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Chapter 1

Introduction

ida is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers [16]. This suite consists of cvode, arkode, kinsol, and ida, and variants of these
with sensitivity analysis capabilities.

ida is a general purpose solver for the initial value problem (IVP) for systems of differential-
algebraic equations (DAEs). The name IDA stands for Implicit Differential-Algebraic solver. ida is
based on daspk [5, 6], but is written in ANSI-standard C rather than Fortran77. Its most notable
features are that, (1) in the solution of the underlying nonlinear system at each time step, it offers a
choice of Newton/direct methods and a choice of Inexact Newton/Krylov (iterative) methods; and (2)
it is written in a data-independent manner in that it acts on generic vectors without any assumptions
on the underlying organization of the data. Thus ida shares significant modules previously written
within CASC at LLNL to support the ordinary differential equation (ODE) solvers cvode [17, 10]
and pvode [8, 9], and also the nonlinear system solver kinsol [11].

The Newton/Krylov methods in ida are: the GMRES (Generalized Minimal RESidual) [21], Bi-
CGStab (Bi-Conjugate Gradient Stabilized) [22], and TFQMR (Transpose-Free Quasi-Minimal Resid-
ual) linear iterative methods [14]. As Krylov methods, these require almost no matrix storage for
solving the Newton equations as compared to direct methods. However, the algorithms allow for a
user-supplied preconditioner matrix, and for most problems preconditioning is essential for an efficient
solution.

For very large DAE systems, the Krylov methods are preferable over direct linear solver methods,
and are often the only feasible choice. Among the three Krylov methods in ida, we recommend
GMRES as the best overall choice. However, users are encouraged to compare all three, especially
if encountering convergence failures with GMRES. Bi-CGFStab and TFQMR have an advantage in
storage requirements, in that the number of workspace vectors they require is fixed, while that number
for GMRES depends on the desired Krylov subspace size.

There are several motivations for choosing the C language for ida. First, a general movement away
from Fortran and toward C in scientific computing was apparent. Second, the pointer, structure,
and dynamic memory allocation features in C are extremely useful in software of this complexity,
with the great variety of method options offered. Finally, we prefer C over C++ for ida because of
the wider availability of C compilers, the potentially greater efficiency of C, and the greater ease of
interfacing the solver to applications written in extended Fortran.

1.1 Changes from previous versions

Changes in v2.8.0

Two major additions were made to the linear system solvers that are available for use with the ida

solver. First, in the serial case, an interface to the sparse direct solver KLU was added. Second,
an interface to SuperLU MT, the multi-threaded version of SuperLU, was added as a thread-parallel
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sparse direct solver option, to be used with the serial version of the NVECTOR module. As part of
these additions, a sparse matrix (CSC format) structure was added to ida.

Otherwise, only relatively minor modifications were made to ida:

In IDARootfind, a minor bug was corrected, where the input array rootdir was ignored, and a
line was added to break out of root-search loop if the initial interval size is below the tolerance ttol.

In IDALapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an
illegal input error for DGBTRF/DGBTRS.

A minor bug was fixed regarding the testing of the input tstop on the first call to IDASolve.

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX,
SQR, RAbs, RSqrt, RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs,
SUNRsqrt, SUNRexp, SRpowerI, and SUNRpowerR, respectively. These names occur in both the solver
and in various example programs.

In the FIDA optional input routines FIDASETIIN, FIDASETRIN, and FIDASETVIN, the optional
fourth argument key length was removed, with hardcoded key string lengths passed to all strncmp
tests.

In all FIDA examples, integer declarations were revised so that those which must match a C type
long int are declared INTEGER*8, and a comment was added about the type match. All other integer
declarations are just INTEGER. Corresponding minor corrections were made to the user guide.

Two new nvector modules have been added for thread-parallel computing environments — one
for openMP, denoted NVECTOR OPENMP, and one for Pthreads, denoted NVECTOR PTHREADS.

With this version of sundials, support and documentation of the Autotools mode of installation
is being dropped, in favor of the CMake mode, which is considered more widely portable.

Changes in v2.7.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The func-
tion NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays,
respectively.

A large number of minor errors have been fixed. Among these are the following: After the solver
memory is created, it is set to zero before being filled. To be consistent with IDAS, IDA uses the
function IDAGetDky for optional output retrieval. In each linear solver interface function, the lin-
ear solver memory is freed on an error return, and the **Free function now includes a line setting
to NULL the main memory pointer to the linear solver memory. A memory leak was fixed in two
of the IDASp***Free functions. In the rootfinding functions IDARcheck1/IDARcheck2, when an ex-
act zero is found, the array glo of g values at the left endpoint is adjusted, instead of shifting the
t location tlo slightly. In the installation files, we modified the treatment of the macro SUNDI-
ALS USE GENERIC MATH, so that the parameter GENERIC MATH LIB is either defined (with
no value) or not defined.

Changes in v2.6.0

Two new features were added in this release: (a) a new linear solver module, based on Blas and Lapack
for both dense and banded matrices, and (b) option to specify which direction of zero-crossing is to
be monitored while performing rootfinding.

The user interface has been further refined. Some of the API changes involve: (a) a reorganization
of all linear solver modules into two families (besides the already present family of scaled precon-
ditioned iterative linear solvers, the direct solvers, including the new Lapack-based ones, were also
organized into a direct family); (b) maintaining a single pointer to user data, optionally specified
through a Set-type function; (c) a general streamlining of the band-block-diagonal preconditioner
module distributed with the solver.
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Changes in v2.5.0

The main changes in this release involve a rearrangement of the entire sundials source tree (see §3.1).
At the user interface level, the main impact is in the mechanism of including sundials header files
which must now include the relative path (e.g. #include <cvode/cvode.h>). Additional changes
were made to the build system: all exported header files are now installed in separate subdirectories
of the installation include directory.

A bug was fixed in the internal difference-quotient dense and banded Jacobian approximations,
related to the estimation of the perturbation (which could have led to a failure of the linear solver
when zero components with sufficiently small absolute tolerances were present).

The user interface to the consistent initial conditions calculations was modified. The IDACalcIC

arguments t0, yy0, and yp0 were removed and a new function, IDAGetconsistentIC is provided (see
§4.5.4 and §4.5.9.2 for details).

The functions in the generic dense linear solver (sundials dense and sundials smalldense) were
modified to work for rectangular m×n matrices (m ≤ n), while the factorization and solution functions
were renamed to DenseGETRF/denGETRF and DenseGETRS/denGETRS, respectively. The factorization
and solution functions in the generic band linear solver were renamed BandGBTRF and BandGBTRS,
respectively.

Changes in v2.4.0

fida, a Fortran-C interface module, was added (for details see Chapter 5).

idaspbcg and idasptfqmr modules have been added to interface with the Scaled Preconditioned
Bi-CGstab (spbcg) and Scaled Preconditioned Transpose-Free Quasi-Minimal Residual (sptfqmr)
linear solver modules, respectively (for details see Chapter 4). At the same time, function type names
for Scaled Preconditioned Iterative Linear Solvers were added for the user-supplied Jacobian-times-
vector and preconditioner setup and solve functions.

The rootfinding feature was added, whereby the roots of a set of given functions may be computed
during the integration of the DAE system.

A user-callable routine was added to access the estimated local error vector.

The deallocation functions now take as arguments the address of the respective memory block
pointer.

To reduce the possibility of conflicts, the names of all header files have been changed by adding
unique prefixes (ida and sundials ). When using the default installation procedure, the header
files are exported under various subdirectories of the target include directory. For more details see
Appendix A.

Changes in v2.3.0

The user interface has been further refined. Several functions used for setting optional inputs were
combined into a single one. An optional user-supplied routine for setting the error weight vector was
added. Additionally, to resolve potential variable scope issues, all SUNDIALS solvers release user
data right after its use. The build systems has been further improved to make it more robust.

Changes in v2.2.2

Minor corrections and improvements were made to the build system. A new chapter in the User Guide
was added — with constants that appear in the user interface.

Changes in v2.2.1

The changes in this minor sundials release affect only the build system.
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Changes in v2.2.0

The major changes from the previous version involve a redesign of the user interface across the entire
sundials suite. We have eliminated the mechanism of providing optional inputs and extracting
optional statistics from the solver through the iopt and ropt arrays. Instead, ida now provides a
set of routines (with prefix IDASet) to change the default values for various quantities controlling the
solver and a set of extraction routines (with prefix IDAGet) to extract statistics after return from the
main solver routine. Similarly, each linear solver module provides its own set of Set- and Get-type
routines. For more details see §4.5.7 and §4.5.9.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians
and preconditioner information) were simplified by reducing the number of arguments. The same
information that was previously accessible through such arguments can now be obtained through
Get-type functions.

Installation of ida (and all of sundials) has been completely redesigned and is now based on
configure scripts.

1.2 Reading this User Guide

The structure of this document is as follows:

• In Chapter 2, we give short descriptions of the numerical methods implemented by ida for
the solution of initial value problems for systems of DAEs, along with short descriptions of
preconditioning (§2.2) and rootfinding (§2.3).

• The following chapter describes the structure of the sundials suite of solvers (§3.1) and the
software organization of the ida solver (§3.2).

• Chapter 4 is the main usage document for ida for C applications. It includes a complete
description of the user interface for the integration of DAE initial value problems.

• In Chapter 5, we describe fida, an interface module for the use of ida with Fortran applica-
tions.

• Chapter 6 gives a brief overview of the generic nvector module shared among the various
components of sundials, as well as details on the nvector implementations provided with
sundials: a serial implementation (§6.1), a distributed memory parallel implementation based
on MPI (§6.2), and two thread-parallel implementations based on openMP (§6.3) and Pthreads
(§6.4), respectively.

• Chapter 7 describes the interfaces to the linear solver modules, so that a user can provide his/her
own such module.

• Chapter 8 describes in detail the generic linear solvers shared by all sundials solvers.

• Finally, in the appendices, we provide detailed instructions for the installation of ida, within
the structure of sundials (Appendix A), as well as a list of all the constants used for input to
and output from ida functions (Appendix B).

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as IDAInit) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules, such as
idadense, are written in all capitals. Usage and installation instructions that constitute important
warnings are marked with a triangular symbol in the margin.!

Acknowledgments. We wish to acknowledge the contributions to previous versions of the ida code
and user guide of Allan G. Taylor.



Chapter 2

Mathematical Considerations

ida solves the initial-value problem (IVP) for a DAE system of the general form

F (t, y, ẏ) = 0 , y(t0) = y0 , ẏ(t0) = ẏ0 , (2.1)

where y, ẏ, and F are vectors in RN , t is the independent variable, ẏ = dy/dt, and initial values y0,
ẏ0 are given. (Often t is time, but it certainly need not be.)

