[image: image4.png]Contacts Model DBMS Database Schema
	
	
	
	

	Security Classification:
	Internal - Symbian
	Team/Department:
	SWE / OS Dev / MPC / PIM

	Document Reference:
	SGL.XXXnnn.nnn
	Author(s):
	Lucian Piros, James Clarke

	Status:
	Draft
	Owner(s):
	James Clarke

	Version:
	1.3
	Approver(s)
	Chris Dudding

	Last Revised Date:
	21/10/2008
	
	

	
	
	
	

Use File > Properties to edit document information

Contacts Model DBMS Database Schema
[image: image5.png]SGL.XXXnnn.nnn
Internal - Symbian
Draft v1.3

Contents

21
Introduction

21.1
Purpose and Scope

22
Conceptual design

23
Logical data model

44
Physical data model

54.1
Contacts table

114.2
IdentityTable table

134.3
Phone table

144.3.1
Extracting the phone number, via the Phone Number Parser

154.3.2
Splitting the parsed phone number strings into lower and upper digits

154.3.3
Hashing upper and lower parsed number strings into integers for storage

154.3.4
Examples of Phone Number Strings going through the Parsing, Splitting and Hashing Process

164.4
Email table

174.5
Group table

184.6
Groups2 table

184.7
Sync table

204.8
Preferences table

235
File version history

236
Compatibility Policy

247
Further Information

247.1
People

247.2
References

247.3
Open Issues

247.4
Glossary

257.5
Document History

1 Introduction

1.1 Purpose and Scope

This document describes the Contacts model database schema for SymbianOS v9.1 – v9.4.

It is intended for engineers working directly with contact database or using the Contacts model component.

2 Conceptual design

Contact database is a collection of contact items. A contact item is an abstract entity representing generic contact data. Concrete contact item instances are:

· Contact card: Contact item created in contact database. Represents a person and contains a collection of fields, most of which correspond to vCard fields. Each field may have a label and a value.

· ICC contact: Contact item created and stored on SIM card. Contains a collection of fields, most of which correspond to vCard fields and each field has a label and a value

· Template: Contact item used to create new contact cards. When a contact card is created if a template is specified, newly created contact item will inherit all fields from template. Additional fields can be added to the fields inherited from template.

· Group: Contact cards, ICC contacts and groups can be grouped in groups. A group has a name and can be part of other groups (although it should be noted that whilst complex membership relationships with multiple levels of nesting and/or circular relationships are possible, they are not advised or encouraged).

· Own card: A special contact card representing contact data of phone (contact database) owner. Own card is unique per contact database.

The diagram below summarise the relations between templates, contact cards / ICC contacts and groups

 [image: image1.emf]�class Conceptual Model

Template

Contact

Group1member of0..*0..*member of0..*1based on0..1

3 Logical data model

As mentioned, contact database is a collection of contact items. Besides storing and managing contact items, contact database has to meet several other requirements. Some of them include:

· fast access to a certain set of fields for contact item (fast retrieve from contact database of a certain amount of information)

· fast search for contact items with a specified phone number / email address

· support for custom fields in contact item

· provide support for sync protocol implementation

· own and manage speed dial information

In order to meet all requirements, contact item information was split across different tables. Major entities in contact database:

· fast access fields table: contains fields requiring fast access

· contacts table: contains most information related to contact item, groups and templates

· phone table: contains phone numbers associated with a contact item

· mail table: contains email addresses associated with a contact item

· sync table: support table for sync protocol

Because contact table has a 0..*, 0..* relation with itself, during normalisation a group table was created to handle information about groups and their structures. Also a second table to optimise group lookup was introduced. Finally, a configuration table, containing all needed contact database configuration was added.

Logical relations between them are shown in the next diagram

[image: image2.png]
The maximum number of contact items the model can store is 231 contact items. In practise, the real limitation on the number of contacts is the amount of disk space available.

Note: Speed dial management is done outside contact database. Contact model has an ini file which contains a mapping between speed dial positions (representing keys 1-9 on the phone keypad) and contact items.

4 Physical data model

Users of the contact database are not aware of the distribution of contact field data between database tables since the information is aggregated to make a single CContactItem-derived object before being returned to the client.

The database has eight tables: Contacts, IdentityTable, Phone, EmailTable, Groups, Groups2, Sync and Preferences.

Contacts, IdentityTable, Phone, EmailTable, Groups and Groups2 hold contact item and support lookup implementation (e.g. phone matching, fast access fields). Sync table hold last synchronization time. Preferences table contains contact database specific configurations as well as unique values in held in contact database (e.g. own card id)

 [image: image3.emf]�class Physical Model

Contacts CM_Type: EDbColInt32 CM_PrefTemplateRefId: EDbColInt32 CM_UIDString: EDbColText CM_Last_modified: EDbColDateTime CM_ContactCreationDate: EDbColDateTime CM_Attributes: EDbColUint32 CM_ReplicationCount: EDbColUint32 CM_Header: EDbColLongBinary CM_Textblob: EDbColLongBinary CM_SearchableText: EDbColLongText

�«<<PK>>» CM_Id: EDbColInt32

Phone CM_PhoneMatching: EDbColInt32 CM_ExtendedPhoneMatching: EDbColInt32 CM_Id: EDbColInt32

�«<<PK>>» cnt_phone_index(CM_PhoneMatch, CM_Id)

EmailTable Email_FieldID: EDbColInt32 EMailAddress: EDbColText EmailParent_CMID: EDbColInt32

�«<<PK>>» EmailIdentityIdIndex(EMail_FieldID, EmailParent_CMID)

