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Chapter 1
Beginner’s guide

In this part, we use a few sample problems to introduce you to the basic functionality
of 4ti2. After working through this part, you should know about linear systems and
their encodings in 4ti2, and should be able to do computations using the following

functions:

e gsolve, rays, circuits
e zsolve, hilbert, graver, ppi
e minimize, groebner, normalform

e genmodel, markov

1.1 Linear systems and their encodings

In this section you learn about the data structure linear system and how it is

specified in 4ti2.

1.1.1 Linear systems and integer linear systems

In 4ti2, a linear system is defined by d constraints Ax ~ b in n unknowns x, where

each constraint is either <, = or >, that is ~ € {<,=, >}% Moreover, one may

5
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specify sign constraints on the variables that need to be respected in an explicit

continuous/integer representation of all solutions.

There is no particular difference in 4ti2 between a linear system and an integer
linear system. Currently, the user chooses between one of the two by calling the

appropriate functions on the linear system.

1.1.2 Specifying a linear system in 4ti2

In order to use a linear system as input, we need to specify its parts to 4ti2. As our

1 111 < 6
x
1 2 3 4 < 10

with sign constraints (1,2,2,0), which we will explain below.

running example, take

First, we have to give our problem a project name, say PROJECT.

The matrix A has to be put into the file PROJECT . mat.

24
1111
1234

The relations ~ then have to be specified in PROJECT . rel.

The right-hand side vector goes into PROJECT . rhs.

12
6 10

And finally, the sign constraints end up in PROJECT . sign.

14
1220
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Note.

e The input files all have the format of a matrix, preceded by the matrix di-
mensions. As the dimensions already specify how many symbols have to be
read, the matrix could also be given in only one line or even in many lines of
different lengths.

e In 4ti2 version 1.3.1, all appearing numbers have to be integers.

e Consequently, this implies that, at the moment, gsolve only supports homoge-
neous linear systems, that is systems with b = 0, since minimal inhomogeneous

solutions could have rational components.

1.1.3 How does an explicit solution to linear systems look

like?

If the system is solved over R (using gsolve), 4ti2 returns two sets of integer

vectors:

e a set H of support-minimal homogeneous solutions, and

e a set F' defining the linear vector space the solution set lives in.

As only homogeneous linear systems are supported in this version of 4ti2, no list of

minimal inhomogeneous solutions is computed. Any solution z of the linear system

2= ahi+ Y Bufe (1.1)

with h; € H, fi, € F, and o;; > 0.

can now be written as

If the system is solved over Z (using zsolve), 4ti2 returns three sets of integer

vectors:

e a set H of minimal homogeneous integer solutions,
e a set [ of minimal inhomogeneous integer solutions, and

e a set F' defining the sublattice of Z" the solution set lives in.
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Any solution z of the linear system can now be written as

z:z’—l—Zajhj—l—Zﬁkfk (1.2)

for some 7 € I and with h; € H, f; € F, and o € Z,.

Sign file. Let us finally clarify what the sign file PROJECT.sign is good for. The
sign file may declare a variable to be non-negative (1), to be non-positive (—1), or
to consider both cases independently and unite the answers (2). If a nonzero sign
has been assigned to a variable, the explicit representations (1.1) and (1.2) above
of a solution z have to respect the sign on that variable. The default setting for
each variable is 0 (when using gsolve and zsolve), that is, the sign need not be
respected in the explicit representation. In our example above, the first variable
is declared to be non-negative, the second and the third one expand to 2-2 = 4
orthant constraints, and the fourth variable is unconstrained. Note, however, that
4ti2 does not decompose the problem internally into the four problems with sign
patterns (1,1,1,0), (1,1,—1,0), (1,—1,1,0), and (1,—1,—1,0), but deals with them

more efficiently at the same time.

1.2 Brief tutorial

1.2.1 Solving linear systems over R and over Z

In this example you learn about the functions gsolve and zsolve.