2.1 IVP solution

Prior to integrating a DAE initial-value problem, an important requirement is that the pair of vectors
y0 and ẏ0 are both initialized to satisfy the DAE residual F (t0, y0, ẏ0) = 0. For a class of problems that
includes so-called semi-explicit index-one systems, ida provides a routine that computes consistent
initial conditions from a user’s initial guess [6]. For this, the user must identify sub-vectors of y (not
necessarily contiguous), denoted yd and ya, which are its differential and algebraic parts, respectively,
such that F depends on ẏd but not on any components of ẏa. The assumption that the system is
“index one” means that for a given t and yd, the system F (t, y, ẏ) = 0 defines ya uniquely. In this
case, a solver within ida computes ya and ẏd at t = t0, given yd and an initial guess for ya. A second
available option with this solver also computes all of y(t0) given ẏ(t0); this is intended mainly for quasi-
steady-state problems, where ẏ(t0) = 0 is given. In both cases, ida solves the system F (t0, y0, ẏ0) = 0
for the unknown components of y0 and ẏ0, using Newton iteration augmented with a line search global
strategy. In doing this, it makes use of the existing machinery that is to be used for solving the linear
systems during the integration, in combination with certain tricks involving the step size (which is set
artificially for this calculation). For problems that do not fall into either of these categories, the user
is responsible for passing consistent values, or risk failure in the numerical integration.

The integration method used in ida is the variable-order, variable-coefficient BDF (Backward
Differentiation Formula), in fixed-leading-coefficient form [3]. The method order ranges from 1 to 5,
with the BDF of order q given by the multistep formula

q
∑

i=0

αn,iyn−i = hnẏn , (2.2)

where yn and ẏn are the computed approximations to y(tn) and ẏ(tn), respectively, and the step size
is hn = tn − tn−1. The coefficients αn,i are uniquely determined by the order q, and the history of the
step sizes. The application of the BDF (2.2) to the DAE system (2.1) results in a nonlinear algebraic
system to be solved at each step:

G(yn) ≡ F

(

tn, yn, h−1
n

q
∑

i=0

αn,iyn−i

)

= 0 . (2.3)
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Regardless of the method options, the solution of the nonlinear system (2.3) is accomplished with
some form of Newton iteration. This leads to a linear system for each Newton correction, of the form

J [yn(m+1) − yn(m)] = −G(yn(m)) , (2.4)

where yn(m) is the m-th approximation to yn. Here J is some approximation to the system Jacobian

J =
∂G

∂y
=

∂F

∂y
+ α

∂F

∂ẏ
, (2.5)

where α = αn,0/hn. The scalar α changes whenever the step size or method order changes.
For the solution of the linear systems within the Newton corrections, ida provides several choices,

including the option of an user-supplied linear solver module. The linear solver modules distributed
with sundials are organized in three families, a direct family comprising direct linear solvers for dense
or banded matrices, a sparse family comprising direct linear solvers for matrices stored in compressed-
sparse-column format, and a spils family comprising scaled preconditioned iterative (Krylov) linear
solvers. The methods offered through these modules are as follows:

• dense direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial or threaded vector modules only),

• band direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial or threaded vector modules only),

• sparse direct solver interfaces, using either the KLU sparse solver library [12, 1], or the thread-
enabled SuperLU MT sparse solver library [20, 13, 2] (serial or threaded vector modules only)
[Note that users will need to download and install the KLU or SuperLU MT packages indepen-
dent of ida],

• spgmr, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver without
restarts,

• spbcg, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver, or

• sptfqmr, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method)
solver.

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator
and any of the preconditioned Krylov methods (spgmr, spbcg, or sptfqmr) yields a powerful tool
because it combines established methods for stiff integration, nonlinear iteration, and Krylov (linear)
iteration with a problem-specific treatment of the dominant source of stiffness, in the form of the
user-supplied preconditioner matrix [4]. For the spils linear solvers, preconditioning is allowed only
on the left (see §2.2). Note that the direct linear solvers (dense, band, and sparse) can only be used
with serial and threaded vector representations.

In the process of controlling errors at various levels, ida uses a weighted root-mean-square norm,
denoted ‖ · ‖WRMS, for all error-like quantities. The multiplicative weights used are based on the
current solution and on the relative and absolute tolerances input by the user, namely

Wi = 1/[rtol · |yi| + atoli] . (2.6)

Because 1/Wi represents a tolerance in the component yi, a vector whose norm is 1 is regarded as
“small.” For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the case of a direct linear solver (dense, band, or sparse), the nonlinear iteration (2.4) is a
Modified Newton iteration, in that the Jacobian J is fixed (and usually out of date), with a coefficient
ᾱ in place of α in J . When using one of the Krylov methods spgmr, spbcg, or sptfqmr as the linear
solver, the iteration is an Inexact Newton iteration, using the current Jacobian (through matrix-free
products Jv), in which the linear residual J∆y + G is nonzero but controlled. The Jacobian matrix
J (direct cases) or preconditioner matrix P (spgmr/spbcg/sptfqmr case) is updated when:
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• starting the problem,

• the value ᾱ at the last update is such that α/ᾱ < 3/5 or α/ᾱ > 5/3, or

• a non-fatal convergence failure occurred with an out-of-date J or P .

The above strategy balances the high cost of frequent matrix evaluations and preprocessing with
the slow convergence due to infrequent updates. To reduce storage costs on an update, Jacobian
information is always reevaluated from scratch.

We note that with the sparse direct solvers, the Jacobian must be supplied by a user routine in
compressed-sparse-column format, as this is not approximated automatically within ida.

The stopping test for the Newton iteration in ida ensures that the iteration error yn − yn(m) is
small relative to y itself. For this, we estimate the linear convergence rate at all iterations m > 1 as

R =

(

δm

δ1

)
1

m−1

,

where the δm = yn(m) − yn(m−1) is the correction at iteration m = 1, 2, . . .. The Newton iteration is
halted if R > 0.9. The convergence test at the m-th iteration is then

S‖δm‖ < 0.33 , (2.7)

where S = R/(R−1) whenever m > 1 and R ≤ 0.9. The user has the option of changing the constant
in the convergence test from its default value of 0.33. The quantity S is set to S = 20 initially and
whenever J or P is updated, and it is reset to S = 100 on a step with α 6= ᾱ. Note that at m = 1, the
convergence test (2.7) uses an old value for S. Therefore, at the first Newton iteration, we make an
additional test and stop the iteration if ‖δ1‖ < 0.33 · 10−4 (since such a δ1 is probably just noise and
therefore not appropriate for use in evaluating R). We allow only a small number (default value 4)
of Newton iterations. If convergence fails with J or P current, we are forced to reduce the step size
hn, and we replace hn by hn/4. The integration is halted after a preset number (default value 10)
of convergence failures. Both the maximum allowable Newton iterations and the maximum nonlinear
convergence failures can be changed by the user from their default values.

When spgmr, spbcg, or sptfqmr is used to solve the linear system, to minimize the effect of linear
iteration errors on the nonlinear and local integration error controls, we require the preconditioned
linear residual to be small relative to the allowed error in the Newton iteration, i.e., ‖P−1(Jx+G)‖ <
0.05 · 0.33. The safety factor 0.05 can be changed by the user.

In the direct linear solver cases, the Jacobian J defined in (2.5) can be either supplied by the user or
have ida compute one internally by difference quotients. In the latter case, we use the approximation

Jij = [Fi(t, y + σjej , ẏ + ασjej) − Fi(t, y, ẏ)]/σj , with

σj =
√

U max {|yj |, |hẏj |, 1/Wj} sign(hẏj) ,

where U is the unit roundoff, h is the current step size, and Wj is the error weight for the component
yj defined by (2.6). In the spgmr/spbcg/sptfqmr case, if a routine for Jv is not supplied, such
products are approximated by

Jv = [F (t, y + σv, ẏ + ασv) − F (t, y, ẏ)]/σ ,

where the increment σ is 1/‖v‖. As an option, the user can specify a constant factor that is inserted
into this expression for σ.

During the course of integrating the system, ida computes an estimate of the local truncation
error, LTE, at the n-th time step, and requires this to satisfy the inequality

‖LTE‖WRMS ≤ 1 .

Asymptotically, LTE varies as hq+1 at step size h and order q, as does the predictor-corrector difference
∆n ≡ yn − yn(0). Thus there is a constant C such that

LTE = C∆n + O(hq+2) ,
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and so the norm of LTE is estimated as |C| · ‖∆n‖. In addition, ida requires that the error in the
associated polynomial interpolant over the current step be bounded by 1 in norm. The leading term
of the norm of this error is bounded by C̄‖∆n‖ for another constant C̄. Thus the local error test in
ida is

max{|C|, C̄}‖∆n‖ ≤ 1 . (2.8)

A user option is available by which the algebraic components of the error vector are omitted from the
test (2.8), if these have been so identified.

In ida, the local error test is tightly coupled with the logic for selecting the step size and order.
First, there is an initial phase that is treated specially; for the first few steps, the step size is doubled
and the order raised (from its initial value of 1) on every step, until (a) the local error test (2.8) fails,
(b) the order is reduced (by the rules given below), or (c) the order reaches 5 (the maximum). For
step and order selection on the general step, ida uses a different set of local error estimates, based
on the asymptotic behavior of the local error in the case of fixed step sizes. At each of the orders q′

equal to q, q − 1 (if q > 1), q − 2 (if q > 2), or q + 1 (if q < 5), there are constants C(q′) such that the
norm of the local truncation error at order q′ satisfies

LTE(q′) = C(q′)‖φ(q′ + 1)‖ + O(hq′+2) ,

where φ(k) is a modified divided difference of order k that is retained by ida (and behaves asymp-
totically as hk). Thus the local truncation errors are estimated as ELTE(q′) = C(q′)‖φ(q′ + 1)‖ to
select step sizes. But the choice of order in ida is based on the requirement that the scaled derivative
norms, ‖hky(k)‖, are monotonically decreasing with k, for k near q. These norms are again estimated
using the φ(k), and in fact

‖hq′+1y(q′+1)‖ ≈ T (q′) ≡ (q′ + 1)ELTE(q′) .

The step/order selection begins with a test for monotonicity that is made even before the local error
test is performed. Namely, the order is reset to q′ = q−1 if (a) q = 2 and T (1) ≤ T (2)/2, or (b) q > 2
and max{T (q − 1), T (q − 2)} ≤ T (q); otherwise q′ = q. Next the local error test (2.8) is performed,
and if it fails, the step is redone at order q ← q′ and a new step size h′. The latter is based on the
hq+1 asymptotic behavior of ELTE(q), and, with safety factors, is given by

η = h′/h = 0.9/[2 ELTE(q)]1/(q+1) .

The value of η is adjusted so that 0.25 ≤ η ≤ 0.9 before setting h ← h′ = ηh. If the local error test
fails a second time, ida uses η = 0.25, and on the third and subsequent failures it uses q = 1 and
η = 0.25. After 10 failures, ida returns with a give-up message.

