
Contents1 Introdu
tion 12 Preliminaries and the Algorithm 12.1 Cliques . 22.2 A Maximum Clique Algorithm 32.3 A Maximum-Weight Clique Algorithm 32.4 Ordering the Verti
es . 33 Data Stru
tures 43.1 Sets . 43.2 Graphs . 53.3 Limitations . 54 Clique Sear
hing 54.1 Clique-Sear
hing Fun
tions . 54.2 Cliquer Options . 75 Compiling Cliquer 95.1 Con�guration . 95.1.1 Make�le . 105.1.2
liquer
onf.h . 105.2 Compiling the Command-Line Utility 115.3 Writing Your Own Program 115.4 Assertions . 12A Set-Handling Fun
tions 13B Graph-Handling Fun
tions 14C Ordering Fun
tions 16D DIMACS Graph File Format 17D.1 ASCII Format . 18D.2 Binary Format . 18E Example Programs 19

1 Introdu
tionCliquer is a set of C routines for �nding
liques in an arbitrary weightedgraph. It
an sear
h for maximum
liques, maximum-weight
liques, or
liques whose size or weight is within a given range, optionally limiting thesear
h to maximal
liques. The
liques that are found
an either be storedin memory, or a user-de�ned fun
tion
an be
alled for ea
h
lique. Cliqueris re-entrant, that is, one may use the
lique-sear
hing routines again fromthe user-de�ned fun
tion. The pa
kage also
ontains a
ommand-line utility
l, whi
h
an be used to �nd
liques from graphs in DIMACS-format �les.Cliquer uses an exa
t bran
h-and-bound algorithm developed by the se
-ond author [10, 11℄ for the maximum
lique and maximum-weight
liqueproblems, and suitably modi�ed versions for other
lique sear
hes. The pa-pers
ited also
ontain
omparisons with some other
ommon algorithms.Cliquer has been developed on Linux and it should
ompile without mod-i�
ation on most modern UNIX systems. Other systems may require minor
hanges to the sour
e
ode.Cliques and important problems related to these are de�ned in Se
tion 2,where the algorithm used by Cliquer is also brie�y dis
ussed. The datastru
tures and
lique-sear
hing fun
tions are des
ribed in Se
tions 3 and 4,respe
tively. Se
tion 5
ontains information on how to
on�gure and
om-pile Cliquer. Appendi
es A, B, and C do
ument fun
tions that are usefulfor manipulating sets, graphs, and vertex orders (fun
tions of the last typea�e
t the e�
ien
y of the sear
h), respe
tively. The DIMACS graph �leformat is des
ribed in Appendix D, and example programs are presented inAppendix E.Cliquer is �exible and easy to use and still
ompetes with the fastest
liqueprograms�it is indeed the fastest for several types of graphs [10, 11℄. Bugreports and other feedba
k should be dire
ted to the
orresponding author.2 Preliminaries and the AlgorithmIn this se
tion,
entral
on
epts are introdu
ed and the algorithm used byCliquer is shortly des
ribed. For a more extensive treatment, we refer to[10, 11℄. Note, however, that the vertex numbering used by Cliquer is thereverse of that des
ribed in the referen
es. The algorithm is des
ribed hereas Cliquer uses it.This se
tion is not ne
essary for using Cliquer, but Se
tion 2.4 may beuseful for understanding the vertex ordering fun
tions.1

2.1 CliquesWe denote an undire
ted graph by G = (V,E), where V is the set of verti
esand E is the set of edges, su
h that ea
h edge is a set of two verti
es in V(whi
h are said to be adja
ent). The number of verti
es, |V |, is
alled theorder of G. We denote the weight of a vertex v ∈ V by w(v), and the sumof vertex weights in a set W ⊆ V by w(W).A
lique in G is a subset S ⊆ V of verti
es, all of whi
h are adja
ent toea
h other. A
lique is said to be maximal if it is not the subset of any larger
lique, and maximum if there are no larger
liques in the graph.In the maximum
lique problem one wants to �nd a maximum
lique inan arbitrary undire
ted graph. Sin
e this is an NP-hard problem [6℄, nopolynomial time algorithms are known to exist. Cliquer uses a bran
h-and-bound algorithm developed by the se
ond author [11℄, whi
h is based on analgorithm by Carraghan and Pardalos [3℄. It adds more e�
ient pruningmethods by storing in memory the maximum
lique size of subgraphs that ithas dis
overed. In many
ases, it is faster than other known algorithms [11℄.The maximum
lique problem is
omputationally equivalent to some otherimportant problems. An independent set (also
alled a stable set) of a graphis a set of verti
es, none of whi
h are adja
ent. By taking the
omplementof a graph, the maximum independent set problem is transformed into themaximum
lique problem. For a given independent set of a graph, any edgein the graph is in
ident to a vertex that is not in this set. Therefore, the min-imum vertex
over problem is another
omputationally equivalent problem.For weighted graphs, we get analogous problems. For an extensive surveyof the maximum
lique problem and related issues, see [1℄. This survey alsolists a wide variety of appli
ations.Clique algorithms
an be used, for example, to �nd error-
orre
ting
odesof maximum size [9, 12℄. Take one vertex for ea
h word in the given spa
e,and let verti
es whose mutual distan
e is at least d, a pres
ribed parameter,be adja
ent. Then maximum
liques in the
onstru
ted graph
orrespond toerror-
orre
ting
odes of maximum size. An example of �nding
odes withCliquer is given in Appendix E. Maximum-weight
liques have appli
ationsin the sear
h for
odes with pres
ribed automorphism groups [2, 8, 10℄. Insear
hing for
ombinatorial obje
ts, one may want to use the program nauty[7℄ for isomorphism tests. Cliquer has been designed to respe
t nauty, soboth routines
an be used in the same program.
2