IdentityTable CM_Attributes: EDbColUint32 CM_CompanyName: EDbColText CM_CompanyNmPrn: EDbColText CM_ExtHintField: EDbColUint16 CM_FirstName: EDbColText CM_FirstNmPrn: EDbColText CM_HintField: EDbColInt8 CM_LastName: EDbColText CM_LastNmPrn: EDbColText CM_Type: EDbColInt32

�«<<PK>>» Parent_CMID: EDbColInt32

Groups CM_Id: EdbColInt32 CM_Members: EDbColInt32

�«<<PK>>» cnt_group_index(CM_Members, CM_Id)

Groups2 CM_GroupMembers: EDbColLongBinary

�«<<PK>>» CM_Id: EDbColInt32

Sync CM_LastSyncDate: EDbColDateTime

�«<<PK>>» CM_Id: EDbColInt32

Preferences CM_creationdate: EDbColDateTime CM_MachineUID: EDbColInt32 CM_PrefCardTemplateId: EDbColLongBinary CM_PrefCardTemplatePrefId: EDbColInt32 CM_PrefFileId: EDbColInt16 CM_PrefFileVer: EDbColInt32 CM_PrefGroupIdList: EDbColLongBinary CM_PrefOwnCardId: EDbColInt32 CM_PrefSortOrder: EDbColLongBinary CM_PrefTemplateId: EDbColInt32+CM_Id1+CM_Id0..*+CM_Id1+CM_Id0..*+CM_Id1+CM_Id1+CM_Id1+CM_Id0..*+CM_Id1+CM_Id0..*

4.1 Contacts table

The Contacts table is the most important table in contact database.

All contact items in the database must have a row in this table. The contact item ID for a contact item (represented by the TContactItemId class) comes from the CM_ID column.

	Column Name
	Accept NULL values
	Type
	Max Size
	Description

	CM_ID
	No
	EDbColInt32
	n/a
	Primary key from Contacts table.

Auto-incrementing

	CM_Type
	No
	EDbColInt32
	n/a
	Contact item type UID

	CM_PrefTemplateRefId
	Yes
	EDbColInt32
	n/a
	Template ID used for this Contact

	CM_Uidstring
	Yes
	EDbColText
	244
	Unique ID string used for vCard synchronisation

	CM_Last_Modified
	Yes
	EDbColDateTime
	50
	Date/Time when this contact was last updated

	CM_ContactCreationDate
	No
	EDbColDateTime
	50
	Date/Time when this contact was first created

	CM_Attributes
	Yes
	EDbColUint32
	n/a
	Contact item attributes (system, hidden, deleted etc.)

	CM_ReplicationCount
	Yes
	EDbColUint32
	n/a
	Synchronisation count for contact item. Not required/used.

	CM_Header
	Yes
	EDbColLongBinary
	n/a
	A mapping of the types and offsets of the contact item fields stored in the BLOB and CLOB described below (eg. field type UIDs).

	CM_Textblob
	Yes
	EDbColLongBinary
	n/a
	Non-text data for a contact (photo, logo, ring-tone). The name is confusing. The word “text” should be ignored as it is solely a BLOB (binary large object).

	CM_SearchableText
	Yes
	EDbColLongText
	n/a
	A CLOB (character large object) containing all of the text fields together, separated by null characters.

Indexes on the Contacts table:

	Index Name
	Columns
	Description

	CNT_ID_INDEX
	CM_ID
	Primary key index (unique)

The columns and their supported values are explained in more detail below.

· CM_ID

Primary key for Contacts table. It is an auto increment field

· CM_Type

Contact item type UID.

Possible values are:

0x10001309 – current contact item represents a contact card

0x1000130A – current contact item represents a group

0x10004F95 – current contact item represents an own card

0x101F4A6F – current contact item represents an ICC contact

0x1000130B – current contact item represents a template

0x10004FF1 – current contact item represents a card template

These values are exclusive (i.e. a contact item can only be one of these types only. Therefore, an item cannot be, for example, the own card and an ICC entry).

· CM_PrefTemplateRefId
Template ID used for this Contact (i.e. the CM_ID integer value of the template.

· CM_Uidstring
Unique ID string used for vCard synchronization. Value can represent a unique local ID or a global ID (GUID). When a contact item is created by the contacts model, it is given a local ID which is used by the contacts model internally. The local ID is a smaller value to store. The larger Global UID is generated at runtime if and when required for use in syncing. If a contact item has been created off the device and it imported to the contacts database for example, through syncing, then its full GUID string is stored in place of a local ID. This is because the contact’s GUID was not created in the local database and so cannot be generated by the contacts model at runtime.

When represents a unique local ID, value is constructed using following algorithm:

<<long int>> t = long int value representing contact item creation date

CM_Uidstring = (0x08 & (t >> 32)) ⊕ (0x08 & t)

where ⊕ represents string concatenation operation

When represents a global ID (GUID), value is constructed using following algorithm

<<long int>> t = long int value representing contact item creation date

<<long int>> mid = long int values representing machine id where this contact item was originally created

CM_Uidstring = (0x08 & (mid >> 32)) ⊕ (0x08 & mid) ⊕

“-“⊕

(0x08 & (t >> 32)) ⊕ (0x08 & t) ⊕

“ – “⊕

contactItemid

where ⊕ represents string concatenation operation

· CM_Last_Modified

Date/Time when this contact item was updated.

When new contact item is created in contact database, CM_Last_Modified values is equal with CM_ContactCreationDate value

· CM_ContactCreationDate

Date/Time when this contact item was created

· CM_Attributes

Contains contact item attributes. Attributes are represented by bit fields.