As soon as the local error test has passed, the step and order for the next step may be adjusted.
No such change is made if q′ = q−1 from the prior test, if q = 5, or if q was increased on the previous
step. Otherwise, if the last q + 1 steps were taken at a constant order q < 5 and a constant step
size, ida considers raising the order to q + 1. The logic is as follows: (a) If q = 1, then reset q = 2 if
T (2) < T (1)/2. (b) If q > 1 then

• reset q ← q − 1 if T (q − 1) ≤ min{T (q), T (q + 1)};

• else reset q ← q + 1 if T (q + 1) < T (q);

• leave q unchanged otherwise [then T (q − 1) > T (q) ≤ T (q + 1)].

In any case, the new step size h′ is set much as before:

η = h′/h = 1/[2 ELTE(q)]1/(q+1) .

The value of η is adjusted such that (a) if η > 2, η is reset to 2; (b) if η ≤ 1, η is restricted to
0.5 ≤ η ≤ 0.9; and (c) if 1 < η < 2 we use η = 1. Finally h is reset to h′ = ηh. Thus we do not
increase the step size unless it can be doubled. See [3] for details.
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ida permits the user to impose optional inequality constraints on individual components of the
solution vector y. Any of the following four constraints can be imposed: yi > 0, yi < 0, yi ≥ 0,
or yi ≤ 0. The constraint satisfaction is tested after a successful nonlinear system solution. If any
constraint fails, we declare a convergence failure of the Newton iteration and reduce the step size.
Rather than cutting the step size by some arbitrary factor, ida estimates a new step size h′ using a
linear approximation of the components in y that failed the constraint test (including a safety factor
of 0.9 to cover the strict inequality case). These additional constraints are also imposed during the
calculation of consistent initial conditions.

Normally, ida takes steps until a user-defined output value t = tout is overtaken, and then computes
y(tout) by interpolation. However, a “one step” mode option is available, where control returns to
the calling program after each step. There are also options to force ida not to integrate past a given
stopping point t = tstop.

2.2 Preconditioning

When using a Newton method to solve the nonlinear system (2.4), ida makes repeated use of a linear
solver to solve linear systems of the form J∆y = −G. If this linear system solve is done with one of
the scaled preconditioned iterative linear solvers, these solvers are rarely successful if used without
preconditioning; it is generally necessary to precondition the system in order to obtain acceptable
efficiency. A system Ax = b can be preconditioned on the left, on the right, or on both sides. The
Krylov method is then applied to a system with the matrix P−1A, or AP−1, or P−1

L AP−1
R , instead

of A. However, within ida, preconditioning is allowed only on the left, so that the iterative method is
applied to systems (P−1J)∆y = −P−1G. Left preconditioning is required to make the norm of the
linear residual in the Newton iteration meaningful; in general, ‖J∆y + G‖ is meaningless, since the
weights used in the WRMS-norm correspond to y.

In order to improve the convergence of the Krylov iteration, the preconditioner matrix P should in
some sense approximate the system matrix A. Yet at the same time, in order to be cost-effective, the
matrix P should be reasonably efficient to evaluate and solve. Finding a good point in this tradeoff be-
tween rapid convergence and low cost can be very difficult. Good choices are often problem-dependent
(for example, see [4] for an extensive study of preconditioners for reaction-transport systems).

Typical preconditioners used with ida are based on approximations to the Newton iteration matrix
of the systems involved; in other words, P ≈ ∂F

∂y + α∂F
∂ẏ , where α is a scalar inversely proportional to

the integration step size h. Because the Krylov iteration occurs within a Newton iteration and further
also within a time integration, and since each of these iterations has its own test for convergence, the
preconditioner may use a very crude approximation, as long as it captures the dominant numerical
feature(s) of the system. We have found that the combination of a preconditioner with the Newton-
Krylov iteration, using even a fairly poor approximation to the Jacobian, can be surprisingly superior
to using the same matrix without Krylov acceleration (i.e., a modified Newton iteration), as well as
to using the Newton-Krylov method with no preconditioning.

2.3 Rootfinding

The ida solver has been augmented to include a rootfinding feature. This means that, while integrating
the Initial Value Problem (2.1), ida can also find the roots of a set of user-defined functions gi(t, y, ẏ)
that depend on t, the solution vector y = y(t), and its t−derivative ẏ(t). The number of these root
functions is arbitrary, and if more than one gi is found to have a root in any given interval, the various
root locations are found and reported in the order that they occur on the t axis, in the direction of
integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in
sign of gi(t, y(t), ẏ(t)), denoted gi(t) for short. If a user root function has a root of even multiplicity (no
sign change), it will probably be missed by ida. If such a root is desired, the user should reformulate
the root function so that it changes sign at the desired root.
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The basic scheme used is to check for sign changes of any gi(t) over each time step taken, and then
(when a sign change is found) to home in on the root (or roots) with a modified secant method [15].
In addition, each time g is computed, ida checks to see if gi(t) = 0 exactly, and if so it reports this as
a root. However, if an exact zero of any gi is found at a point t, ida computes g at t + δ for a small
increment δ, slightly further in the direction of integration, and if any gi(t + δ) = 0 also, ida stops
and reports an error. This way, each time ida takes a time step, it is guaranteed that the values of
all gi are nonzero at some past value of t, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has
been done, ida has an interval (tlo, thi] in which roots of the gi(t) are to be sought, such that thi is
further ahead in the direction of integration, and all gi(tlo) 6= 0. The endpoint thi is either tn, the end
of the time step last taken, or the next requested output time tout if this comes sooner. The endpoint
tlo is either tn−1, or the last output time tout (if this occurred within the last step), or the last root
location (if a root was just located within this step), possibly adjusted slightly toward tn if an exact
zero was found. The algorithm checks g at thi for zeros and for sign changes in (tlo, thi). If no sign
changes are found, then either a root is reported (if some gi(thi) = 0) or we proceed to the next time
interval (starting at thi). If one or more sign changes were found, then a loop is entered to locate the
root to within a rather tight tolerance, given by

τ = 100 ∗ U ∗ (|tn| + |h|) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have
its root occur first is the one with the largest value of |gi(thi)|/|gi(thi)− gi(tlo)|, corresponding to the
closest to tlo of the secant method values. At each pass through the loop, a new value tmid is set,
strictly within the search interval, and the values of gi(tmid) are checked. Then either tlo or thi is reset
to tmid according to which subinterval is found to have the sign change. If there is none in (tlo, tmid)
but some gi(tmid) = 0, then that root is reported. The loop continues until |thi − tlo| < τ , and then
the reported root location is thi.

In the loop to locate the root of gi(t), the formula for tmid is

tmid = thi − (thi − tlo)gi(thi)/[gi(thi) − αgi(tlo)] ,

where α a weight parameter. On the first two passes through the loop, α is set to 1, making tmid

the secant method value. Thereafter, α is reset according to the side of the subinterval (low vs high,
i.e. toward tlo vs toward thi) in which the sign change was found in the previous two passes. If the
two sides were opposite, α is set to 1. If the two sides were the same, α is halved (if on the low
side) or doubled (if on the high side). The value of tmid is closer to tlo when α < 1 and closer to thi

when α > 1. If the above value of tmid is within τ/2 of tlo or thi, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being the
midpoint), and the actual distance from the endpoint is at least τ/2.



Chapter 3

Code Organization

3.1 SUNDIALS organization

The family of solvers referred to as sundials consists of the solvers cvode and arkode (for ODE
systems), kinsol (for nonlinear algebraic systems), and ida (for differential-algebraic systems). In
addition, sundials also includes variants of cvode and ida with sensitivity analysis capabilities
(using either forward or adjoint methods), called cvodes and idas, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Fig. 3.1). The following is a list
of the solver packages presently available, and the basic functionality of each:

• cvode, a solver for stiff and nonstiff ODE systems dy/dt = f(t, y) based on Adams and BDF
methods;

• cvodes, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

• arkode, a solver for ODE systems Mdy/dt = f(t, y) based on additive Runge-Kutta methods;

• ida, a solver for differential-algebraic systems F (t, y, ẏ) = 0 based on BDF methods;

• idas, a solver for differential-algebraic systems with sensitivity analysis capabilities;

• kinsol, a solver for nonlinear algebraic systems F (u) = 0.

3.2 IDA organization

The ida package is written in the ANSI C language. The following summarizes the basic structure of
the package, although knowledge of this structure is not necessary for its use.

The overall organization of the ida package is shown in Figure 3.2. The central integration module,
implemented in the files ida.h, ida impl.h, and ida.c, deals with the evaluation of integration
coefficients, the Newton iteration process, estimation of local error, selection of stepsize and order,
and interpolation to user output points, among other issues. Although this module contains logic for
the basic Newton iteration algorithm, it has no knowledge of the method being used to solve the linear
systems that arise. For any given user problem, one of the linear system modules is specified, and is
then invoked as needed during the integration.

At present, the package includes the following seven ida linear algebra modules, organized into two
families. The direct family of linear solvers provides solvers for the direct solution of linear systems
with dense, banded, or sparse matrices and includes:

• idadense: LU factorization and backsolving with dense matrices (using either an internal im-
plementation or Blas/Lapack);
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(a) High-level diagram (note that none of the Lapack-based linear solver modules are represented.)
* only applies to arkode

** only applies to arkode and kinsol

(b) Directory structure of the source tree

Figure 3.1: Organization of the SUNDIALS suite
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Figure 3.2: Overall structure diagram of the ida package. Modules specific to ida are distinguished
by rounded boxes, while generic solver and auxiliary modules are in square boxes. Note that the
direct linear solvers using Lapack implementations are not explicitly represented. Note also that the
KLU and SuperLU MT support is through interfaces to packages. Users will need to download and
compile those packages independently.
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• idaband: LU factorization and backsolving with banded matrices (using either an internal
implementation or Blas/Lapack);

• idaklu: LU factorization and backsolving with compressed-sparse-column (CSC) matrices using
the KLU linear solver library [12, 1] (KLU to be downloaded and compiled by user independent
of ida);

• idasuperlumt: LU factorization and backsolving with compressed-sparse-column (CSC) ma-
trices using the threaded SuperLU MT linear solver library [20, 13, 2] (SuperLU MT to be
downloaded and compiled by user independent of ida).

The spils family of linear solvers provides scaled preconditioned iterative linear solvers and includes:

• idaspgmr: scaled preconditioned GMRES method;

• idaspbcg: scaled preconditioned Bi-CGStab method;

• idasptfqmr: scaled preconditioned TFQMR method.

The set of linear solver modules distributed with ida is intended to be expanded in the future as
new algorithms are developed. Note that users wishing to employ KLU or SuperLU MT will need to
download and install these libraries independent of sundials. sundials provides only the interfaces
between itself and these libraries.