2.2 A Maximum Clique AlgorithmWe assume some order for the verti
es V = {v1, v2, . . . , vn}. Let Si =
{v1, v2, . . . , vi} ⊆ V . We de�ne the fun
tion c(i) to be the size of themaximum
lique in the subgraph indu
ed by Si. Obviously, for every i =
1, . . . , n − 1 we have either c(i + 1) = c(i) or c(i + 1) = c(i) + 1. Moreover,
c(i+1) = c(i)+1 i� there exists a
lique in Si+1 of size c(i)+1 that in
ludesvertex vi+1.Cliquer
al
ulates the values of c(i) starting from c(1) = 1 up, and storesthe values found. This enables a pruning strategy not found in old algorithms,su
h as [3℄. Namely, when Cliquer is
al
ulating c(i + 1) (that is, sear
hingfor a
lique of size c(i) + 1 within Si+1), and it has formed a
lique W andis
onsidering adding vertex vj, it
an prune the sear
h if |W | + c(j) ≤ c(i).As j is
hosen to be the largest index in the set of verti
es to be
onsidered,it follows that a
lique of size c(i) + 1 that
ontains W
annot exist in Si+1.Trivially, if it �nds a
lique of size c(i)+1, it
an prune the whole sear
h andstart
al
ulating c(i + 2).When sear
hing for all maximum
liques, Cliquer �rst determines thesize of the maximum
liques, and then starts the sear
h again at the suitableposition.The order of the verti
es has a major impa
t on the speed of the algorithm.Therefore it is bene�
ial to use some time in devising the order of the verti
es.This ordering is dis
ussed further in Se
tion 2.4.2.3 A Maximum-Weight Clique AlgorithmThe algorithm used with weighted
liques is des
ribed in [10℄, and it isvery similar to the unweighted
ase. The same kind of pruning is usedwhen
onsidering additional verti
es, that is, the sear
h
an be pruned if
w(W)+C(j) ≤ C(i), where vj is the vertex being
onsidered and C(i) is themaximum weight of a
lique in Si.However, �nding a
lique of greater weight than C(i) in Si+1 is insu�
ient,as it is not ne
essarily the maximum-weight
lique of Si+1. Therefore, thesear
h is
ontinued until all
ombinations have been
he
ked, or a
lique withweight C(i) + w(vi+1) is found.2.4 Ordering the Verti
esThe order of the verti
es in the sear
h has a major impa
t on the speed ofthe sear
h. Cliquer allows ordering the verti
es using a variety of fun
tions,or by de�ning one's own order. 3

Note that the vertex numbering used by Cliquer is the reverse of that in[11℄ and [10℄, sin
e there Si is de�ned as {vi, . . . , vn} instead of {v1, . . . , vi}.It is very mu
h an open resear
h problem to try to �nd proper vertex or-ders. The following two heuristi
s have experimentally been found to bee�e
tive [10, 11℄.In a vertex
oloring of a graph, two adja
ent verti
es must be assigneddi�erent
olors. In both the unweighted and the weighted
ase, the graph is
olored one
olor at a time, adding verti
es to a
olor
lass as long as possiblebefore
reating a new
olor
lass. In the unweighted
ase, the vertex
hosenis always the one with the largest degree within the un
olored graph. In theweighted
ase, the vertex is
hosen from the verti
es with smallest weight,and has the largest sum of weights adja
ent to the vertex in the un
oloredgraph. The verti
es are labelled v1, v2, . . . , vn in the order that they are
hosen during the
oloring.The order of the verti
es is de�ned in
lique_options, whi
h is passedto the
lique sear
hing fun
tions. See Se
tion 4.2 for details.3 Data Stru
turesCliquer de�nes data stru
tures for sets and graphs, explained in the followingse
tions. In addition, the data type boolean (de�ned as an int) and theexpressions TRUE and FALSE are de�ned for use in boolean variables.3.1 SetsA setelement is an unsigned integer data type, whi
h is either 16, 32 or 64bits in length, as set at
ompile-time (see Se
tion 5.1). ELEMENTSIZE is thenumber of bits in one setelement.A set (by whi
h we always mean a subset of X = {0, 1, . . . , n − 1}) isrepresented by an array of setelements, whi
h
ontains one bit for ea
h valuethe set may hold. The type for sets is set_t (equivalent to setelement *),and sets should be de�ned as �set_t s� (not �set_t *s�).On
e initialized, set_t s
ontains a representative bit for ea
h valueit
an
ontain, whi
h is 1 if the value is in the set, 0 otherwise. Values
{0, . . . , ELEMENTSIZE-1} are stored in s[0℄, the next ELEMENTSIZE values ins[1℄, and so forth. Within a setelement, the smallest value is stored inthe least-signi�
ant bit. In addition, the size n of the superset X (giving thetotal number of 0s and 1s) is stored in s[-1℄. It is re
ommended that oneuses the ma
ros and fun
tions listed in Appendix A for set manipulation.4