Let us have a look at the linear system

r — y < 2
—3r + y < 1
r + y > 1

y =2 0

and let us solve it over R, we have to create the files encoding the linear system. Let

us call our project system. Then the input files look as follows:
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system.mat system.rel system.rhs system.sign
3 2 1 3 1 3 1 2
1 -1 < < > 2 11 01

-3 1
1 1

and then call
./qsolve system

This call creates three files

system.qginhom | system.ghom | system.qfree
3 2 2 2 0 2
01 11
0 2 1 3
10

which correspond to the explicit description of all solutions:

Feasible solutions Computed representation
y=3x+1 y=3x+1

7 7
6 6
5 5

4 y=x-2 4 y=x-2
3 3
2 2
1 17

1 2 3 4 5 6 7 8 9 71 2 3 4 5 & 7 8 o9

o ((0)-(0)- (1)) = (()-3)

Note that in the second picture above, the three colored cones are only a simplifica-

tion and shall visualize the covering of the feasible region by infinitely many shifted

e (1))

copies of the cone
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one appended to each point in

o () 0)

Let us now turn to the integer situation, that is, let us solve the system

over Z. As the linear system itself is unchanged,

-3z +

g

4
ESIIESIIE SIS
IV IV IA A
S = =N

above in order to specify the linear system.

system.mat system.rel system.rhs system.sign
3 2 1 3 1 3 1 2
1 -1 < < = 211 01

-3 1
1 1

Then, however, we call

This call creates three files

which correspond to the explicit description of all integer solutions:

./zsolve system

system.zinhom

system.zhom

system.zfree

4 2

—_ = O O
= O N =

3 2

11
1 2
1 3

0 2

we can use the same input files as
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Feasible solutions Computed representation
y=3x+1

y=3x+1

1) (o) () () #mmsa () G)-G))

Note that in the pictures above, we are only interested in the lattice points inside
the colored regions! The full regions are colored only for the purpose of visualizing

the covering of all feasible integer solutions by finitely many shifted copies of the

o (3. () ()

1.2.2 Computing extreme rays and Hilbert bases

monoid

In this example you learn about the functions rays and hilbert.

Let us consider the set of magic 3 x 3 squares with non-negative real entries, that
is, the set of all 3 x 3 arrays with non-negative real entries whose row sums, column
sums, and main diagonal sums all add up to the same number, the magic constant

of the square.

—+ —

Clearly, addition of two magic squares gives another magic square, as well as does
multiplication of a magic square by a non-negative number. Therefore, we may talk

about the cone of magic 3 x 3 squares. In fact, this cone is a pointed rational
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polyhedral cone described by the linear system

T11 + 12 +X13 = Lo + Tog + Tag
= T31 + T32+ T33
= Z11 + Zo1 + T31
= T12 + T2 + T32
= 13+ T23 + T33
= 11 + T2 + T33
= T3+ To2 + X313

xy; >0, foralli,j=1,2,3.

Bringing all z;; to the left-hand side of these equations, the matrix Asys defining

this linear system is

-1 -1 -1 0 0 O
0 0 -1 -1 -1
-1 0 -1 0

A3><3 =

e T e T e = T S
—_ = = O = =

Below, we will deal with the more interesting case of integer magic squares. For the
moment, however, we wish to compute the extreme rays of the magic square cone

{z: Asx32 =0,z > 0}.

In order to call the function rays, we only have to create one file, say magic3x3.mat,
in which we specify the problem matrix Azy3. The remaining data is set by default to
”equations only”, to "homogeneous system”, and to ”all variables are non-negative”.
Note that we are allowed to change these defaults (except homogeneity) by specifying

data in magic3x3.rel and magic3x3.sign
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magic3x3.mat

79

111 -1 -1 -1 O O O
111 O O O -1 -1 -1
011 -1 0O -1 0 0
101 O0-1 0 0-1 0
110 o0 O0O-1 0 0 -1
011 O0-1 0 0 0 -1
110 O0-1 0-1 0 0

Now we call

./rays magic3x3

which creates the single file

magic3x3.ray
49
02121010 2
120012201
201012120
102210021

that corresponds to the four extremal rays of the 3 x 3 magic square cone:

01211 11210 21011 11012
21110 01112 01112 21110
11012 210 |1 11210 01211

Every magic 3 x 3 square is a non-negative linear combination of these four magic

squares.

If we turn now to integer magic squares, we are looking for a Hilbert basis of the
3 x 3 magic square cone. As the default settings for hilbert are the same as for

rays, we can use the same input file
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magic3x3.mat
79

-1 -1 -1 0 0 O
0o 0 0 -1 -1 -1
-1 0 0 -1 0 O
0O -1 0 0 -1 0
o 0 -1 0 0 -1
0O -1 0 0 0 -1
0O -1 0 -1 0 0

—_ O = = O =
—_ == O = ==
O = O = =

for this computation. However, to compute the Hilbert basis, we call
./hilbert magic3x3

which creates the single output file

magic3x3.hil
4 9
02121010 2
120012 201
201012120
102 2100 21
111111111

that corresponds to the five elements in the minimal Hilbert basis of the 3 x 3 magic

square cone:

01211 11210 21011 110 |2
211160 01112 01112 211160
110 |2 2101 11210 01211

1111

11111

11111
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Every integer magic 3 x 3 square is a non-negative integer linear combination of
these five integer magic squares. Note that the all-1 square is in the interior of the

magic square cone.