In the case of the direct methods idadense and idaband, the package includes an algorithm
for the approximation of the Jacobian by difference quotients, but the user also has the option of
supplying the Jacobian (or an approximation to it) directly. When using the sparse direct linear solvers
cvklu and cvsuperlumt, the user must supply a routine for the Jacobian (or an approximation to
it) in CSC format, since standard difference quotient approximations do not leverage the inherent
sparsity of the problem. In the case of the Krylov iterative methods idaspgmr, idaspbcg, and
idasptfqmr, the package includes an algorithm for the approximation by difference quotients of the
product between the Jacobian matrix and a vector of appropriate length. Again, the user has the
option of providing a routine for this operation. When using any of the Krylov methods, the user
must supply the preconditioning in two phases: a setup phase (preprocessing of Jacobian data) and
a solve phase. While there is no default choice of preconditioner analogous to the difference quotient
approximation in the direct case, the references [4, 7], together with the example and demonstration
programs included with ida, offer considerable assistance in building preconditioners.

Each ida linear solver module consists of five routines, devoted to (1) memory allocation and
initialization, (2) setup of the matrix data involved, (3) solution of the system, (4) monitoring perfor-
mance, and (5) freeing of memory. The setup and solution phases are separate because the evaluation
of Jacobians and preconditioners is done only periodically during the integration, as required to achieve
convergence. The call list within the central ida module to each of the five associated functions is
fixed, thus allowing the central module to be completely independent of the linear system method.

These modules are also decomposed in another way. Each of the modules (idadense, etc.) consists
of an interface built on top of a generic linear system solver (dense, etc.). The interface deals with
the use of the particular method in the ida context, whereas the generic solver is independent of
the context. While some of the generic linear system solvers (dense, band, spgmr, spbcg, and
sptfqmr) were written with sundials in mind, they are intended to be usable anywhere as general-
purpose solvers. This separation also allows for any generic solver to be replaced by an improved
version, with no necessity to revise the ida package elsewhere.

ida also provides a preconditioner module, idabbdpre, that works in conjunction with nvec-

tor parallel and generates a preconditioner that is a block-diagonal matrix with each block being
a band matrix.

All state information used by ida to solve a given problem is saved in a structure, and a pointer
to that structure is returned to the user. There is no global data in the ida package, and so, in this
respect, it is reentrant. State information specific to the linear solver is saved in a separate structure,
a pointer to which resides in the ida memory structure. The reentrancy of ida was motivated by the
situation where two or more problems are solved by intermixed calls to the package from one user
program.



Chapter 4

Using IDA for C Applications

This chapter is concerned with the use of ida for the integration of DAEs in a C language setting.
The following sections treat the header files, the layout of the user’s main program, description of the
ida user-callable functions, and description of user-supplied functions.

The sample programs described in the companion document [18] may also be helpful. Those codes
may be used as templates (with the removal of some lines involved in testing), and are included in
the ida package.

Users with applications written in Fortran77 should see Chapter 5, which describes the For-

tran/C interface module.
The user should be aware that not all linear solver modules are compatible with all nvector

implementations. For example, nvector parallel is not compatible with the direct dense, direct
band or direct sparse linear solvers, since these linear solver modules need to form the complete system
Jacobian. The idadense and idaband modules (using either the internal implementation or Lapack)
can only be used with nvector serial, nvector openmp or nvector pthreads. It is not rec-
ommended to use a threaded vector module with SuperLU MT unless it is the nvector openmp

module and SuperLU MT is also compiled with openMP. The preconditioner module idabbdpre can
only be used with nvector parallel.

ida uses various constants for both input and output. These are defined as needed in this chapter,
but for convenience are also listed separately in Appendix B.

4.1 Access to library and header files

At this point, it is assumed that the installation of ida, following the procedure described in Appendix
A, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by ida. The relevant library files are

• libdir/libsundials ida.lib,

• libdir/libsundials nvec*.lib (one to four files),

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

• incdir/include/ida

• incdir/include/sundials

• incdir/include/nvector

The directories libdir and incdir are the install library and include directories, respectively. For
a default installation, these are instdir/lib and instdir/include, respectively, where instdir is the
directory where sundials was installed (see Appendix A).
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4.2 Data types

The sundials types.h file contains the definition of the type realtype, which is used by the sundials

solvers for all floating-point data. The type realtype can be float, double, or long double, with
the default being double. The user can change the precision of the sundials solvers arithmetic at
the configuration stage (see §A.1.2).

Additionally, based on the current precision, sundials types.h defines BIG REAL to be the largest
value representable as a realtype, SMALL REAL to be the smallest value representable as a realtype,
and UNIT ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within sundials, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “L” makes it a long double. For example,

#define A 1.0

#define B 1.0F

#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. sundials

uses the RCONST macro internally to declare all of its floating-point constants.
A user program which uses the type realtype and the RCONST macro to handle floating-point

constants is precision-independent except for any calls to precision-specific standard math library
functions. (Our example programs use both realtype and RCONST.) Users can, however, use the type
double, float, or long double in their code (assuming that this usage is consistent with the typedef
for realtype). Thus, a previously existing piece of ANSI C code can use sundials without modifying
the code to use realtype, so long as the sundials libraries use the correct precision (for details see
§A.1.2).

4.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

• ida.h, the header file for ida, which defines the several types and various constants, and includes
function prototypes.

Note that ida.h includes sundials types.h, which defines the types realtype and booleantype

and the constants FALSE and TRUE.
The calling program must also include an nvector implementation header file (see Chapter 6 for

details). For the nvector implementations that are included in the ida package, the corresponding
header files are:

• nvector serial.h, which defines the serial implementation nvector serial;

• nvector parallel.h, which defines the parallel MPI implementation, nvector parallel.

• nvector openmp.h, which defines the shared memory parallel openMP implementation,

• nvector pthreads.h, which defines the shared memory parallel Pthreads implementation.

Note that both these files include in turn the header file sundials nvector.h which defines the
abstract N Vector type.

Finally, a linear solver module header file is required. The header files corresponding to the various
linear solver options in ida are as follows:

• ida dense.h, which is used with the dense direct linear solver;
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• ida band.h, which is used with the band direct linear solver;

• ida lapack.h, which is used with Lapack implementations of dense or band direct linear solvers;

• ida klu.h, which is used with the KLU sparse direct linear solver;

• ida superlumt.h, which is used with the SuperLU MT threaded sparse direct linear solver;

• ida spgmr.h, which is used with the scaled, preconditioned GMRES Krylov linear solver spgmr;

• ida spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab Krylov linear solver
spbcg;

• ida sptfqmr.h, which is used with the scaled, preconditioned TFQMR Krylov solver sptfqmr.

The header files for the dense and banded linear solvers (both internal and Lapack) include the file
ida direct.h, which defines common functions. This in turn includes a file (sundials direct.h)
which defines the matrix type for these direct linear solvers (DlsMat), as well as various functions and
macros acting on such matrices.

The header files for the KLU and SuperLU MT sparse linear solvers include the file ida sparse.h,
which defines common functions. This in turn includes a file (sundials sparse.h) which defines the
matrix type for these sparse direct linear solvers (SlsMat), as well as various functions and macros
acting on such matrices.

The header files for the Krylov iterative solvers include ida spils.h which defines common func-
tions and which in turn includes a header file (sundials iterative.h) which enumerates the kind of
preconditioning and (for the spgmr solver only) the choices for the Gram-Schmidt process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the
idaFoodWeb kry p example (see [18]), preconditioning is done with a block-diagonal matrix. For this,
even though the idaspgmr linear solver is used, the header sundials dense.h is included for access
to the underlying generic dense linear solver.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of a
DAE IVP. Some steps are independent of the nvector implementation used; where this is not the
case, usage specifications are given for the two implementations provided with ida: steps marked [P]
correspond to nvector parallel, steps marked [O] correspond to nvector openmp, steps marked
[T] correspond to nvector pthreads, while steps marked [S] correspond to nvector serial.

1. [P] Initialize MPI

Call MPI Init(&argc, &argv) to initialize MPI if used by the user’s program, aside from the
internal use in nvector parallel. Here argc and argv are the command line argument counter
and array received by main.

2. Set problem dimensions

[S], [O], [T] Set N, the problem size N .

[P] Set Nlocal, the local vector length (the sub-vector length for this processor); N, the global
vector length (the problem size N , and the sum of all the values of Nlocal); and the active set of
processors.

[O], [T] Set num threads, the number of threads to use within the threaded vector functions.

Note: The variables N and Nlocal should be of type long int. The variable num threads should
be of type int.
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3. Set vectors of initial values

To set the vectors y0 and yp0 to initial values for y and ẏ, use functions defined by the particular
nvector implementation. For the two nvector implementations provided, if a realtype array
ydata already exists, containing the initial values of y, make the calls:

[S] y0 = N VMake Serial(N, ydata);

[O] y0 = N VMake OpenMP(N, num threads, ydata);

[T] y0 = N VMake Pthreads(N, num threads, ydata);

[P] y0 = N VMake Parallel(comm, Nlocal, N, ydata);

Otherwise, make the calls:

[S] y0 = N VNew Serial(N);

[O] y0 = N VNew OpenMP(N, num threads);

[T] y0 = N VNew Pthreads(N, num threads);

[P] y0 = N VNew Parallel(comm, Nlocal, N);

and load initial values into the structure defined by:

[S] NV DATA S(y0)

[O] NV DATA OMP(y0)

[T] NV DATA PT(y0)

[P] NV DATA P(y0)

Here comm is the MPI communicator, set in one of two ways: If a proper subset of active processors
is to be used, comm must be set by suitable MPI calls. Otherwise, to specify that all processors
are to be used, comm must be MPI COMM WORLD.

The initial conditions for ẏ are set similarly.

4. Create ida object

Call ida mem = IDACreate() to create the ida memory block. IDACreate returns a pointer to
the ida memory structure. See §4.5.1 for details. This void * pointer must then be passed as the
first argument to all subsequent ida function calls.

5. Initialize ida solver

Call IDAInit(...) to provide required problem specifications (residual function, initial time, and
initial conditions), allocate internal memory for ida, and initialize ida. IDAInit returns an error
flag to indicate success or an illegal argument value. See §4.5.1 for details.

6. Specify integration tolerances

Call IDASStolerances(...) or IDASVtolerances(...) to specify, respectively, a scalar relative
tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute
tolerances. Alternatively, call IDAWFtolerances to specify a function which sets directly the
weights used in evaluating WRMS vector norms. See §4.5.2 for details.

7. Set optional inputs

Optionally, call IDASet* functions to change from their default values any optional inputs that
control the behavior of ida. See §4.5.7.1 for details.