For performan
e reasons, the set handling routines are de�ned in set.has stati
 fun
tions, so that the
ompiler
an inline them. This may
ausewarnings of unused fun
tions on some
ompilers, whi
h may be safely ignored.See Se
tion 5.1 for details.3.2 GraphsGraphs in Cliquer are handled with the data type graph_t *. The verti
esare numbered {0, 1, . . . , n−1}, where n is the number of verti
es. The stru
-ture graph_t
ontains an array of n sets, ea
h of whi
h tells what verti
es areadja
ent to that vertex, and an array of n ints
ontaining the vertex weights.The adja
en
y matrix is required to be symmetri
 (that is, the graph mustnot be dire
ted) and anti-re�exive, and all vertex weights must be positive.The stru
ture
ontains the following members:int n Number of verti
es in the graph.set_t *edges A list of n sets, where edges[i℄
ontains the verti
es thatare adja
ent to vertex i.int *weights A list of n ints whi
h
ontain the vertex weights.It is re
ommended that a program should only use the type graph_t *,and use the fun
tions des
ribed in Appendix B for graph manipulation.3.3 LimitationsThe data stru
tures used in Cliquer are dynami
ally allo
ated, and do notimpose restri
tions on graph or set sizes. The only limitations are made byavailable memory and the integer data type size. Spe
i�
ally, the total weightof a graph must be less than the maximum value that
an be stored in anint, and the maximum size of a set must �t into one setelement. As mostmodern systems have at least 32-bit integers, this should not be a limitation.4 Clique Sear
hingThis se
tion
ontains the
ore of this user's manual, the
lique-sear
hingfun
tions and their options.
5

4.1 Clique-Sear
hing Fun
tionsCliquer in
ludes six fun
tions that sear
h for
liques, all of whi
h begin with�
lique_�. Cliques are returned as sets (of type set_t) of the verti
es form-ing the
lique. The size of the superset X always equals the number ofverti
es in the graph. The sear
h fun
tions are as follow:int
lique_max_weight(g,opts)Returns the largest weight that any
lique in graph g has. Note thatusing this fun
tion is no faster than using
lique_find_single(g,0,0,FALSE,opts) to a
tually �nd a maximum-weight
lique.set_t
lique_find_single(g,min_weight,max_weight,maximal,opts)Returns a single
lique in graph g ful�lling the weight requirementsgiven (see below for details). If su
h a
lique does not exist in thegraph, the fun
tion returns NULL. Note that the
lique storage methodsin opts are not used.int
lique_find_all(g,min_weight,max_weight,maximal,opts)Sear
hes for all
liques in graph g ful�lling the weight requirementsgiven (see below for details). The
liques are stored as de�ned in opts.The return value is the number of
liques found.int
lique_unweighted_max_weight(g,opts)set_t
lique_unweighted_find_single(g,min,max,maximal,opts)int
lique_unweighted_find_all(g,min,max,maximal,opts)These fun
tions are identi
al to the three above, ex
ept that they as-sume that all vertex weights are 1. This is useful if one has a weightedgraph and wishes to �nd
liques based on size instead of weight. The�rst three fun
tions automati
ally use these fun
tions for unweightedgraphs.The arguments min_weight, max_weight, and maximal de�ne what kindof
liques are sear
hed for. The stru
ture opts
ontains information abouthow the verti
es are to be ordered during the sear
h, how the
liques arestored, and how the progress of the routine is reported. All arguments aretreated read-only, though opts may
ontain pointers to areas that are mod-i�ed. The meanings of the parameters are as follows:graph_t *g The graph in whi
h
liques are sear
hed for.int min_weight Minimumweight of
liques to sear
h for. If min_weight=0,then the fun
tions sear
h for maximum-weight
liques.6