Possible values to be set in bit fields are (bit or):

	Contact Attributes
	Description
	Value

	System
	Currently not been used in contact model.
	0x01

	Hidden
	The contact item is not displayed if the view definition excludes hidden fields
	0x02

	Compressed GUID
	To show if the GUID of contact item is compressed. This is for internal used only in that only the contacts model itself should create compressed GUIDs. GUIDs for all other externally created contact items should have a full, uncompressed GUID string.
	0x04

	Deleted
	If the attribute is set, this means that an attempt has been made to delete the contact item, but because the item's access count is greater than zero, its data persists and the item is just marked as deleted. N.b. this is for internal use only and should not be set by anything other than the contacts model.
	0x08

· CM_ReplicationCount

This column is not currently used.

· CM_Header, CM_Textblob, CM_SearchableText

Most of contact item fields are stored in CM_Header, CM_Textblob and CM_SearchableText. This solution was adopted to support contact item extensibility (e.g. adding custom fields in contact item).

Cm_Header will contain all fields and their corresponding attributes. CM_Textblob will contain values for all binary fields whilst CM_SearchableText will contain values for all text fields. CM_Header describes all the fields in a contact item. Values for are stored in CM_Textblob and CM_Searchabletext.

Email address IDs

It should be noted that there is a two-way dependency between the Contact and Email tables. This has implications for how records are written to the Contact table, specifically the CM_Header and CM_SearchableText fields. The following process must be used to store an item correctly, if the item contains any email addresses:

· Either a):

· Create a new record in the Contact table by storing the non-BLOB fields

· Note the CM_ID of the new record in the Contact table

· Or b):

· Pre-empt the next value of CM_ID in the Contact table

· Store any email addresses in the Email table (see section 4.4 below), including the appropriate CM_ID

· Note the Email_FieldId of the new record in the Email table

· Either a):

· Update the Contact table record by writing the BLOB fields, including the value of Email_FieldId for the email address(es) just stored in the Email table

· Or b):

· Write the Contact table record, including the value of Email_FieldId for the email address(es) just stored in the Email table

The contacts model persistence layer follows method a).

Layout of the Fields

We will use ABNF notation to show how fields are set up.

CM_Header = $contactItemFieldSet

$contactItemFieldSet = $contactItemField<number of item fields>

$contactItemField = $contactFieldAttributes $stream_id [$hint_value $additional_field<number_of_additional_fields> $mapping] [$label_length [$label]]

; if the field’s content type has not be modified/overridden and is as specified in the template, the optional $mapping can be omitted

; additional_field is repeated a number of time equal with number_of_additional_fields

; the optional $label length/$label field is present only if current contact field overrides the template label

$contactFieldAttributes = $attributes_store $extended_attributes

$attributes_store = $attributes $field_type $number_of_additional_fields $template_id

$attributes = a 12 bit wide bitwise value

; values can be combined to form attribute (base on bitwise or)

; possible values are:

; 0x00000001 – hidden field

; 0x00000002 – read only field

; 0x00000004 – field used in synchronisation

; 0x00000008 – disabled field

; 0x00000100 – this field overrides template’s label

; 0x00000200 – this field uses template’s data

; 0x00000400 – this field is a user added field (custom field)

; 0x00000800 – this field is part of a template (e.g. contact item to which this field belongs is a template)

$field_type = a 6 bit wide value

; possible values for this field are:

; 0 – field is a text field

; 1 – field is a binary field

; 2 – field contains a contact item id

; 3 – field values represent a date / time

$number_of_additional_fields = a 4 bit wide value

; represents the number of additional fields associated with this field

$template_id = a 10 bit wide value

; id of used template

$extended_attributes = an unsigned integer value representing a bit map

; bitwise value containing extended attributes for a field

; possible values to be combined for this field are

; 0x00000001 – this field is private. This is used by the contact database when exporting a contact item as a vCard, to identify fields which should not be exported.

; 0x00000002 – this field is associated with a speed dial (this attribute can be assigned only to phone numbers)

; 0x00000004 – this field is part of a user defined filter

; 0x00000008 - this field is part of a user defined filter

; 0x00000010 - this field is part of a user defined filter

; 0x00000020 - this field is part of a user defined filter

; 0x00000040 - this field is part of a user defined filter

$stream_id = an unsigned integer value

; this the id of the actual stream data stored in the blob column and it only exists when the field storage type is not Text. If the contact item is being created externally to the contacts model, it is acceptable to use any non-zero 32-bit integer. It appears usually to be 1 in contacts model created items and so this would be as good as any value to use as a default.

$hint_value = an unsigned integer value

; bitwise value

; possible values are as follows:
	Constant
	Value
	Comment

	
	
	

	
	
	 “Is a …”

	KIntContactHintIsPhone
	0x02
	phone number

	KIntContactHintIsMsg
	0x04
	number with a messaging service

	KIntContactHintIsCompanyName
	0x08
	company name

	KIntContactHintIsFamilyName
	0x10
	family name

	KIntContactHintIsGivenName
	0x20
	given name

	KIntContactHintIsAddress
	0x40
	postal address

	KIntContactHintIsAdditionalName
	0x80
	additional name

	KIntContactHintIsSuffixName
	0x100
	suffix name

	KIntContactHintIsPrefixName
	0x200
	prefix name

	KIntContactHintIsPronunciation
	0x800
	pronunciation field

	KIntContactHintIsEmail
	0x4000
	email address

	KIntContactHintIsCompany

NamePronunciation
	KIntContactHintIsPronunciation | KIntContactHintIsCompanyName
	company name pronunciation

	KIntContactHintIsGivenName

Pronunciation
	KIntContactHintIsPronunciation |

KIntContactHintIsGivenName
	given name pronunciation

	KIntContactHintIsFamilyName

Pronunciation
	KIntContactHintIsPronunciation | KIntContactHintIsFamilyName
	family name pronunciation

	
	
	

	
	
	“Tells us…”

	KIntContactHintStorageInline
	0x400
	storage is inline

	KHintAdditionalMask
	0x7F000000
	number of additional type IDs.