1.2.3 Computing circuits and Graver bases

In this example you learn about the functions graver, ppi, and circuits.

As an example of a Graver basis computation, let us compute the primitive partition
identities of order n = 4. Before we do the simple computation, let us explain what

a primitive partition identity is.

A partition identity is any identity of the form
a1+...+ak:b1+...—|—bl

with (generally not distinct) integer numbers 0 < a;,b; < n. A partition identity is

called primitive if no proper subidentity exists.

For example,
1+24+3=2+2+2

is a partition identity which is not primitive, since it contains the subidentity
1+3=2+2

which is in fact primitive.

The description of the primitive partition identities for fixed n, however, is exactly

the description of the Graver basis of the matrix
An:<1 23 ... n)

Let us finally do the computation for n = 3. We create an input file ppi3 for 4ti2

which looks as follows:

ppi3.mat
1 3
1 2 3

and call
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./graver ppi3

This call will create an output file ppi3.gra that looks like:

ppi3.gra
5 3
3 0 -1
2 -1 0
0 3 -2
1 1 -1
1 -2 1

Thus, there are 5 primitive partition identities of order n = 3:

1+14+1 = 3

1+1 = 2
24+2+2 = 3+3
1+2 = 3

1+3 = 2+2

You may try and compute the primitive partition identities for bigger n, say n = 17,
20, or 23. Be aware, especially the latter two problems take a long, long time. What
is the biggest n for which you can compute the primitive partition identities of order

n on your machine within one hour?

Due to the very special structure of the matrix, there are algorithmic speed-ups
[1, 2, 4]. The currently fastest algorithm to compute primitive partition identities is

implemented in the function ppi of 4ti2. Try running
./ppi 17

which creates two files ppi17.mat (so we do not really have to create this file our-
selves) and the file ppi17.gra containing the desired identities. Compare this run-

ning time with the time taken by

./graver ppil7
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Do you notice the speed-up?

Let us now turn to the question of determining the support-minimal partition iden-

tities. This, in fact, is the question of computing the circuits of the matrix
Av=(123 . n).

We use the same input file

ppid.mat
1 3
1 2 3

as above and call

./circuits ppi3

This call will create an output file ppi3.cir that looks like:

ppid.cir
3 3
3 0 -1
2 -1 0
0 3 -2

Thus, there are 3 support-minimal partition identities of order n = 3:

1+1+1 = 3
1+1 = 2
24242 = 343

Note that support-minimal partition identities are primitive, since the circuits of a

matrix are contained in the Graver basis of this matrix.
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1.2.4 Integer programming and toric Grobner bases

In this example you learn about the functions minimize, groebner, and normalform.

The following neat example is based on the example presented in [3]. Let us assume
that we want to give change worth 99 cents using only pennies (1ct), nickels (5ct),
dimes (10ct), and quarters (25ct). Clearly,

4-14+4-5+0-1043-25=99

would be one way to do it. Is this there another choice of 11 coins that sums up to
99ct but uses fewer nickels and quarters (in total)? In other words, we would like to

solve
min{xe + x4 : v1+ 2o+ x3+x4 = 11,21 + 529+ 1023+ 2524 = 99, 21, T2, 3,04 € Z }

Let us set up the problem in 4ti2.

4coins.mat 4coins.ths 4coins.sign 4coins.cost
2 4 1 2 1 4 1 4
11 1 1 11 99 1111 0101
1 5 10 25

Note that we do not have to specify a relations file 4coins.rel, since already by

default all relations are assumed to be equations. Now we simply call
./minimize 4coins

which creates the single output file

4coins.min
1 4
4 1 4 2

From this, we conclude that
4-14+1-5+4-1042-25=99

is an optimal choice, using only 3 instead of 7 nickels and quarters.

Remark. We could also specify a list of right-hand sides in 4coins.rhs. The call
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./minimize 4coins

then creates a file 4coins.min containing minima to the corresponding integer pro-

grams. U

Since we already know a feasible solution, there is another way we might attack
this problem, namely via toric Grobner bases. For this, we first need to specify the

matrix A and the cost vector ¢ in the two files 4coins.mat and 4coins.cost:

4coins.mat 4coins.cost
2 4 1 4
11 1 1 01 01
1 5 10 25

Then we compute the Grébner basis of the toric ideal
Iy={(z"—2": Au= Av,u,v € Z%)

with respect to a term ordering < compatible with ¢, that is, ¢Tv < ¢Tu implies

x¥ < x*. This toric Grobner basis is computed by
./groebner 4coins

and gives the output file

4coins.gro
1 4
4 4 0 3

Then we specify our feasible solution in

4coins.zfeas
1 4
4 4 0 3

and call
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./normalform 4coins

to produce the file

4coins.nf
1 4
4 1 4 2

that also contains the desired optimal solution.