int max_weight Maximumweight of
liques to sear
h for. If max_weight=0,then no upper limit is used. If min_weight=0, then also max_weightmust be 0.If max_weight> 0, then it is required that min_weight ≤ max_weight.See Se
tion 5.4 for details.boolean maximal If TRUE, requires the
liques to be maximal.
lique_options *opts Details how to store the
liques, how to order theverti
es during the sear
h, and how to report the progress of the routine(see Se
tion 4.2 below for details). If opts=NULL, then the defaultoptions in
lique_default_options are used.4.2 Cliquer OptionsThe
lique_options stru
ture
ontains information that does not a�e
twhat kinds of
liques are sear
hed for, but a�e
ts the speed of the algorithm,how results are stored, and how progress is reported. Note that when usingdi�erent vertex orderings,
lique_find_single may �nd di�erent
liquesful�lling the weight requirements. The default options are de�ned in theglobal variable
lique_default_options, whi
h
an also be modi�ed. Thestru
ture
ontains the following �elds:int *(*reorder_fun
tion)(graph_t *, boolean)int *reorder_mapThese variables de�ne the order of the verti
es used in the sear
h. Thismay greatly a�e
t the speed of the sear
h. Either one of these variablesmust be NULL. If both are NULL, no reordering will be
arried out (thatis, the order follows that of the
reated graph). See Se
tion 2.4 fordetails on vertex orders.If reorder_fun
tion is non-NULL, it is
alled with the graph as anargument to get the order of verti
es to use in the sear
h. The fun
tionde�nition should be int *fun
tion(graph_t *g,boolean weighted),where g is the graph and weighted tells whether a weighted or un-weighted sear
h is being done. The fun
tion should return an array ofg->n ints allo
ated with mallo
(), whi
h
ontains ea
h of the values
{0, 1, . . . , g->n-1} exa
tly on
e. Cliquer has several ordering fun
tionsprede�ned, whi
h are do
umented in Appendix C.Alternatively, the vertex order
an be given in reorder_map. In this
ase, the array is not freed. 7

The default is to have reorder_fun
tion as reorder_by_greedy_
oloring and reorder_map as NULL.boolean (*time_fun
tion)(...)FILE *outputIf non-NULL, this fun
tion is
alled at every base-level re
ursion. Thefun
tion de�nition should beboolean fun
tion(int level,int i,int n,int max,double
putime,double realtime,
lique_options *opts),where level is the re-entran
e level (in
reased by one every time a
lique-sear
hing fun
tion is
alled, and de
reased when it returns; 1 forthe �rst
lique-sear
hing
all), i is the level of the
urrent re
ursion, nis the total number of re
ursion levels (the size of the graph), max isthe weight of the heaviest
lique found so far (but see later remarks),
putime is the CPU time used by this program in the re
ursion so far,realtime is the total amount of time the re
ursion has taken so far,and opts is the option stru
ture. The values of
putime and realtimeshould be approximately the same if there are no other time-
onsumingpro
esses being run on the
omputer. The fun
tion should return TRUEto
ontinue the sear
h, or FALSE to abort.The de�nition of max given above has the following ex
eption. If sear
h-ing for more than a single
lique in a weight interval, max stops growingwhen it has rea
hed min_weight-1. Also note that when sear
hing forall maximum
liques, the sear
h will �rst pro
ess the whole graph (to�nd the size of the maximum
lique) and then
ontinue the sear
h for allsu
h graphs from an earlier point; this a�e
ts the value of i a

ordingly.Cliquer de�nes two fun
tions that
an be used as progress indi
atingfun
tions. The fun
tion
lique_print_time prints a line indi
atingthe progress if over 0.1 se
onds have elapsed from the previous time aline has been printed or if one of the other arguments has
hanged. Itindents the line with two spa
es for every re-entran
e. The fun
tion
lique_print_time_always works in the same way, ex
ept that itprints the line on every
all. The time printed by these fun
tions is thereal time spent in the algorithm. They print to the �le stream output,or stdout if it is NULL.The default value for time_fun
tion is
lique_print_time and NULLfor output.
8

boolean (*user_fun
tion)(set_t,graph_t *,
lique_options *)void *user_dataWhen sear
hing for multiple
liques, user_fun
tion is
alled for every
lique found, if non-NULL. The fun
tion de�nition should be booleanfun
tion(set_t s,graph_t *g,
lique_options *opts), where s isthe
lique, g is the graph, and opts is the option stru
ture used. Thefun
tion should return TRUE to
ontinue the sear
h or FALSE to abortand return to the
aller. Note that there is no way of telling fromthe return values of the
lique-sear
hing fun
tions whether the sear
hwas
ompleted or aborted in a user-de�ned fun
tion; if distin
tion isne
essary, a user-de�ned global variable
an be used.Cliquer is re-entrant, so it is safe to use the
lique sear
hing fun
tionsfrom user_fun
tion. However,
lique_default_options is the samefor all instan
es, so one may need to de�ne one's own options stru
ture.The variable user_data is ignored by Cliquer, and
an be used to passdata to user_fun
tion.set_t *
lique_listint
lique_list_lengthWhen sear
hing for multiple
liques, the
liques found are stored in
lique_list, if non-NULL. This should be an array of at least
lique_list_length unallo
ated sets of type set_t. At most
lique_list_length
liques are stored, after that the sear
h
ontinues, but the
liques are not stored.Both user_fun
tion and
lique_list
an be de�ned at the same time.If neither is de�ned, the only result of
lique_find_all is the number of
liques in the graph. Note that if either user_fun
tion or time_fun
tionreturns FALSE, the sear
h is aborted. In this
ase,
lique_find_all re-turns the number of
liques found so far,
lique_find_single returns NULL,and
lique_max_weight returns 0. The fun
tions
lique_print_time and
lique_print_time_always always return TRUE.5 Compiling Cliquer5.1 Con�gurationCliquer is
on�gured in two �les: Makefile and
liquer
onf.h. The usershould in all
ases read Makefile for
on�guration options. The
on�gura-tion options in
liquer
onf.h have reasonable defaults, and one should beable to
ompile Cliquer without modi�
ations.9