	KHintVCardMappingMask
	0x80000000
	if there is a vcard mapping UID.

$additional_field = integer value

; stores contact field type GUIDs not in the hint value

$mapping = integer values

; represents vCard mapping

$label_length = integer value

; length of the label

$label = string

; label for this field

CM_Textblob = $binaryContactItemFieldSet, of type EDbColLongBinary
$binaryContactItemFieldSet = $binarycontactItemField<number of binary item fields>

$binarycontactItemField = $sizeofBinaryValue $valueOfBinaryField

; $sizeofBinaryValue is the size of the binary object being persisting in this field in terms of the number of bytes.

CM_Searchabletext = $textContactItemFieldSet, of type EDbColLongText
$textContactItemFieldSet = $textcontactItemField<number of text item fields>

$textcontactItemField = $valueOftextField 0x00
4.2 IdentityTable table

IdentityTable table contains the contact item’s fields most commonly used for sorting and searching. These fields require fast access (e.g. read operation has to be fast). As fields are part of contact item, there is a one to one mapping between rows in IdentityTable and Contacts table.

The fields containing names (first, last, company) just contain strings directly from the contact item. The columns, including supported values, are explained in more detail below the following list.

	Column Name
	Accept NULL values
	Type
	Max Size
	Description

	Parent_CMID
	No
	EDbColInt32
	n/a
	Foreign key from Contacts table

	CM_FirstName
	Yes
	EDbColText
	255
	Contact first name (given name)

	CM_LastName
	Yes
	EDbColText
	255
	Contact last name (surname)

	CM_CompanyName
	Yes
	EDbColText
	255
	Contact company name

	CM_Type
	No
	EDbColInt32
	n/a
	Contact item type UID

	CM_Attributes
	Yes
	EDbColUint32
	n/a
	Contact item attributes (system, hidden, deleted etc.)

	CM_HintField
	Yes
	EDbColInt8
	n/a
	A bit field indicating the presence of certain fields in the contact item.

	CM_ExtHintField
	Yes
	EDbColUint16
	n/a
	Additional storage for bit fields to indicate presence of certain fields in the contact item.

	CM_FirstNmPrn
	Yes
	EDbColText
	255
	Contact first (given) name pronunciation

	CM_LastNmPrn
	Yes
	EDbColText
	255
	Contact last name (surname) pronunciation

	CM_CompanyNmPrn
	Yes
	EDbColText
	255
	Contact company name pronunciation

Indexes on the Identity table:

	Index Name
	Columns
	Description

	IdentityIdIndex
	Parent_CMID
	Primary key index (unique)

· Parent_CMID

Primary key index; must have same value as CM_Id in corresponding row in Contacts table.

· CM_Type

Contact item type UID.

This appears in the contact table in a field of the same name and is duplicated here in the Identity table. For more information see the CM_Type field description in section 4.1 on the Contact table.
· CM_Attributes

Contains contact item attributes. Attributes are represented by bit fields.

This appears in the contact table in a field of the same name and is duplicated here in the Identity table. For more information see the CM_Attributes field description in section 4.1 on the Contact table.
· CM_HintField

A bit field that indicates presence of certain fields in contact item.

Possible values to be combined are (bit or):

0x00000001 –
this contact item must have at least one email address
0x00000002 –
this contact item must have at least one mobile phone number

0x00000004 –
this contact item must have at least one landline number

0x00000008 –
this contact item must have at least one fax number
0x00000010 –
this contact item must have at least one phone number
0x00000020 –
this contact item must have a work telephone number or email address

0x00000040 –
this contact item must have a home telephone number or email address

0x00000080 –
this contact item must have a non-empty ring tone field

Note: Fields described as being represented as “bit fields” can have multiple values overlayed using bitwise operators. For example, a contact item with an email address, 2 landline numbers, a fax machine number and a ringtone assigned would have following CM_HintField value:

	Filterable property
	Dec value
	Hex value
	Bit map

	Has >=1:
	
	
	

	
email address
	1
	0x01
	00000001

	
landline number
	4
	0x04
	00000100

	
fax number
	8
	0x08
	00001000

	...and, therefore, >=1 phone number
	16
	0x10
	00010000

	…and a ringtone.
	128
	0x80
	10000000

	CM_HintField value
	157
	0x9D
	10011101

· CM_ExtHintField

An extra bit field that indicates presence of certain other fields in contact item, added later to support extra fields without breaking compatibility with earlier versions of the database (i.e. not changing the original the original CM_HintField).

Possible values to be combined are (bit or):

0x00000100 – this contact item must have a non-empty voice dial field

0x00000200 – this contact item must have at least one instant messaging address

0x00000400 – this contact item must have a non empty Wireless Village ID; contact items with this flag set must have set 0x00000200 as well
0x00000800 – this contact item must contain a custom filterable field (e.g. a filterable field defined by customer)
0x00001000 – this contact item must contain a custom filterable field (e.g. a filterable field defined by customer)
0x00002000 – this contact item must contain a custom filterable field (e.g. a filterable field defined by customer)
0x00004000 – this contact item must contain a custom filterable field (e.g. a filterable field defined by customer)

The last four values are filters that can be defined by the customer for their own use.
4.3 Phone table

The phone table contains the phone number information from a contact item to enable fast phone number look-up. This is primarily to support the matching of the phone number from an incoming call with the name from a contact item if the number exists in the database.