8. Attach linear solver module

Initialize the linear solver module with one of the following calls (for details see §4.5.3):

[S], [O], [T] flag = IDADense(...);
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[S], [O], [T] flag = IDABand(...);

[S], [O], [T] flag = IDALapackDense(...);

[S], [O], [T] flag = IDALapackBand(...);

[S], [O], [T] flag = IDAKLU(...);

[S], [O], [T] flag = IDASuperLUMT(...);

flag = IDASpgmr(...);

flag = IDASpbcg(...);

flag = IDASptfqmr(...);

9. Set linear solver optional inputs

Optionally, call IDA*Set* functions from the selected linear solver module to change optional
inputs specific to that linear solver. See §4.5.7.2 and §4.5.7.4 for details.

10. Correct initial values

Optionally, call IDACalcIC to correct the initial values y0 and yp0 passed to IDAInit. See §4.5.4.
Also see §4.5.7.5 for relevant optional input calls.

11. Specify rootfinding problem

Optionally, call IDARootInit to initialize a rootfinding problem to be solved during the integration
of the DAE system. See §4.5.5 for details, and see §4.5.7.6 for relevant optional input calls.

12. Advance solution in time

For each point at which output is desired, call flag = IDASolve(ida mem, tout, &tret, yret,

ypret, itask). Here itask specifies the return mode. The vector yret (which can be the same
as the vector y0 above) will contain y(t), while the vector ypret will contain ẏ(t). See §4.5.6 for
details.

13. Get optional outputs

Call IDA*Get* functions to obtain optional output. See §4.5.9 for details.

14. Deallocate memory for solution vectors

Upon completion of the integration, deallocate memory for the vectors yret and ypret by calling
the destructor function defined by the nvector implementation:

[S] N VDestroy Serial(yret);

[O] N VDestroy OpenMP(yret);

[T] N VDestroy Pthreads(yret);

[P] N VDestroy Parallel(yret);

and similarly for ypret.

15. Free solver memory

IDAFree(&ida mem) to free the memory allocated for ida.

16. [P] Finalize MPI

Call MPI Finalize() to terminate MPI.
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4.5 User-callable functions

This section describes the ida functions that are called by the user to set up and solve a DAE. Some of
these are required. However, starting with §4.5.7, the functions listed involve optional inputs/outputs
or restarting, and those paragraphs can be skipped for a casual use of ida. In any case, refer to §4.4
for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to
the error handler routine, which prints the message on stderr by default. However, the user can set
a file as error output or can provide his own error handler function (see §4.5.7.1).

4.5.1 IDA initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the DAE solution is complete, as it frees the ida memory block created and allocated by the first two
calls.

IDACreate

Call ida mem = IDACreate();

Description The function IDACreate instantiates an ida solver object.

Arguments IDACreate has no arguments.

Return value If successful, IDACreate returns a pointer to the newly created ida memory block (of
type void *). Otherwise it returns NULL.

IDAInit

Call flag = IDAInit(ida mem, res, t0, y0, yp0);

Description The function IDAInit provides required problem and solution specifications, allocates
internal memory, and initializes ida.

Arguments ida mem (void *) pointer to the ida memory block returned by IDACreate.

res (IDAResFn) is the C function which computes the residual function F in the
DAE. This function has the form res(t, yy, yp, resval, user data). For
full details see §4.6.1.

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

yp0 (N Vector) is the initial value of ẏ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAInit was successful.

IDA MEM NULL The ida memory block was not initialized through a previous call to
IDACreate.

IDA MEM FAIL A memory allocation request has failed.

IDA ILL INPUT An input argument to IDAInit has an illegal value.

Notes If an error occurred, IDAInit also sends an error message to the error handler function.

IDAFree

Call IDAFree(&ida mem);

Description The function IDAFree frees the pointer allocated by a previous call to IDACreate.

Arguments The argument is the pointer to the ida memory block (of type void *).

Return value The function IDAFree has no return value.
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4.5.2 IDA tolerance specification functions

One of the following three functions must be called to specify the integration tolerances (or directly
specify the weights used in evaluating WRMS vector norms). Note that this call must be made after
the call to IDAInit.

IDASStolerances

Call flag = IDASStolerances(ida mem, reltol, abstol);

Description The function IDASStolerances specifies scalar relative and absolute tolerances.

Arguments ida mem (void *) pointer to the ida memory block returned by IDACreate.

reltol (realtype) is the scalar relative error tolerance.

abstol (realtype) is the scalar absolute error tolerance.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASStolerances was successful.

IDA MEM NULL The ida memory block was not initialized through a previous call to
IDACreate.

IDA NO MALLOC The allocation function IDAInit has not been called.

IDA ILL INPUT One of the input tolerances was negative.

IDASVtolerances

Call flag = IDASVtolerances(ida mem, reltol, abstol);

Description The function IDASVtolerances specifies scalar relative tolerance and vector absolute
tolerances.

Arguments ida mem (void *) pointer to the ida memory block returned by IDACreate.

reltol (realtype) is the scalar relative error tolerance.

abstol (N Vector) is the vector of absolute error tolerances.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDASVtolerances was successful.

IDA MEM NULL The ida memory block was not initialized through a previous call to
IDACreate.

IDA NO MALLOC The allocation function IDAInit has not been called.

IDA ILL INPUT The relative error tolerance was negative or the absolute tolerance had
a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the state vector y.

IDAWFtolerances

Call flag = IDAWFtolerances(ida mem, efun);

Description The function IDAWFtolerances specifies a user-supplied function efun that sets the
multiplicative error weights Wi for use in the weighted RMS norm, which are normally
defined by Eq. (2.6).

Arguments ida mem (void *) pointer to the ida memory block returned by IDACreate.

efun (IDAEwtFn) is the C function which defines the ewt vector (see §4.6.3).

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAWFtolerances was successful.

IDA MEM NULL The ida memory block was not initialized through a previous call to
IDACreate.
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IDA NO MALLOC The allocation function IDAInit has not been called.

General advice on choice of tolerances. For many users, the appropriate choices for tolerance
values in reltol and abstol are a concern. The following pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol=10−4

means that errors are controlled to .01%. We do not recommend using reltol larger than 10−3.
On the other hand, reltol should not be so small that it is comparable to the unit roundoff of the
machine arithmetic (generally around 10−15).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute
errors when any components of the solution vector y may be so small that pure relative error control
is meaningless. For example, if y[i] starts at some nonzero value, but in time decays to zero, then
pure relative error control on y[i] makes no sense (and is overly costly) after y[i] is below some
noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs to be set to that noise level. If
the different components have different noise levels, then abstol should be a vector. See the example
idaRoberts dns in the ida package, and the discussion of it in the ida Examples document [18]. In
that problem, the three components vary between 0 and 1, and have different noise levels; hence the
abstol vector. It is impossible to give any general advice on abstol values, because the appropriate
noise levels are completely problem-dependent. The user or modeler hopefully has some idea as to
what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservatively, because they control the
error committed on each individual time step. The final (global) errors are a sort of accumulation of
those per-step errors. A good rule of thumb is to reduce the tolerances by a factor of .01 from the actual
desired limits on errors. So if you want .01% accuracy (globally), a good choice is reltol= 10−6. But
in any case, it is a good idea to do a few experiments with the tolerances to see how the computed
solution values vary as tolerances are reduced.

Advice on controlling unphysical negative values. In many applications, some components
in the true solution are always positive or non-negative, though at times very small. In the numerical
solution, however, small negative (hence unphysical) values can then occur. In most cases, these values
are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are
relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute
tolerances. Again this requires some knowledge of the noise level of these components, which may or
may not be different for different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative
numbers appear there (for the sake of avoiding a long explanation of them, if nothing else), then
eliminate them, but only in the context of the output medium. Then the internal values carried
by the solver are unaffected. Remember that a small negative value in yret returned by ida, with
magnitude comparable to abstol or less, is equivalent to zero as far as the computation is concerned.

(3) The user’s residual routine res should never change a negative value in the solution vector yy
to a non-negative value, as a ”solution” to this problem. This can cause instability. If the res routine
cannot tolerate a zero or negative value (e.g. because there is a square root or log of it), then the
offending value should be changed to zero or a tiny positive number in a temporary variable (not in
the input yy vector) for the purposes of computing F (t, y, ẏ).

(4) ida provides the option of enforcing positivity or non-negativity on components. Also, such
constraints can be enforced by use of the recoverable error return feature in the user-supplied residual
function. However, because these options involve some extra overhead cost, they should only be
exercised if the use of absolute tolerances to control the computed values is unsuccessful.

4.5.3 Linear solver specification functions

As previously explained, Newton iteration requires the solution of linear systems of the form (2.4).
There are seven ida linear solvers currently available for this task: idadense, idaband, idaklu,
idasuperlumt, idaspgmr, idaspbcg, and idasptfqmr.

The first two linear solvers are direct and derive their names from the type of approximation
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used for the Jacobian J = ∂F/∂y + α∂F/∂ẏ. idadense and idaband work with dense and banded
approximations to J , respectively. The sundials suite includes both internal implementations of
these two linear solvers and interfaces to Lapack implementations. Together, these linear solvers are
referred to as idadls (from Direct Linear Solvers).

The second two linear solvers are sparse direct solvers based on Gaussian elimination, and require
user-supplied routines to construct the Jacobian J = ∂F/∂y + α∂F/∂ẏ in compressed-sparse-column
format. The sundials suite does not include internal implementations of these solver libraries, instead
requiring compilation of sundials to link with existing installations of these libraries (if either is
missing, sundials will install without the corresponding interface routines). Together, these linear
solvers are referred to as idasls (from Sparse Linear Solvers).

The remaining three ida linear solvers, idaspgmr, idaspbcg, and idasptfqmr, are Krylov it-
erative solvers. The spgmr, spbcg, and sptfqmr in the names indicate the scaled preconditioned
GMRES, scaled preconditioned Bi-CGStab, and scaled preconditioned TFQMR methods, respectively.
Together, they are referred to as idaspils (from Scaled Preconditioned Iterative Linear Solvers).

When using any of the Krylov linear solvers, preconditioning (on the left) is permitted, and in fact
encouraged, for the sake of efficiency. A preconditioner matrix P must approximate the Jacobian J ,
at least crudely. For the specification of a preconditioner, see §4.5.7.4 and §4.6.

To specify an ida linear solver, after the call to IDACreate but before any calls to IDASolve, the
user’s program must call one of the functions IDADense/IDALapackDense, IDABand/IDALapackBand,
IDAKLU, IDASuperLUMT, IDASpgmr, IDASpbcg, or IDASptfqmr, as documented below. The first argu-
ment passed to these functions is the ida memory pointer returned by IDACreate. A call to one of
these functions links the main ida integrator to a linear solver and allows the user to specify param-
eters which are specific to a particular solver, such as the bandwidths in the idaband case. The use
of each of the linear solvers involves certain constants and possibly some macros, that are likely to
be needed in the user code. These are available in the corresponding header file associated with the
linear solver, as specified below.

In each case the linear solver module used by ida is actually built on top of a generic linear
system solver, which may be of interest in itself. These generic solvers, denoted dense, band, klu,
superlumt, spgmr, spbcg, and sptfqmr, are described separately in Chapter 8.