5.1.1 Make�leThe make�le
ontains mainly
ompilation options. The user must de�ne the
ompiler to be used by setting the CC variable, and the
ompilation �agsin CFLAGS. One may also leave CFLAGS blank, but in this
ase no
odeoptimization will be done.The variable LONGOPTS is added to the
ompilation �ags when
ompil-ing the
l program. It should be set to -DENABLE_LONG_OPTIONS if long
ommand line options are desired (for example, �
l --help�). Otherwiseonly one-
hara
ter options will be re
ognized (�
l -h�). Use of long optionsrequires the getopt_long() fun
tion, whi
h is a GNU extension. If
ompi-lation stops with errors about long options,
omment out this variable.The default options are suitable for
ompiling with GNU C, with longoptions enabled.5.1.2
liquer
onf.hThe �le
liquer
onf.h
ontains
on�guration options, whi
h are used in allprograms using Cliquer. If some option is not de�ned in
liquer
onf.h, thedefault is used. The �le
ontains the following options:setelementELEMENTSIZEA setelement is the basi
 unsigned integer data type used in sets. It isoften fastest to be as long an integer as
an �t in the general registersof the CPU. ELEMENTSIZE is the number of bits in one setelement.It must be 16, 32 or 64, otherwise some modi�
ations to the sour
e
ode are ne
essary. One must either de�ne both in
liquer
onf.h, orneither.The default is to use �unsigned long int� as setelement, and tryto determine its size from ULONG_MAX de�ned in limits.h. If usingthe default, it is re
ommended to run �make test� to
he
k su

essfuldete
tion.INLINE Many
ompilers
an inline simple fun
tions to make faster
ode.This option is added in the de
laration of several simple fun
tions toinstru
t the
ompiler to inline them. If fun
tion inlining is not desired,or the
ompiler does not support it, de�ne it empty.The default is to use �inline�, whi
h is re
ognized by most modern
ompilers. 10

UNUSED_FUNCTION For performan
e reasons, the set handling fun
tions arede�ned in the �le set.h as stati
 fun
tions. This may
ause spuriouswarnings about unused fun
tions when
ompiling. Some
ompilers,su
h as GNU C, allow the user to add an �attribute� to the fun
tion
onstraining these warnings.The default is to use �__attribute__((unused))� when
ompilingwith GNU C, or blank otherwise.ASSERT(
ond) De�ning this blank disables all assertions. This is dis
our-aged, be
ause it allows bugs to go unnoti
ed easier. See Se
tion 5.4 fordetails.5.2 Compiling the Command-Line UtilityAfter
on�guration, the
ommand-line utility program
l
an be
ompiled bysimply typing �make all�. With the program
l one
an sear
h for
liquesfrom the
ommand line by providing the graph from a �le or standard input.One
an use all the features in Cliquer by di�erent
ommand-line options.Type �
l -h� for information on the available options. It is useful for simple
lique sear
hing and for testing Cliquer.Additionally, �make test�
ompiles and exe
utes a series of unit tests,that is, tests most of the features in Cliquer with a variety of graphs. Run-ning it is re
ommended to make sure that
ompilation was su

essful and
on�guration options are
orre
tly set. If any of the tests returns an error,
he
k
on�guration options and try again.5.3 Writing Your Own ProgramAll programs using Cliquer should in
lude
liquer.h. This in turn in
ludesthe �les set.h, graph.h, reorder.h, mis
.h, and
liquer
onf.h. The pro-grams should be linked together with
liquer.o, graph.o, and reorder.o.The easiest way to do this is by

 -o basi
 basi
.

liquer.
 graph.
 reorder.
where basi
 is repla
ed by the name of the program. Adding
ompiler-spe
i�
 optimization �ags will make the resulting program faster.When using Cliquer a lot, it is easiest to make an entry for the programin Makefile. The lines
11

basi
: basi
.o
liquer.o graph.o reorder.o$(CC) $(LDFLAGS) -o $� basi
.o
liquer.o graph.o reorder.owith basi
 repla
ed by the program name should be enough for most needs.Note that the se
ond line must start with a tab, not eight spa
es. One
anthen
ompile the program by typing �make basi
� (where basi
 is repla
edby the program name).5.4 AssertionsCliquer de�nes the ma
ro ASSERT(
ond), whi
h veri�es that the spe
i�ed
ondition is true. If
ond evaluates to FALSE, an error message
ontainingthe �le name, the line number, and the
ondition of the assertion is printed,and the program exe
ution is terminated. Assertions
an be used to
he
kthe validness of fun
tion arguments and internal variables. For instan
e, one
an
he
k the internal
onsisten
y of a graph byASSERT(graph_test(g,NULL));This is re
ommended after
reating or modifying a graph. Aborting theprogram exe
ution is justi�ed by the fa
t that if an assertion fails, it most
ertainly is the result of a bug in the program. Changing NULL in the aboveexample to, for instan
e, stderr would also write a line stating the validnessand graph parameters to stderr.Cliquer uses assertions mainly in the
lique sear
hing fun
tions. Most setand graph fun
tions do not use them for performan
e reasons. Even thoughdisabling assertions is possible from
liquer
onf.h, this is dis
ouraged, asit allows bugs to go unnoti
ed easier.Note that the
lique sear
hing fun
tions assert that min_weight ≤max_weight if max_weight > 0, even though there exists the �
orre
t� answerthat no su
h
liques exist. This is be
ause asking for
liques with a mini-mum weight that is larger than the maximum weight is in most
ases due to abug in the
ode (for example, spe
ifying min_weight and max_weight in thewrong order). On the other hand, testing for
omplete graph validness withgraph_test() is not performed automati
ally, sin
e the
he
k is an O(n2)operation.
12