Each phone number in each contact item in the Contacts table has an entry in this table, assuming it is not empty/NULL after being parsed and hashed (see below).

Each phone number contained in a contact item is stored in a hashed form. The lower, rightmost (up to 7) hashed digits of the phone number are stored in CM_PhoneMatching and remaining digits (up to 8) are stored in CM_ExtendedPhoneMatching.

The CM_PhoneMatching field is the most important as it forms the basis of the match and it is recommended in the contacts model documentation that the match is done with 7 digits.

Note, this table does not store full telephone numbers in a readable format and nor does it contain information on what type of phone numbers (home, mobile, etc) the entries are. Its only purpose is to match phone numbers back to the contacts to which they are associated. For information on the type of phone numbers in a contact item, one would iterate through the fields in its fieldset and query the field type and hints.

	Column Name
	Accept NULL values
	Type
	Max Size
	Description

	CM_ID
	No
	EDbColInt32
	n/a
	Foreign key from Contacts table

	CM_PhoneMatching
	No
	EDbColInt32
	n/a
	Hashed phone number (rightmost seven digits)

	CM_ExtendedPhoneMatching
	No
	EDbColInt32
	n/a
	Hashed phone number (remaining eight digits)

Indexes on the Phone table:

	Index Name
	Columns
	Description

	Cnt_Phone_Index
	CM_PhoneMatching, CM_ID
	Primary key index (unique)

· CM_ID

This is a foreign key from the Contacts table, matching entries in this table with a particular contact item. Since a contact item has 0 to many phone numbers, there can be multiple occurrences of the same value for CM_ID and not every CM_ID may be found in this table (the CM_ID of contact items without phone numbers will be absent). There must not be a value for CM_ID in this table that cannot be found in the Contacts CM_ID field.

· CM_PhoneMatching

This stores the lower seven hashed digits as an integer. See below.

· CM_ExtendedPhoneMatching

This stores the upper eight hashed digits as an integer. See below.

Extracting the phone number, via the Phone Number Parser

This is the specification for the implementation of the phone number parser, originally provided by Nokia:

1. If the first character of the number is '+', the '+' character is left out, and the real phone number is considered to begin right after that.

· If there is a '(' as the first character and the plus sign follows – i.e. first two characters are '(+' – then they must both be removed and the real phone number is considered to begin after them.

2. If the number begins with a '*' or '#' symbol, all characters to the last '*' or '#' symbol are ignored, and the real phone number is considered to begin right after that.

· If there is '+' character right after the last '#' or '*', the '+' character is left out, and the real phone number is considered to begin after that.

· If there is '+' character within first five characters, all characters to the '+' symbol are ignored, and the real phone number is considered to begin right after that.

3. If the number contains special characters 'p',' w' and '+' , all characters after the first special character are ignored.

4. If the number contains '*' and '#' symbols, i.e. there is a supplementary service code or a feature code within the number:

· If the code is finished by '*' or by '# the real phone number can be separated easily (refer to the table below, example 1). Also, if there is a '+' symbol after the code, this can be left out (example 2).

· If the code is finished by a digit, the real phone number can not be separated from the code. In most cases, this is not a problem, because only seven last digits are significant for comparison (example 3). If there is '+' symbol between the code and the real phone number, the '+' has to be within first five characters or otherwise it is considered to start a DTMF function. (example 4)

	Example
	Original number
	Post-parser number

	1
	*#42# 0401234567 p123
	0401234567

	2
	*#42# +358401234567 p123
	358401234567

	3
	*61 0401234567
	610401234567

	4
	*61 +358401234567
	358401234567

	5
	+358401234567 +3
	358401234567

	6
	+358401234567 p123
	358401234567

	7
	(+358) 1234567
	3581234567

	8
	*#42# 0401234567#p123
	[empty]

	9
	*12345+0401234567
	12345

	10
	*+123+456+++++++++++
	123

	
	
	

	
	For further, background information, the relevant ETSI specifications are:

· ETSI 02.07 - MS Features. Section B.3.4.

· ETSI 03.14 - Defines what DTMF digits are.

· ETSI 11.11 - Section 10.5.1. Defines the Separator digit.

	

	
	
	

Splitting the parsed phone number strings into lower and upper digits

Parsed numbers are split in the following way:

	Parsed number
	Number of digits
	Number of digits used
	Upper Digits
	Lower Digits

	09876543217654321
	17
	15
	8
	7
	6
	5
	4
	3
	2
	1
	7
	6
	5
	4
	3
	2
	1

	876543217654321
	15
	15
	8
	7
	6
	5
	4
	3
	2
	1
	7
	6
	5
	4
	3
	2
	1

	3217654321
	10
	10
	
	
	
	
	
	3
	2
	1
	7
	6
	5
	4
	3
	2
	1

	54321
	5
	5
	
	
	
	
	
	
	
	
	
	
	5
	4
	3
	2
	1

4.3.1 Hashing upper and lower parsed number strings into integers for storage

The parsed number strings are reversed and then converted to integers that they represent. A side-effect of this is that parsed number strings that have trailing zeros, after reversal, have leading zeros which are lost when converting to an integer. In the case where a number is fewer digits than the maximum number of digits for the field (7 for CM_PhoneMatching; 8 for CM_ExtendedPhoneMatching), it is are shifted left by padding with zeros at the right (e.g. 321 becomes 3210000). For example:

	Original parsed number string
	Integer value of reversed string
	Padded Integer value of reversed string

	123000
	321
	3210000

	12300
	321
	3210000

	1230
	321
	3210000

	123
	321
	3210000

	0123
	3210
	3210000

	00123
	32100
	3210000

	000123
	321000
	3210000

4.3.2 Examples of Phone Number Strings going through the Parsing, Splitting and Hashing Process

	Example
	Original number
	Post-parser number
	Split to upper and lower digits
	Hashed integers stored in the Phone table

	
	
	
	Upper
	Lower
	CM_Extended

PhoneMatching
	CM_Phone

Matching

	1
	*#42# 0401234567 p123
	0401234567
	040
	1234567
	40000000
	7654321

	2
	*#42# +358401234567 p123
	358401234567
	35840
	1234567
	48350000
	7654321

	3
	*61 0401234567
	610401234567
	61040
	1234567
	40160000
	7654321

	4
	*61 +358401234567
	358401234567
	35840
	1234567
	48530000
	7654321

	5
	+358401234567 +3
	358401234567
	35840
	1234567
	48530000
	7654321

	6
	+358401234567 p123
	358401234567
	35840
	1234567
	48530000
	7654321

	7
	(+358) 1234567
	3581234567
	358
	1234567
	85300000
	7654321

	8
	*#42# 0401234567#p123
	[empty]
	[empty]
	[empty]
	[not stored]
	[not stored]

	9
	*12345+0401234567
	12345
	[empty]
	12345
	0
	5432100

	10
	*+123+456+++++++++++
	123
	[empty]
	123
	0
	3210000

4.4 Email table

The Email table serves much the same purpose as the Phone table in that it provides a method of managing the one-to-many relationship between contact items and their associated email addresses in order to facilitate faster look-up for messaging applications. All non-empty email fields from the Contact Item are added as rows in the Email table.

	Column Name
	Accept NULL Values
	Type
	Max Size
	Description

	Email_FieldId
	No
	EDbColInt32
	n/a
	Identifies a single Email field

	EmailAddress
	No
	EDbColText
	255
	Contact Email address

	Email_Parent_CMID
	No
	EDbColInt32
	n/a
	Foreign key from Contacts table

Indexes on the Email table:

	Index Name
	Columns
	Description

	EmailIdentityIdIndex
	Email_FieldId, Email_Parent_CMID
	Primary key index (unique)

· Email_FieldId
A unique 32-bit non-negative integer to identify Email table entries.

· EmailAddress
A text string representing the email address directly as it is stored in the Contact Item.

· Email_Parent_CMID
This is a foreign key from the Contacts table, matching entries in this table with a particular contact item. Since a contact item has 0 to many email addresses, there can be multiple occurrences of the same value for Email_Parent_CMID and not every Email_Parent_CMID may be found in this table (the Email_Parent_CMID of contact items without email addresses will be absent). There must not be a value for Email_Parent_CMID in this table that cannot be found in the Contacts CM_ID field.

Contact Table Dependency

It should be noted that there is a two-way dependency between the Contact and Email tables. This has implications for how records are written to the Contact table, specifically the CM_Header and CM_SearchableText fields. Please see Section 4.2, under the bullet starting “CM_Header, CM_Textblob, CM_SearchableText”, for more details.

4.5 Group table

The group table provides a mapping of all the groups to the contact items which belong to them. This information is particularly useful when the contact is being deleted and all the groups keeping a reference to it must be identified and updated.

The table contains two columns: a group ID (CM_ID) and a group member ID (CM_Members – confusingly pluralised). It is important that the table has a composite index and the fields are mentioned in reverse order: (CM_Members, CM_ID). Owing to peculiarities in the DBMS implementation queries are only efficient when using both members of the composite index or just the first member. Queries made using only second member of the index are extremely slow.

Therefore, this table should only be used for getting the list of the groups a given contact belongs to. For getting the list of all contacts belonging to a certain group the Groups2 table should be used.

There is a many-to-many relationship between groups and group members in that a group can contain many members and a contact item may be a member of many groups. Also, a group may be a member of another group. (Incidentally, a group can be a member of itself or there can be circular memberships such as: A (B, B (C, C (A. However, such relationships are not recommended or encouraged.)

Therefore, each record in the Group table must be a unique pair of two valid Contact.CM_ID foreign key values.

	Column Name
	Accept NULL values
	Type
	Max Size
	Description

	CM_ID
	No
	EDbColInt32
	n/a
	The group. Foreign key CM_ID from Contacts table.

	CM_Members
	No
	EDbColInt32
	n/a
	The member of the group. Foreign key CM_ID from Contacts table.

Indexes on the Group table:

	Index Name
	Columns
	Description

	Cnt_Group_Index
	CM_Members, CM_ID
	Primary key index (unique)

· CM_ID
A CM_ID value from the Contact table representing the contact item which is the group.

· CM_Members
A CM_ID value from the Contact table representing the contact item which is the member of the group.

4.6 Groups2 table

The Groups2 table provides further support to the management of groups in the contacts model. The Groups table already stores enough information to model the relationship between contact items, but finding out the list of members of a group requires the whole table to be searched.

To speed up loading of groups, a second group table was added to store the group as an array containing the contact item IDs of all of the members of the group. This has a lower overhead, in terms of database size, than a second index on the Groups table.