IDADense

Call flag = IDADense(ida mem, N);

Description The function IDADense selects the idadense linear solver and indicates the use of the
internal direct dense linear algebra functions.

The user’s main program must include the ida dense.h header file.

Arguments ida mem (void *) pointer to the ida memory block.

N (long int) problem dimension.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The idadense initialization was successful.

IDADLS MEM NULL The ida mem pointer is NULL.

IDADLS ILL INPUT The idadense solver is not compatible with the current nvector

module.

IDADLS MEM FAIL A memory allocation request failed.

Notes The idadense linear solver is not compatible with all implementations of the nvec-

tor module. Of the nvector modules provided by sundials, only nvector serial,
nvector openmp and nvector pthreads are compatible.

IDALapackDense

Call flag = IDALapackDense(ida mem, N);
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Description The function IDALapackDense selects the idadense linear solver and indicates the use
of Lapack functions.

The user’s main program must include the ida lapack.h header file.

Arguments ida mem (void *) pointer to the ida memory block.

N (int) problem dimension.

Return value The values of the returned flag (of type int) are identical to those of IDADense.

Notes Note that N is restricted to be of type int here, because of the corresponding type
restriction in the Lapack solvers.

IDABand

Call flag = IDABand(ida mem, N, mupper, mlower);

Description The function IDABand selects the idaband linear solver and indicates the use of the
internal direct band linear algebra functions.

The user’s main program must include the ida band.h header file.

Arguments ida mem (void *) pointer to the ida memory block.

N (long int) problem dimension.

mupper (long int) upper half-bandwidth of the problem Jacobian (or of the approx-
imation of it).

mlower (long int) lower half-bandwidth of the problem Jacobian (or of the approxi-
mation of it).

Return value The return value flag (of type int) is one of

IDABAND SUCCESS The idaband initialization was successful.

IDABAND MEM NULL The ida mem pointer is NULL.

IDABAND ILL INPUT The idaband solver is not compatible with the current nvector

module, or one of the Jacobian half-bandwidths is outside its valid
range (0 . . . N−1).

IDABAND MEM FAIL A memory allocation request failed.

Notes The idaband linear solver is not compatible with all implementations of the nvector

module. Of the two nvector modules provided with sundials, only nvector serial,
nvector openmp and nvector pthreads are compatible. The half-bandwidths are
to be set so that the nonzero locations (i, j) in the banded (approximate) Jacobian
satisfy −mlower ≤ j − i ≤ mupper.

IDALapackBand

Call flag = IDALapackBand(ida mem, N, mupper, mlower);

Description The function IDALapackBand selects the idaband linear solver and indicates the use of
Lapack functions.

The user’s main program must include the ida lapack.h header file.

Arguments The input arguments are identical to those of IDABand, except that N, mupper, and
mlower are of type int here.

Return value The values of the returned flag (of type int) are identical to those of IDABand.

Notes Note that N, mupper, and mlower are restricted to be of type int here, because of the
corresponding type restriction in the Lapack solvers.
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IDAKLU

Call flag = IDAKLU(ida mem, N, NNZ);

Description The function IDAKLU selects the idaklu linear solver and indicates the use of sparse
direct linear algebra functions.

The user’s main program must include the ida klu.h header file.

Arguments ida mem (void *) pointer to the ida memory block.

N (int) problem dimension.

NNZ (int) maximum number of nonzero entries in the system Jacobian.

Return value The return value flag (of type int) is one of:

IDASLS SUCCESS The idaklu initialization was successful.

IDASLS MEM NULL The idaode mem pointer is NULL.

IDASLS ILL INPUT The idaklu solver is not compatible with the current nvector

module.

IDASLS MEM FAIL A memory allocation request failed.

IDASLS PACKAGE FAIL A call to the KLU library returned a failure flag.

Notes The idaklu linear solver is not compatible with all implementations of the nvector

module. Of the nvector modules provided with sundials, only nvector serial,
nvector openmp and nvector pthreads are compatible.

IDASuperLUMT

Call flag = IDASuperLUMT(ida mem, num threads, N, NNZ);

Description The function IDASuperLUMT selects the idasuperlumt linear solver and indicates the
use of sparse direct linear algebra functions.

The user’s main program must include the ida superlumt.h header file.

Arguments ida mem (void *) pointer to the ida memory block.

num threads (int) the number of threads to use when factoring/solving the linear
systems. Note that SuperLU MT is thread-parallel only in the factorization
routine.

N (int) problem dimension.

NNZ (int) maximum number of nonzero entries in the system Jacobian.

Return value The return value flag (of type int) is one of:

IDASLS SUCCESS The idasuperlumt initialization was successful.

IDASLS MEM NULL The ida mem pointer is NULL.

IDASLS ILL INPUT The idasuperlumt solver is not compatible with the current nvec-

tor module.

IDASLS MEM FAIL A memory allocation request failed.

IDASLS PACKAGE FAIL A call to the SuperLU MT library returned a failure flag.

Notes The idasuperlumt linear solver is not compatible with all implementations of the
nvector module. Of the nvector modules provided with sundials, only nvec-

tor serial, nvector openmp and nvector pthreads are compatible.

Performance will significantly degrade if the user applies the SuperLU MT package !

compiled with PThreads while using the nvector openmp module. If a user wants to
use a threaded vector kernel with this thread-parallel solver, then SuperLU MT should
be compiled with openMP and the nvector openmp module should be used. Also,
note that the expected benefit of using the threaded vector kernel is minimal compared
to the potential benefit of the threaded solver, unless very long (greater than 100,000
entries) vectors are used.
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IDASpgmr

Call flag = IDASpgmr(ida mem, maxl);

Description The function IDASpgmr selects the idaspgmr linear solver.

The user’s main program must include the ida spgmr.h header file.

Arguments ida mem (void *) pointer to the ida memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value IDA SPILS MAXL= 5.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The idaspgmr initialization was successful.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS MEM FAIL A memory allocation request failed.

IDASpbcg

Call flag = IDASpbcg(ida mem, maxl);

Description The function IDASpbcg selects the idaspbcg linear solver.

The user’s main program must include the ida spbcgs.h header file.

Arguments ida mem (void *) pointer to the ida memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value IDA SPILS MAXL= 5.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The idaspbcg initialization was successful.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS MEM FAIL A memory allocation request failed.

IDASptfqmr

Call flag = IDASptfqmr(ida mem, maxl);

Description The function IDASptfqmr selects the idasptfqmr linear solver.

The user’s main program must include the ida sptfqmr.h header file.

Arguments ida mem (void *) pointer to the ida memory block.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value IDA SPILS MAXL= 5.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The idasptfqmr initialization was successful.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS MEM FAIL A memory allocation request failed.

4.5.4 Initial condition calculation function

IDACalcIC calculates corrected initial conditions for the DAE system for certain index-one problems
including a class of systems of semi-implicit form. (See §2.1 and Ref. [6].) It uses Newton iteration
combined with a linesearch algorithm. Calling IDACalcIC is optional. It is only necessary when
the initial conditions do not satisfy the given system. Thus if y0 and yp0 are known to satisfy
F (t0, y0, ẏ0) = 0, then a call to IDACalcIC is generally not necessary.

A call to the function IDACalcIC must be preceded by successful calls to IDACreate and IDAInit

(or IDAReInit), and by a successful call to the linear system solver specification function. The call to
IDACalcIC should precede the call(s) to IDASolve for the given problem.
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IDACalcIC

Call flag = IDACalcIC(ida mem, icopt, tout1);

Description The function IDACalcIC corrects the initial values y0 and yp0 at time t0.

Arguments ida mem (void *) pointer to the ida memory block.

icopt (int) is one of the following two options for the initial condition calculation.

icopt=IDA YA YDP INIT directs IDACalcIC to compute the algebraic compo-
nents of y and differential components of ẏ, given the differential components
of y. This option requires that the N Vector id was set through IDASetId,
specifying the differential and algebraic components.

icopt=IDA Y INIT directs IDACalcIC to compute all components of y, given
ẏ. In this case, id is not required.

tout1 (realtype) is the first value of t at which a solution will be requested (from
IDASolve). This value is needed here only to determine the direction of inte-
gration and rough scale in the independent variable t.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS IDASolve succeeded.

IDA MEM NULL The argument ida mem was NULL.

IDA NO MALLOC The allocation function IDAInit has not been called.

IDA ILL INPUT One of the input arguments was illegal.

IDA LSETUP FAIL The linear solver’s setup function failed in an unrecoverable man-
ner.

IDA LINIT FAIL The linear solver’s initialization function failed.

IDA LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable man-
ner.

IDA BAD EWT Some component of the error weight vector is zero (illegal), either
for the input value of y0 or a corrected value.

IDA FIRST RES FAIL The user’s residual function returned a recoverable error flag on
the first call, but IDACalcIC was unable to recover.

IDA RES FAIL The user’s residual function returned a nonrecoverable error flag.

IDA NO RECOVERY The user’s residual function, or the linear solver’s setup or solve
function had a recoverable error, but IDACalcIC was unable to
recover.

IDA CONSTR FAIL IDACalcIC was unable to find a solution satisfying the inequality
constraints.

IDA LINESEARCH FAIL The linesearch algorithm failed to find a solution with a step
larger than steptol in weighted RMS norm.

IDA CONV FAIL IDACalcIC failed to get convergence of the Newton iterations.

Notes All failure return values are negative and therefore a test flag < 0 will trap all
IDACalcIC failures.

Note that IDACalcIC will correct the values of y(t0) and ẏ(t0) which were specified
in the previous call to IDAInit or IDAReInit. To obtain the corrected values, call
IDAGetconsistentIC (see §4.5.9.2).

4.5.5 Rootfinding initialization function

While integrating the IVP, ida has the capability of finding the roots of a set of user-defined functions.
To activate the rootfinding algorithm, call the following function. This is normally called only once,
prior to the first call to IDASolve, but if the rootfinding problem is to be changed during the solution,
IDARootInit can also be called prior to a continuation call to IDASolve.
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IDARootInit

Call flag = IDARootInit(ida mem, nrtfn, g);

Description The function IDARootInit specifies that the roots of a set of functions gi(t, y, ẏ) are to
be found while the IVP is being solved.

Arguments ida mem (void *) pointer to the ida memory block returned by IDACreate.

nrtfn (int) is the number of root functions gi.

g (IDARootFn) is the C function which defines the nrtfn functions gi(t, y, ẏ)
whose roots are sought. See §4.6.4 for details.

Return value The return value flag (of type int) is one of

IDA SUCCESS The call to IDARootInit was successful.

IDA MEM NULL The ida mem argument was NULL.

IDA MEM FAIL A memory allocation failed.

IDA ILL INPUT The function g is NULL, but nrtfn> 0.