Appendi
esA Set-Handling Fun
tionsThe following routines are de�ned in set.h for set manipulation:set_t set_new(int size) Returns a set whi
h
an
ontain the values
{0, 1, . . . , size-1}. It
an be freed using set_free() (not free()).The value of size must be greater than zero.void set_free(set_t s) Frees the memory asso
iated with the set s.set_t set_resize(set_t s,int size) Resizes the set s to a subset of
{0, 1, . . . , size-1}. If the set
ontains elements with a value greaterthan or equal to size, they are removed from the set. The value sizemust be greater than zero. The return value is the new set (the old setshould not be used anymore).SET_ADD_ELEMENT(s,i)SET_DEL_ELEMENT(s,i)SET_CONTAINS(s,i)SET_CONTAINS_FAST(s,i)Ma
ros that add, remove and test for element i in the set s. SET_CONTAINS(s,i) works for all i ≥ 0 (returning FALSE if i is greaterthan the set size), while the others assume that 0 ≤ i ≤ SET_MAX_SIZE(s)-1. Apart from the allowed range, SET_CONTAINS_FAST isequivalent to SET_CONTAINS.SET_MAX_SIZE(s)SET_ARRAY_LENGTH(s)Ma
ros that return the superset size and the setelement array lengthof the set s, respe
tively.int set_size(set_t s) Returns the number of elements that the set s
ontains.void set_empty(set_t s) Removes all elements from the set s.set_t set_dupli
ate(set_t s) Returns a dupli
ate of the set s.set_t set_
opy(set_t dest,set_t sr
) Makes the set dest
ontain thesame elements as sr
. If dest is NULL, this performs the equivalent ofset_dupli
ate(sr
). If dest is smaller than sr
, dest is resized to13

the size of sr
. Return value is either dest or the set allo
ated in itsstead; use as dest=set_
opy(dest,sr
) to ensure
orre
t behavior.int set_return_next(set_t s, int n) Returns the smallest element ofthe set s whi
h is greater than n, or -1 if su
h an element does notexist. One
an iterate though all elements in s withint i=-1;while ((i=set_return_next(s,i)) >= 0) {/* i is in set s. */}set_t set_interse
tion(set_t res,set_t a,set_t b)set_t set_union(set_t res,set_t a,set_t b)Stores the interse
tion or union of the sets a and b in the set res, whi
his resized (or
reated if NULL) to be at least the size of the larger sour
eoperand. Return value is res or the set allo
ated in its stead. It is notallowed that res be either a or b.void set_print(set_t s) Prints size and
ontents of the set s to stdout.Mainly useful for debugging or simple output.B Graph-Handling Fun
tionsThe following routines are de�ned in graph.h for graph manipulation:graph_t *graph_new(int n)Creates a new graph with n verti
es. There are no edges in the graphand all vertex weights are set to 1. The value of n must be greater thanzero.void graph_free(graph_t *g)Frees the memory used by the graph g.GRAPH_ADD_EDGE(g,i,j)GRAPH_DEL_EDGE(g,i,j)GRAPH_IS_EDGE(g,i,j)GRAPH_IS_EDGE_FAST(g,i,j)Ma
ros that add, remove and
he
k for an edge between verti
es iand j in the graph g. GRAPH_IS_EDGE(g,i,j) works for all i, j ≥ 0(returning FALSE if i or j ex
eeds the order of the graph), while theothers assume that 0 ≤ i, j ≤ g->n-1. The order of the parameters i14

and j is insigni�
ant. Apart from the allowed range, GRAPH_IS_EDGE_FAST is equivalent to GRAPH_IS_EDGE.void graph_resize(graph_t *g,int size)Resizes the graph g to
ontain size verti
es. If size < g->n, thenthe verti
es {size, . . . , g->n-1} will be removed from the graph. Thevalue of size must be greater than zero.void graph_
rop(graph_t *g)Removes the highest valued isolated verti
es from the graph g, so thatthe highest valued vertex is not isolated.graph_t *graph_read_dima
s_file(
har *file)graph_t *graph_read_dima
s(FILE *fp)Reads a DIMACS-format graph �le [4, 5℄ from the �le stream fp orfrom the �le file. Automati
ally dete
ts whether the �le is in ASCII orbinary format. Returns a newly-allo
ated graph if su