Remark. We could also specify a list of feasible solutions in 4coins.zfeas. Then
the call

./normalform 4coins

creates a file 4coins.nf containing the minima to the corresponding integer pro-
grams. (If 2y is a feasible solution, the corresponding integer program is defined by
putting the right-hand side to Az.) O

Rename 4coins.zfeas to 4coins.zfea?!

1.2.5 Markov Bases in Statistics

In this example you learn about the functions markov and genmodel.

Let us consider the following 4 x 4 table of non-negative integer numbers together

with all row and column sums.

11 23 34 3 71

4 15 12 11 42
17 2 3 25 47
16 12 22 7 o7
48 52 71 46

In statistics, one wishes to sample among arrays that have fixed counts, say fixed row
and column sums. In order to sample, one needs a set of moves that, in particular,
do not change the counts when added to the current table. Clearly, these moves

must have counts 0 and thus quite naturally lead us to the toric ideal

Iy = (2" — 2" : Au= Av,u,v € Z.9),
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where
1111000000O0O0O0O0TO0CO
0000111100000O0O0O0O0
00000O0O0BOO0O1T111O0O00O00
A 00000O0OO0OO0OO0COO0OO0OT1TT1T11
1000100010O0O01TO0O0CO
01 000100010O0O01O00
00100010001O0O0O0T1O0
0001000100O010O00O01
It turns out that for any set of fixed counts, a (minimal) Markov basis is given by

a minimal generating set of this toric ideal. Note that a Markov basis connects all
non-negative tables with these counts in the sense that for any two non-negative
tables T7 and T with these counts, there is a sequence of non-negative tables 77 =
So, ..., Sy = Ty with the same counts as 7T and 75 and such that S; — S;_1 or
S;_1 — .5; is in the Markov basis for i = 1,..., N.

For two-way tables the situation is still very simple as our computations with 4 x 4
tables will now demonstrate. Write the matrix that defines our toric ideal in the file
4x4 .mat:

4x4.mat
8 16
1 11 10000O0O0O0O0O0O0OO0ODO0
0O 000111 10O0O0O0O0O0O0O0
0o 000O0OO0OO0OO0O11T1T1O00O0O00O0
0O 000O0OOOOOOOOT1TT1T11
1 0001 00O01O0O0O0T1TO0O0O0
0 1000100O01O0O0OO0OT1O00O0
0O 01 00010O0OO0OC1TO0OO0O0T1O0
0O 001 00O0O1TO0OO0OO0OT1TO0O0OTO0T1

Let us compute the Markov basis via the call
./markov 4x4

which creates a single output file 4x4 .mar containing the 36 Markov basis elements.

Up to symmetry (swapping rows or columns), the Markov basis consists of the single
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move
1 -1 00
-1 1 00
0O 000
0O 000

In fact, this elementary move is (up to symmetry) the only representative of the

minimal Markov moves for arbitrary m x n tables using row and column counts.

Creating the matrices for statistical models may be pretty cumbersome. 4ti2 pro-
vides a litte function, genmodel, that helps the user with creating matrices for

hierarchical models defined by a complex.

The m x n tables problem above corresponds to the complex {{1},{2}} on two
nodes with levels m and n, respectively. Let us encode the complex for 326 tables

with 1-marginals (row and column sums) in 3x6.mod.

3x6.mod
3

3
2
1
1

and call
./genmodel 3x6

to produce the desired matrix file 3x6.mat.

The encoding of the complex should be obvious from the example: first we state the
number of nodes and their levels, then we give the number of maximal faces. Finally,
we list each maximal face by first specifying the number of nodes on it and then by

listing these nodes.

Thus, a 32426 table with 2-marginals (that is, again only counts along coordinate
axes) corresponds to the complex {{(1,2)},{(2,3)},{(3,1)}} on 3 nodes with levels
3, 4, and 6, respectively. Thus, its encoding is in 4ti2 would look like:
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3x4x6.mod
3

3
3
21 2
2
2

A binary model on the bipartite graph K53 then reads as

3x4x6.mod

2 2 2 2

NN ==
Tt = W Ot = W
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