Each record consists of a group contact ID (CM_ID) and a BLOB containing the serialised CM_ID values of the members of the group (CM_GroupMembers). Each CM_ID value must be unique in the table – i.e. there must only be one record for each group. Each group must be represented in this table and, if it contains no members, the CM_GroupMembers field may be NULL.

	Column Name
	Accept NULL values
	Type
	Max Size
	Description

	CM_ID
	No
	EDbColInt32
	n/a
	Group ID. Foreign key from Contacts table

	CM_GroupMembers
	Yes
	EDbColLongBinary
	n/a
	Array of group member IDs. IDs refer to CM_ID column in Contacts table.

Indexes on the Groups2 table:

	Index Name
	Columns
	Description

	Cnt_Group_Index2
	CM_ID
	Primary key index (non-unique)

· CM_ID

The CM_ID from the Contact table of the contact item representing the Group

· CM_GroupMembers

A BLOB containing a serialised array with group members ID numbers. Can be NULL if the group has no members. The BLOB is structured as follows:

	Number of CM_IDs

(4 bytes)
	Member 1 CM_ID

(4 bytes)
	Member 2 CM_ID

(4 bytes)
	Member 3 CM_ID

(4 bytes)
	
	Member n CM_ID

(4 bytes)

Therefore, for example, the BLOB for a group containing the CM_IDs {7, 10, 19, 43} would be structured:

	0x00000004 (4)
	0x00000007 (7)
	0x0000000A (10)
	0x00000013 (19)
	0x0000002B (43)

4.7 Sync table

The Sync table enables the storage of a last synchronised date/time identified by an integer using the CContactDatabase::SetLastSyncDateL API. This enables the application engine database to know when it was last synchronised rather than the responsibility being handled by the PC synchronisation implementation.

This table is no longer required for data synchronisation since SyncML uses item timestamps and records its own “snapshot” of the database.

	Column Name
	Accept NULL values
	Type
	Max Size
	Description

	CM_ID
	
	EDbColUint32
	n/a
	Auto incrementing integer

	CM_LastSyncDate
	
	EDbColDateTime
	n/a
	Timestamp

Indexes on the Sync table:

	Index Name
	Columns
	Description

	Sync_Id_Index
	CM_ID
	Primary key index (unique)

4.8 Preferences table

The Preferences table stores preference information relating to the whole database. The preference table is dependent on information in other tables (because it contains IDs from the Identity/Contacts tables).
	Column Name
	Accept NULL values
	Type
	Max Size
	Description

	CM_PrefFileId
	
	EDbColInt16
	n/a
	Preferences table format version number. Currently unused by contacts model.

	CM_PrefTemplateId
	
	EDbColInt32
	n/a
	Contact item ID for the system template

	CM_PrefOwnCard
	
	EDbColInt32
	n/a
	Contact item ID for the database’s owner card

	CM_PrefCardTemplateRefId
	
	EDbColInt32
	n/a
	Contact item ID for the database's preferred template

	CM_PrefCardTemplateId
	
	EDbColLongBinary
	n/a
	Array of Contact item IDs for user-defined templates

	CM_PrefGroupIdList
	
	EDbColLongBinary
	n/a
	Array of Contact item IDs for contact groups

	CM_PrefFileVer
	
	EDbColInt32
	n/a
	File version.

	CM_CreationDate
	
	EDbColDateTime
	n/a
	Creation date of the contact database file

	CM_MachineUid
	
	EDbColInt64
	n/a
	Randomly generated identifier for the database.

	CM_PrefSortOrder
	
	EDbColLongBinary
	n/a
	Preferred sort order for clients, as set by CContactDatabase::StoreSortOrderL

The Preferences table does not have an index, since there is only ever a single row in this table.

· CM_PrefFileId

A 16-bit integer but left NULL as it is not used.

· CM_PrefTemplateId

A 32-bit integer representing the CM_ID of the system template. This is always 0 in the contacts model.

· CM_PrefOwnCard

A 32-bit integer representing the CM_ID of the user’s own contact card. Should be set to -1 if there is no own card specified.

· CM_PrefCardTemplateRefId

A 32-bit integer representing the CM_ID of the preferred template.

· CM_PrefCardTemplateId

A BLOB containing a serialised array of CM_IDs from user-defined template contact items that can be used in place of the default system template. Can be NULL if there are no such items. The BLOB is structured in the same manner as the one for Groups2.CM_GroupMembers (see section 4.6).

· CM_PrefGroupIdList

A BLOB containing a serialised array of CM_IDs from group contact items. Can be NULL if there are no such items. The BLOB is structured in the same manner as the one for Groups2.CM_GroupMembers (see section 4.6).

· CM_PrefFileVer

A 32-bit integer representing the database file version. From v8.0 onwards, including all of the v9.x releases up to and including v9.4, this number should always be 8.

· CM_CreationDate

A 64-bit integer that represents a date and time as a number of microseconds since midnight, January 1st, 0 AD nominal Gregorian. BC dates are represented by negative values. In the contacts model code, this is the iTime (a TInt64) data member from a TTime from the UTC time the database was created (TTime::UniversalTime()).

· CM_MachineUid

A 64-bit, randomly generated number, generated internally in the contacts model by the method RPplPreferencesTable::CPreferencesCache::GenerateMachineUniqueID(). The algorithm uses runtime variables such as the current value of the device's high resolution timer and the address of the instance of the preferences cache and rearranges these in an attempt to create well-distributed pseudo-random numbers to act as the machine ID.