essful, otherwiseprints an error message to stderr and returns NULL.The �le format is des
ribed in Appendix D. The vertex weights areread from the 'n' lines of the preamble. The 'd', 'v', and 'x' lines aresilently ignored. All other unknown lines produ
e a warning messageand are ignored.boolean graph_write_dima
s_as
ii(g,
omment,fp)boolean graph_write_dima
s_as
ii_file(g,
omment,file)boolean graph_write_dima
s_binary(g,
omment,fp)boolean graph_write_dima
s_binary_file(g,
omment,file)Types: graph *g,
har *
omment, FILE *fp,
har *fileThese fun
tions write the graph g in DIMACS ASCII or binary formatto the �le stream fp or the �le file. If
omment is non-NULL, then itis added to the �le as a
omment.
omment may not
ontain newlines.int graph_edge_
ount(graph_t *g)Returns the number of edges in the graph g.int graph_vertex_degree(graph_t *g, int v)Returns the degree (the number of adja
ent verti
es) of vertex v in thegraph g.boolean graph_test(graph_t *g,FILE *output)Returns TRUE i� the graph g is a valid graph (symmetri
, anti-re�exive,15

positive weights, total weight less than INT_MAX). If output is non-NULL, prints a message noting errors or validness to �le des
riptoroutput.It is re
ommended to add for example ASSERT(graph_test(g,NULL))after
reating or modifying a graph to make sure it is internally
orre
t.See Se
tion 5.4 for details on ASSERT.int graph_test_regular(graph_t *g)Returns the degree of the regular graph g, or -1 if g is not regular. Doesnot perform the graph
onsisten
y tests done by graph_test.boolean graph_weighted(graph_t *g)Returns FALSE i� all vertex weights in graph g are the same (not ne
-essarily 1). To
he
k that all weights are equal to 1, use !graph_weighted(g) && g->weights[0℄==1.void graph_print(graph_t *g)Prints the graph g to stdout in a simple format. Useful mainly indebugging.C Ordering Fun
tionsCliquer de�nes the following fun
tions that
an be used as reorder_fun
tionin the
lique_options stru
ture. Ea
h take as arguments the graph and aboolean value whi
h is TRUE if a weighted sear
h is being done, FALSE oth-erwise. They return a newly-allo
ated array of g->n ints de�ning the orderof the verti
es. They do not modify the graph.reorder_by_ident No reordering (identity mapping).reorder_by_reverse Orders verti
es in reverse order.reorder_by_degree Orders verti
es in order of as
ending degree.reorder_by_random Orders verti
es randomly. Uses the random numbergenerator rand() and seeds the value from the
urrent time.reorder_by_weighted_greedy_
oloring Orders verti
es as de�ned in Se
-tion 2.4 in the weighted
ase.reorder_by_unweighted_greedy_
oloring Orders verti
es as de�ned inSe
tion 2.4 in the unweighted
ase.16

reorder_by_greedy_
oloring Either of the previous two, depending onwhether a weighted or unweighted sear
h is being performed.reorder_by_default The default ordering fun
tion,
urrently reorder_by_greedy_
oloring.Additionally, the following fun
tions are de�ned to allow for more
omplexorderings.void reorder_set(set_t s,int *order) Orders the elements in the set sa

ording to the mapping i 7→ order[i℄, 0 ≤ i≤ SET_MAX_SIZE(s)-1.void reorder_graph(graph_t s,int *order) Orders the verti
es of thegraph g a

ording to the mapping i 7→ order[i℄, 0 ≤ i ≤ g->n-1.int *reorder_dupli
ate(int *order,int n) Dupli
ates the mappingorder of size n.void reorder_invert(int *order,int n) Inverts the mapping order, sothat new[old[i℄℄ == i for all 0 ≤ i ≤ n-1.boolean reorder_is_bije
tion(int *order,int n) Returns TRUE if themapping order is a bije
tion in {0, 1, . . . , n-1}.For example, the following
ode orders the verti
es of the graph g �rstrandomly, and after that with the default ordering fun
tion:int *order;set_t s;order=reorder_by_random(g,FALSE);reorder_graph(g,order);reorder_invert(order,g->n);s=
lique_find_single(g,0,0,FALSE,NULL);reorder_set(s,order);set_print(s);D DIMACS Graph File FormatThe DIMACS �le format is a
ommon format for des
ribing graphs. Thegraphs
an either be in human-readable ASCII form [4℄ or in binary form [5℄.The binary form takes less spa
e for graphs with an edge density greater thanapproximately 1.2 %. The formats are des
ribed shortly here.17