Notes If a new IVP is to be solved with a call to IDAReInit, where the new IVP has no
rootfinding problem but the prior one did, then call IDARootInit with nrtfn= 0.

4.5.6 IDA solver function

This is the central step in the solution process, the call to perform the integration of the DAE. One
of the input arguments (itask) specifies one of two modes as to where ida is to return a solution.
But these modes are modified if the user has set a stop time (with IDASetStopTime) or requested
rootfinding.

IDASolve

Call flag = IDASolve(ida mem, tout, &tret, yret, ypret, itask);

Description The function IDASolve integrates the DAE over an interval in t.

Arguments ida mem (void *) pointer to the ida memory block.

tout (realtype) the next time at which a computed solution is desired.

tret (realtype) the time reached by the solver (output).

yret (N Vector) the computed solution vector y.

ypret (N Vector) the computed solution vector ẏ.

itask (int) a flag indicating the job of the solver for the next user step. The
IDA NORMAL task is to have the solver take internal steps until it has reached or
just passed the user specified tout parameter. The solver then interpolates in
order to return approximate values of y(tout) and ẏ(tout). The IDA ONE STEP

option tells the solver to just take one internal step and return the solution at
the point reached by that step.

Return value IDASolve returns vectors yret and ypret and a corresponding independent variable
value t = tret, such that (yret, ypret) are the computed values of (y(t), ẏ(t)).

In IDA NORMAL mode with no errors, tret will be equal to tout and yret = y(tout),
ypret = ẏ(tout).

The return value flag (of type int) will be one of the following:

IDA SUCCESS IDASolve succeeded.

IDA TSTOP RETURN IDASolve succeeded by reaching the stop point specified through
the optional input function IDASetStopTime.

IDA ROOT RETURN IDASolve succeeded and found one or more roots. In this case,
tret is the location of the root. If nrtfn > 1, call IDAGetRootInfo
to see which gi were found to have a root. See §4.5.9.3 for more
information.
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IDA MEM NULL The ida mem argument was NULL.

IDA ILL INPUT One of the inputs to IDASolve was illegal, or some other input
to the solver was either illegal or missing. The latter category
includes the following situations: (a) The tolerances have not been
set. (b) A component of the error weight vector became zero during
internal time-stepping. (c) The linear solver initialization function
(called by the user after calling IDACreate) failed to set the linear
solver-specific lsolve field in ida mem. (d) A root of one of the
root functions was found both at a point t and also very near t. In
any case, the user should see the printed error message for details.

IDA TOO MUCH WORK The solver took mxstep internal steps but could not reach tout.
The default value for mxstep is MXSTEP DEFAULT = 500.

IDA TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

IDA ERR FAIL Error test failures occurred too many times (MXNEF = 10) during
one internal time step or occurred with |h| = hmin.

IDA CONV FAIL Convergence test failures occurred too many times (MXNCF = 10)
during one internal time step or occurred with |h| = hmin.

IDA LINIT FAIL The linear solver’s initialization function failed.

IDA LSETUP FAIL The linear solver’s setup function failed in an unrecoverable man-
ner.

IDA LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

IDA CONSTR FAIL The inequality constraints were violated and the solver was unable
to recover.

IDA REP RES ERR The user’s residual function repeatedly returned a recoverable error
flag, but the solver was unable to recover.

IDA RES FAIL The user’s residual function returned a nonrecoverable error flag.

IDA RTFUNC FAIL The rootfinding function failed.

Notes The vector yret can occupy the same space as the vector y0 of initial conditions that
was passed to IDAInit, and the vector ypret can occupy the same space as yp0.

In the IDA ONE STEP mode, tout is used on the first call only, and only to get the
direction and rough scale of the independent variable.

All failure return values are negative and therefore a test flag < 0 will trap all IDASolve
failures.

On any error return in which one or more internal steps were taken by IDASolve, the
returned values of tret, yret, and ypret correspond to the farthest point reached in
the integration. On all other error returns, these values are left unchanged from the
previous IDASolve return.

4.5.7 Optional input functions

There are numerous optional input parameters that control the behavior of the ida solver. ida provides
functions that can be used to change these optional input parameters from their default values. Table
4.1 lists all optional input functions in ida which are then described in detail in the remainder of this
section. For the most casual use of ida, the reader can skip to §4.6.

We note that, on an error return, all these functions also send an error message to the error handler
function. We also note that all error return values are negative, so a test flag < 0 will catch any
error.
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Table 4.1: Optional inputs for ida, idadls, idasls, and idaspils

Optional input Function name Default
IDA main solver

Pointer to an error file IDASetErrFile stderr

Error handler function IDASetErrHandlerFn internal fn.
User data IDASetUserData NULL

Maximum order for BDF method IDASetMaxOrd 5
Maximum no. of internal steps before tout IDASetMaxNumSteps 500
Initial step size IDASetInitStep estimated
Maximum absolute step size IDASetMaxStep ∞
Value of tstop IDASetStopTime ∞
Maximum no. of error test failures IDASetMaxErrTestFails 10
Maximum no. of nonlinear iterations IDASetMaxNonlinIters 4
Maximum no. of convergence failures IDASetMaxConvFails 10
Maximum no. of error test failures IDASetMaxErrTestFails 7
Coeff. in the nonlinear convergence test IDASetNonlinConvCoef 0.33
Suppress alg. vars. from error test IDASetSuppressAlg FALSE

Variable types (differential/algebraic) IDASetId NULL

Inequality constraints on solution IDASetConstraints NULL

Direction of zero-crossing IDASetRootDirection both
Disable rootfinding warnings IDASetNoInactiveRootWarn none

IDA initial conditions calculation
Coeff. in the nonlinear convergence test IDASetNonlinConvCoefIC 0.0033
Maximum no. of steps IDASetMaxNumStepsIC 5
Maximum no. of Jacobian/precond. evals. IDASetMaxNumJacsIC 4
Maximum no. of Newton iterations IDASetMaxNumItersIC 10
Turn off linesearch IDASetLineSearchOffIC FALSE

Lower bound on Newton step IDASetStepToleranceIC uround2/3

IDADLS linear solvers
Dense Jacobian function IDADlsSetDenseJacFn DQ
Band Jacobian function IDADlsSetBandJacFn DQ

IDASLS linear solvers
Sparse Jacobian function IDASlsSetSparseJacFn none
Sparse matrix ordering algorithm IDAKLUSetOrdering 1 for COLAMD
Sparse matrix ordering algorithm IDASuperLUMTSetOrdering 3 for COLAMD

IDASPILS linear solvers
Preconditioner functions IDASpilsSetPreconditioner NULL, NULL
Jacobian-times-vector function IDASpilsSetJacTimesVecFn DQ
Factor in linear convergence test IDASpilsSetEpsLin 0.05
Factor in DQ increment calculation IDASpilsSetIncrementFactor 1.0
Maximum no. of restarts (idaspgmr) IDASpilsSetMaxRestarts 5
Type of Gram-Schmidt orthogonalization (a) IDASpilsSetGSType classical GS
Maximum Krylov subspace size(b) IDASpilsSetMaxl 5

(a) Only for idaspgmr
(b) Only for idaspbcg and idasptfqmr
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4.5.7.1 Main solver optional input functions

The calls listed here can be executed in any order. However, if the user’s program calls either
IDASetErrFile or IDASetErrHandlerFn, then that call should appear first, in order to take effect for
any later error message.

IDASetErrFile

Call flag = IDASetErrFile(ida mem, errfp);

Description The function IDASetErrFile specifies the pointer to the file where all ida messages
should be directed when the default ida error handler function is used.

Arguments ida mem (void *) pointer to the ida memory block.

errfp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value for errfp is stderr.

Passing a value NULL disables all future error message output (except for the case in
which the ida memory pointer is NULL). This use of IDASetErrFile is strongly discour-
aged.

If IDASetErrFile is to be called, it should be called before any other optional input !

functions, in order to take effect for any later error message.

IDASetErrHandlerFn

Call flag = IDASetErrHandlerFn(ida mem, ehfun, eh data);

Description The function IDASetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments ida mem (void *) pointer to the ida memory block.

ehfun (IDAErrHandlerFn) is the user’s C error handler function (see §4.6.2).

eh data (void *) pointer to user data passed to ehfun every time it is called.

Return value The return value flag (of type int) is one of

IDA SUCCESS The function ehfun and data pointer eh data have been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes Error messages indicating that the ida solver memory is NULL will always be directed
to stderr.

IDASetUserData

Call flag = IDASetUserData(ida mem, user data);

Description The function IDASetUserData specifies the user data block user data and attaches it
to the main ida memory block.

Arguments ida mem (void *) pointer to the ida memory block.

user data (void *) pointer to the user data.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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Notes If specified, the pointer to user data is passed to all user-supplied functions that have
it as an argument. Otherwise, a NULL pointer is passed.

If user data is needed in user preconditioner functions, the call to IDASetUserData !

must be made before the call to specify the linear solver.

IDASetMaxOrd

Call flag = IDASetMaxOrd(ida mem, maxord);

Description The function IDASetMaxOrd specifies the maximum order of the linear multistep method.

Arguments ida mem (void *) pointer to the ida memory block.

maxord (int) value of the maximum method order. This must be positive.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The input value maxord is ≤ 0, or larger than its previous value.

Notes The default value is 5. If the input value exceeds 5, the value 5 will be used. Since
maxord affects the memory requirements for the internal ida memory block, its value
cannot be increased past its previous value.

IDASetMaxNumSteps

Call flag = IDASetMaxNumSteps(ida mem, mxsteps);

Description The function IDASetMaxNumSteps specifies the maximum number of steps to be taken
by the solver in its attempt to reach the next output time.

Arguments ida mem (void *) pointer to the ida memory block.

mxsteps (long int) maximum allowed number of steps.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes Passing mxsteps = 0 results in ida using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

IDASetInitStep

Call flag = IDASetInitStep(ida mem, hin);

Description The function IDASetInitStep specifies the initial step size.

Arguments ida mem (void *) pointer to the ida memory block.

hin (realtype) value of the initial step size to be attempted. Pass 0.0 to have ida

use the default value.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes By default, ida estimates the initial step as the solution of ‖hẏ‖WRMS = 1/2, with an
added restriction that |h| ≤ .001|tout - t0|.
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IDASetMaxStep

Call flag = IDASetMaxStep(ida mem, hmax);

Description The function IDASetMaxStep specifies the maximum absolute value of the step size.

Arguments ida mem (void *) pointer to the ida memory block.

hmax (realtype) maximum absolute value of the step size.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT Either hmax is not positive or it is smaller than the minimum allowable
step.

Notes Pass hmax= 0 to obtain the default value ∞.

IDASetStopTime

Call flag = IDASetStopTime(ida mem, tstop);

Description The function IDASetStopTime specifies the value of the independent variable t past
which the solution is not to proceed.

