODES EDGES
Each file contains one 'p’ line, which describes the dimensions of the
graph. FORMAT is for consistency with older formats, and should con-
tain the word “edge”. The number of vertices and edges in the graph
are given in the fields NODES and EDGES, respectively. Cliquer ignores
the FORMAT and EDGES fields when reading a graph, but they must be
present.

n ID VALUE
Assigns the vertex ID weight VALUE. Vertices that have no correspond-
ing 'n’ line will have the default weight of 1.

e WYV
Specifies that there is an edge between vertices W and V. The line is not
repeated as “e V W

d, v, x
The ’'d’, ’v’, and ’x’ lines define parameters that were used to generate
the graph. Refer to [4] for details. These lines are ignored by Cliquer.

When reading a graph, if a line starts with a one-character field that is
not mentioned above, a warning message is printed to stderr and the line
is ignored.

D.2 Binary Format

The binary format files consist of three parts: the first line, a textual pream-
ble, and a binary block. The first line contains an integer describing the
length of the preamble, in characters. Next, the preamble contains the same
lines as in the ASCII format, except for the e’ lines. (Cliquer also accepts
‘e’ lines in the preamble, and adds extra edges correspondingly.) Finally, the

18

binary block contains the lower triangular part of the adjacency matrix of
the graph in binary format. There are [i/8] bytes corresponding to vertex
v;, where i € {1,2,...,n}. The bits are used in a “left-to-right” manner, so
that the first vertex is in the most significant bit.

Note that although not specified in [5], Cliquer numbers the vertices
{1,2,...,n} in the preamble also in the binary case. This is significant
especially for weighted graphs, when we need to list the weights.

E Example Programs

The following program takes the name of a DIMACS graph file on the com-
mand line, reads it, searches for a single maximum-weight clique, and then
prints it.

The program can be compiled as is explained in Section 5.3. An example
run might look like the following (rand-600-0.3.b in this example contains
a random graph with 600 vertices and edge density 0.3):

The next example program finds all binary codes with prescribed length,
size, and minimum distance.

Using this program, we may count the number of binary perfect codes of
length 7 and minimum distance 3.

$./hamming 7 16 3
Number of codes: 240

Note that for this and other combinatorial problems, the graph has a
large automorphism group. This group can be utilized to speed up the search
significantly, which is essential when searching for larger codes |9, 12|.

Acknowledgment

This research was supported in part by the Academy of Finland under Grant
100500. The authors would like to thank Harri Haanpad and Petteri Kaski
for many useful comments and suggestions.

19

References

[1] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, The max-
imum clique problem, in: D.-Z. Du and P. M. Pardalos (Eds.), Hand-
book of Combinatorial Optimization, Supplement Volume A, Kluwer,
Dordrecht, 1999, pp. 1 74.

[2| A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith, A new
table of constant weight codes, IEEE Trans. Inform. Theory 36 (1990),
1334 1380.

[3] R. Carraghan and P. M. Pardalos, An exact algorithm for the maximum
clique problem, Oper. Res. Lett. 9 (1990), 375 382.

[4] DIMACS, Clique and coloring problems graph format, ftp://dimacs.
rutgers.edu/pub/challenge/graph/doc/ccformat.dvi, 26.8.2002.

[5] DIMACS, DIMACS format for storing undirected graphs in binary files,
ftp://dimacs.rutgers.edu/pub/challenge/graph/translators/
binformat/README.binformat, 26.8.2002.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-completeness, Freeman, New York, 1979.

[7] B.D. McKay, nauty user’s guide (version 1.5), Computer Science Depart-
ment, Australian National University, Tech. Rep. TR-CS-90-02, 1990.

8] K. J. Nurmela, M. K. Kaikkonen, and P. R. J. Ostergard, New constant
weight codes from linear permutation groups, IEEE Trans. Inform. The-
ory 43 (1997), 1623-1630.

9] P. R. J. Ostergard, Classification of binary /ternary one-error-correcting
codes, Discrete Math. 223 (2000), 253-262.

[10] P. R. J. Ostergard, A new algorithm for the maximum-weight clique
problem, Nordic J. Comput. 8 (2001), 424-436.

[11] P. R. J. Ostergard, A fast algorithm for the maximum clique problem,
Discrete Appl. Math. 120 (2002), 195-205.

[12] P.R.J. Ostergard, T. Baicheva, and E. Kolev, Optimal binary one-error-
correcting codes of length 10 have 72 codewords, IEEE Trans. Inform.
Theory 45 (1999), 1229-1231.

20