D.1 ASCII FormatThe ASCII �les
onsist of textual lines with �elds that are separated by atleast one blank spa
e. The �rst �eld of ea
h line
onsists of one
hara
ter, anddes
ribes the line type. The verti
es in the �le are numbered {1, 2, . . . , n}.Cliquer automati
ally
hanges the numbering to {0, 1, . . . , n−1} by de
reas-ing the values by one when reading the �les, and in
reasing by one whenwriting. The lines re
ognized by Cliquer are as follows:
 Comment line.Lines beginning with '
' are
omments and are ignored.p FORMAT NODES EDGESEa
h �le
ontains one 'p' line, whi
h des
ribes the dimensions of thegraph. FORMAT is for
onsisten
y with older formats, and should
on-tain the word �edge�. The number of verti
es and edges in the graphare given in the �elds NODES and EDGES, respe
tively. Cliquer ignoresthe FORMAT and EDGES �elds when reading a graph, but they must bepresent.n ID VALUEAssigns the vertex ID weight VALUE. Verti
es that have no
orrespond-ing 'n' line will have the default weight of 1.e W VSpe
i�es that there is an edge between verti
es W and V. The line is notrepeated as �e V W�.d, v, xThe 'd', 'v', and 'x' lines de�ne parameters that were used to generatethe graph. Refer to [4℄ for details. These lines are ignored by Cliquer.When reading a graph, if a line starts with a one-
hara
ter �eld that isnot mentioned above, a warning message is printed to stderr and the lineis ignored.D.2 Binary FormatThe binary format �les
onsist of three parts: the �rst line, a textual pream-ble, and a binary blo
k. The �rst line
ontains an integer des
ribing thelength of the preamble, in
hara
ters. Next, the preamble
ontains the samelines as in the ASCII format, ex
ept for the 'e' lines. (Cliquer also a

epts'e' lines in the preamble, and adds extra edges
orrespondingly.) Finally, the18

binary blo
k
ontains the lower triangular part of the adja
en
y matrix ofthe graph in binary format. There are ⌈i/8⌉ bytes
orresponding to vertex
vi, where i ∈ {1, 2, . . . , n}. The bits are used in a �left-to-right� manner, sothat the �rst vertex is in the most signi�
ant bit.Note that although not spe
i�ed in [5℄, Cliquer numbers the verti
es
{1, 2, . . . , n} in the preamble also in the binary
ase. This is signi�
antespe
ially for weighted graphs, when we need to list the weights.E Example ProgramsThe following program takes the name of a DIMACS graph �le on the
om-mand line, reads it, sear
hes for a single maximum-weight
lique, and thenprints it.The program
an be
ompiled as is explained in Se
tion 5.3. An examplerun might look like the following (rand-600-0.3.b in this example
ontainsa random graph with 600 verti
es and edge density 0.3):The next example program �nds all binary
odes with pres
ribed length,size, and minimum distan
e.Using this program, we may
ount the number of binary perfe
t
odes oflength 7 and minimum distan
e 3.$./hamming 7 16 3Number of
odes: 240Note that for this and other
ombinatorial problems, the graph has alarge automorphism group. This group
an be utilized to speed up the sear
hsigni�
antly, whi
h is essential when sear
hing for larger
odes [9, 12℄.A
knowledgmentThis resear
h was supported in part by the A
ademy of Finland under Grant100500. The authors would like to thank Harri Haanpää and Petteri Kaskifor many useful
omments and suggestions.

19

Referen
es[1℄ I. M. Bomze, M. Budini
h, P. M. Pardalos, and M. Pelillo, The max-imum
lique problem, in: D.-Z. Du and P. M. Pardalos (Eds.), Hand-book of Combinatorial Optimization, Supplement Volume A, Kluwer,Dordre
ht, 1999, pp. 1�74.[2℄ A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith, A newtable of
onstant weight
odes, IEEE Trans. Inform. Theory 36 (1990),1334�1380.[3℄ R. Carraghan and P. M. Pardalos, An exa
t algorithm for the maximum
lique problem, Oper. Res. Lett. 9 (1990), 375�382.[4℄ DIMACS, Clique and
oloring problems graph format, ftp://dima
s.rutgers.edu/pub/
hallenge/graph/do
/

format.dvi, 26.8.2002.[5℄ DIMACS, DIMACS format for storing undire
ted graphs in binary �les,ftp://dima
s.rutgers.edu/pub/
hallenge/graph/translators/binformat/README.binformat, 26.8.2002.[6℄ M. R. Garey and D. S. Johnson, Computers and Intra
tability: A Guideto the Theory of NP-
ompleteness, Freeman, New York, 1979.[7℄ B.D. M
Kay, nauty user's guide (version 1.5), Computer S
ien
e Depart-ment, Australian National University, Te
h. Rep. TR-CS-90-02, 1990.[8℄ K. J. Nurmela, M. K. Kaikkonen, and P. R. J. Östergård, New
onstantweight
odes from linear permutation groups, IEEE Trans. Inform. The-ory 43 (1997), 1623�1630.[9℄ P. R. J. Östergård, Classi�
ation of binary/ternary one-error-
orre
ting
odes, Dis
rete Math. 223 (2000), 253�262.[10℄ P. R. J. Östergård, A new algorithm for the maximum-weight
liqueproblem, Nordi
 J. Comput. 8 (2001), 424�436.[11℄ P. R. J. Östergård, A fast algorithm for the maximum
lique problem,Dis
rete Appl. Math. 120 (2002), 195�205.[12℄ P. R. J. Östergård, T. Bai
heva, and E. Kolev, Optimal binary one-error-
orre
ting
odes of length 10 have 72
odewords, IEEE Trans. Inform.Theory 45 (1999), 1229�1231. 20