In earlier versions of the contacts model, the older hardware upon which they ran had a unique machine ID that was queriable at runtime. This is no longer available on later hardware platforms and so this random UID is created at database creation time and is unique not only to the machine but also the database.

· CM_PrefSortOrder

A variable length BLOB field containing a persisted representation of the preferred sort order preferences for clients. The BLOB has the following structure:

	Number of Sort Order Preferences

(4 bytes)
	Sort Order Preference 1 Type UID

(4 bytes)
	Sort Order Preference 1 Order

(4 bytes)
	Sort Order Preference 2 Type UID

(4 bytes)
	Sort Order Preference 2 Order

(4 bytes)
	
	Sort Order Preference n Type UID

(4 bytes)
	Sort Order Preference n Order

(4 bytes)

Therefore, for example, the following set of sort order preferences:

	Sort Order Preference
	Type
	Order

	1
	KUidContactFieldFamilyName
	EDesc

	2
	KUidContactFieldGivenName
	EAsc

	3
	KUidContactFieldCompanyName
	EAsc

would be persisted in the CM_PrefSortOrder field as follows:

	0x00000003 (3)
	0x1000137D

(KUid

ContactField

FamilyName)
	0x00000001 (EDesc)
	0x1000137C

(KUid

ContactField

GivenName)
	0x00000000 (EAsc)
	0x1000130D

(KUid

ContactField

CompanyName)
	0x00000000 (EAsc)

	
	
	
	
	
	
	

	Number of

Sort Order

Preferences
	Sort Order 1
	Sort Order 2
	Sort Order 3

If there are no sort order preferences, the BLOB will look like this:

	0x00000000

(0)

	

	Number of

Sort Order

Preferences

File version history

The Preferences table stores a file version. The current file version can be identified in the code by finding the value of the KFileLayoutVersion constant (currently defined in app-engines/cntmodel/cntpldbms/inc/pltables.h).

Details of each version are given below:

	File version
	First introduced in SymbianOS release
	Description

	1
	5.0
	Original database schema

	2
	not released
	Added creation date of the contact database file (CM_creationdate) to the PREFERENCES table

	3
	5.0 and 6.0
	Removed unnecessary UID string index (cnt_uid_index)

	4
	6.1
	Multiple database table schema introduced.

	5
	7.0
	Hint column moved from CONTACTS table to IDENTITY table as part of defect DUG-59HHTZ "Filtered View needs performance enhancement"

	6
	7.0
	Added extended hint column (CM_ExtHintField)

	7
	7.0s
	Added second phone matching column (CM_ExtendedPhoneMatching)

	8
	8.0
	Added pronunciation fields to IDENTITY table (CM_FirstNmPrn, CM_LastNmPrn, CM_CompanyNmPrn)

5 Compatibility Policy

Contacts model can read and upgrade file versions 4 onwards.

Old files are upgraded to the current data schema and further updates are written in the new format only. This enables a SymbianOS v6.1 contact database file to be read by future SymbianOS products but not vice-versa.

Further Information

5.1 People

	Role
	Person / People

	Contributors
	Bob Rosenberg (original document); Lucian Piros and James Clarke (2008 additions)

	Reviewers
	Core Apps Team, Dominic Badger (original document); PIM team, Product Creation Tools team (2008 additions).

	Distribution
	

5.2 References

	No.
	Document Reference
	Version
	Description

	[1]
	The UML and Data Modelling (Rational software, 2000)
	
	http://www.rational.com/media/whitepapers/Tp180.PDF

	[2]
	
	
	

5.3 Open Issues

5.4 Glossary

The following technical terms and abbreviations are used within this document.

	Term
	Definition

	API
	Application Programming Interface

	DBMS
	SymbianOS database management component

	GT
	Generic Technology

	ICC
	Integrated Circuit Card (the generic name for SIM cards)

	LPD
	Licensee Product Development

	Logical data model
	A logical data model shows entities, key attributes and the relationships between them. It is a conceptual model that does not take account how the data is stored.

	Physical data model
	A physical data model defines how the data is physically stored and specifies database tables, columns and indexes.

	UID
	Unique Identity

Document History

	Date
	Version
	Status
	Description

	21-10-2008
	1.3
	Draft
	Content updated after review in PIM and external review by Product Creation Tools. Table of contents added.

	09-09-2008
	1.2
	Draft
	Updated to include details of how to create each database field’s value.

	27-04-2004
	1.1
	Draft
	Updated for version 8 (pronunciation fields)

	18-09-2003
	1.0
	Issued
	Issued after peer review

	15-09-2003
	0.4
	Draft
	Incorporated comments from Nichola Turner, Bob Rosenberg and Andy Blackburn

	21-03-2003
	0.3
	Draft
	Added logical data model. Ready for internal review.

	10-03-2003
	0.2
	Draft
	Added physical data model

	dd-mm-yyyy
	0.1
	Draft
	First draft based on SGL.PPS001.500 Lightweight Document Template Rev 7.0

� If the database is created by the contacts model, there is a good chance of this value being unique. However, if a database generation tool is used for device variant creation is used, whereby a default database is created once and then copied onto the ROM of many (thousands or even millions of) devices, one “unique” ID for many phones could cause problems when syncing contacts. A solution would need to be found to deal with this issue.

Copyright © http://creativecommons.org/licenses/by-sa/2.0/uk/
Internal - Symbian
Page 1 of 25
All rights reserved
Copyright © http://creativecommons.org/licenses/by-sa/2.0/uk/
Internal - Symbian
Page 2 of 25
All rights reserved

[image: image6.png]_1139388098

_1139388101