Arguments ida mem (void *) pointer to the ida memory block.

tstop (realtype) value of the independent variable past which the solution should
not proceed.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The value of tstop is not beyond the current t value, tn.

Notes The default, if this routine is not called, is that no stop time is imposed.

IDASetMaxErrTestFails

Call flag = IDASetMaxErrTestFails(ida mem, maxnef);

Description The function IDASetMaxErrTestFails specifies the maximum number of error test
failures in attempting one step.

Arguments ida mem (void *) pointer to the ida memory block.

maxnef (int) maximum number of error test failures allowed on one step (> 0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is 7.

IDASetMaxNonlinIters

Call flag = IDASetMaxNonlinIters(ida mem, maxcor);

Description The function IDASetMaxNonlinIters specifies the maximum number of nonlinear solver
iterations at one step.

Arguments ida mem (void *) pointer to the ida memory block.

maxcor (int) maximum number of nonlinear solver iterations allowed on one step
(> 0).

Return value The return value flag (of type int) is one of
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IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is 3.

IDASetMaxConvFails

Call flag = IDASetMaxConvFails(ida mem, maxncf);

Description The function IDASetMaxConvFails specifies the maximum number of nonlinear solver
convergence failures at one step.

Arguments ida mem (void *) pointer to the ida memory block.

maxncf (int) maximum number of allowable nonlinear solver convergence failures on
one step (> 0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is 10.

IDASetNonlinConvCoef

Call flag = IDASetNonlinConvCoef(ida mem, nlscoef);

Description The function IDASetNonlinConvCoef specifies the safety factor in the nonlinear con-
vergence test; see Chapter 2, Eq. (2.7).

Arguments ida mem (void *) pointer to the ida memory block.

nlscoef (realtype) coefficient in nonlinear convergence test (> 0.0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The value of nlscoef is <= 0.0.

Notes The default value is 0.33.

IDASetSuppressAlg

Call flag = IDASetSuppressAlg(ida mem, suppressalg);

Description The function IDASetSuppressAlg indicates whether or not to suppress algebraic vari-
ables in the local error test.

Arguments ida mem (void *) pointer to the ida memory block.

suppressalg (booleantype) indicates whether to suppress (TRUE) or not (FALSE) the
algebraic variables in the local error test.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is FALSE.

If suppressalg=TRUE is selected, then the id vector must be set (through IDASetId)
to specify the algebraic components.

In general, the use of this option (with suppressalg = TRUE) is discouraged when solv-
ing DAE systems of index 1, whereas it is generally encouraged for systems of index 2
or more. See pp. 146-147 of Ref. [3] for more on this issue.
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IDASetId

Call flag = IDASetId(ida mem, id);

Description The function IDASetId specifies algebraic/differential components in the y vector.

Arguments ida mem (void *) pointer to the ida memory block.

id (N Vector) state vector. A value of 1.0 indicates a differential variable, while
0.0 indicates an algebraic variable.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The vector id is required if the algebraic variables are to be suppressed from the lo-
cal error test (see IDASetSuppressAlg) or if IDACalcIC is to be called with icopt =
IDA YA YDP INIT (see §4.5.4).

IDASetConstraints

Call flag = IDASetConstraints(ida mem, constraints);

Description The function IDASetConstraints specifies a vector defining inequality constraints for
each component of the solution vector y.

Arguments ida mem (void *) pointer to the ida memory block.

constraints (N Vector) vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on yi.

1.0 then yi will be constrained to be yi ≥ 0.0.

−1.0 then yi will be constrained to be yi ≤ 0.0.

2.0 then yi will be constrained to be yi > 0.0.

−2.0 then yi will be constrained to be yi < 0.0.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The constraints vector contains illegal values.

Notes The presence of a non-NULL constraints vector that is not 0.0 in all components will
cause constraint checking to be performed. However, a call with 0.0 in all components
of constraints will result in an illegal input return.

4.5.7.2 Dense/band direct linear solvers optional input functions

The idadense solver needs a function to compute a dense approximation to the Jacobian matrix
J(t, y, ẏ). This function must be of type IDADlsDenseJacFn. The user can supply his/her own dense
Jacobian function, or use the default internal difference quotient approximation that comes with the
idadense solver. To specify a user-supplied Jacobian function djac, idadense provides the function
IDADlsSetDenseJacFn. The idadense solver passes the pointer user data to the dense Jacobian
function. This allows the user to create an arbitrary structure with relevant problem data and access
it during the execution of the user-supplied Jacobian function, without using global data in the
program. The pointer user data may be specified through IDASetUserData.

IDADlsSetDenseJacFn

Call flag = IDADlsSetDenseJacFn(ida mem, djac);

Description The function IDADlsSetDenseJacFn specifies the dense Jacobian approximation func-
tion to be used.
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Arguments ida mem (void *) pointer to the ida memory block.

djac (IDADlsDenseJacFn) user-defined dense Jacobian approximation function.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The optional value has been successfully set.

IDADLS MEM NULL The ida mem pointer is NULL.

IDADLS LMEM NULL The idadense linear solver has not been initialized.

Notes By default, idadense uses an internal difference quotient function. If NULL is passed to
djac, this default function is used.

The function type IDADlsDenseJacFn is described in §4.6.5.

The idaband solver needs a function to compute a banded approximation to the Jacobian matrix
J(t, y, ẏ). This function must be of type IDADlsBandJacFn. The user can supply his/her own banded
Jacobian approximation function, or use the default difference quotient function that comes with the
idaband solver. To specify a user-supplied Jacobian function bjac, idaband provides the function
IDADlsSetBandJacFn. The idaband solver passes the pointer user data to the banded Jacobian
approximation function. This allows the user to create an arbitrary structure with relevant problem
data and access it during the execution of the user-supplied Jacobian function, without using global
data in the program. The pointer user data may be specified through IDASetUserData.

IDADlsSetBandJacFn

Call flag = IDADlsSetBandJacFn(ida mem, bjac);

Description The function IDADlsSetBandJacFn specifies the banded Jacobian approximation func-
tion to be used.

Arguments ida mem (void *) pointer to the ida memory block.

bjac (IDADlsBandJacFn) user-defined banded Jacobian approximation function.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The optional value has been successfully set.

IDADLS MEM NULL The ida mem pointer is NULL.

IDADLS LMEM NULL The idaband linear solver has not been initialized.

Notes By default, idaband uses an internal difference quotient function. If NULL is passed to
bjac, this default function is used.

The function type IDADlsBandJacFn is described in §4.6.6.

4.5.7.3 Sparse direct linear solvers optional input functions

The idaklu and idasuperlumt solvers require a function to compute a compressed-sparse-column
approximation ot the Jacobian matrix J(t, y, ẏ). This function must be of type IDASlsSparseJacFn.
The user must supply a custom sparse Jacobian function since a difference quotient approximation
would not leverage the underlying sparse matrix structure of the problem. To specify a user-supplied
Jacobian function sjac, idaklu and idasuperlumt provide the function IDASlsSetSparseJacFn.
The idaklu and idasuperlumt solvers pass the pointer user data to the sparse Jacobian function.
This mechanism allows the user to create an arbitrary structure with relevant problem data and
access it during the execution of the user-supplied Jacobian function, without using global data in the
program. The pointer user data may be specified through IDASetUserData.

IDASlsSetSparseJacFn

Call flag = IDASlsSetSparseJacFn(ida mem, sjac);

Description The function IDASlsSetSparseJacFn specifies the sparse Jacobian approximation func-
tion to be used.
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Arguments ida mem (void *) pointer to the ida memory block.

sjac (IDASlsSparseJacFn) user-defined sparse Jacobian approximation function.

Return value The return value flag (of type int) is one of

IDASLS SUCCESS The optional value has been successfully set.

IDASLS MEM NULL The ida mem pointer is NULL.

IDASLS LMEM NULL The idaklu or idasuperlumt linear solver has not been initialized.

Notes The function type IDASlsSparseJacFn is described in §4.6.7.

When using a sparse direct solver, there may be instances when the number of state variables does
not change, but the number of nonzeroes in the Jacobian does change. In this case, for the cvklu

solver, we provide the following reinitialization function. This function reinitializes the Jacobian
matrix memory for the new number of nonzeroes and sets flags for a new factorization (symbolic and
numeric) to be conducted at the next solver setup call. This routine is useful in the cases where the
number of nonzeroes has changed, or where the structure of the linear system has changed, requiring
a new symbolic (and numeric) factorization.

IDAKLUReInit

Call flag = IDAKLUReInit(ida mem, n, nnz, reinit type);

Description The function IDAKLUReInit reinitializes Jacobian matrix memory and flags for new
symbolic and numeric KLU factorizations.

Arguments ida mem (void *) pointer to the ida memory block.

n (int) number of state variables in the system.

nnz (int) number of nonzeroes in the Jacobian matrix.

reinit type (int) type of reinitialization:

1 The Jacobian matrix will be destroyed and a new one will be allocated
based on the nnz value passed to this call. New symbolic and numeric
factorizations will be completed at the next solver setup.

2 Only symbolic and numeric factorizations will be completed. It is assumed
that the Jacobian size has not exceeded the size of nnz given in the prior
call to idaklu.

Return value The return value flag (of type int) is one of

IDASLS SUCCESS The reinitialization succeeded.

IDASLS MEM NULL The ida mem pointer is NULL.

IDASLS LMEM NULL The idaklu linear solver has not been initialized.

IDASLS ILL INPUT The given reinit type has an illegal value.

IDASLS MEM FAIL A memory allocation failed.

Notes The default value for reinit type is 2.

Both the idaklu and idasuperlumt solvers can apply reordering algorithms to minimize fill-in for the
resulting sparse LU decomposition internal to the solver. The approximate minimal degree ordering
for nonsymmetric matrices given by the COLAMD algorithm is the default algorithm used within both
solvers, but alternate orderings may be chosen through one of the following two functions. The input
values to these functinos are the numeric values used in the respective packages, and the user-supplied
value will be passed directly to the package.

IDAKLUSetOrdering

Call flag = IDAKLUSetOrdering(ida mem, ordering choice);

Description The function IDAKLUSetOrdering specifies the ordering algorithm used by idaklu for
reducing fill.
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Arguments ida mem (void *) pointer to the ida memory block.

ordering choice (int) flag denoting algorithm choice:

0 AMD

1 COLAMD

2 natural ordering

Return value The return value flag (of type int) is one of

IDASLS SUCCESS The optional value has been successfully set.

IDASLS MEM NULL The ida mem pointer is NULL.

IDASLS ILL INPUT The supplied value of ordering choice is illegal.

Notes The default ordering choice is 1 for COLAMD.

IDASuperLUMTSetOrdering

Call flag = IDASuperLUMTSetOrdering(ida mem, ordering choice);

Description The function IDASuperLUMTSetOrdering specifies the ordering algorithm used by ida-

superlumt for reducing fill.

Arguments ida mem (void *) pointer to the ida memory block.

ordering choice (int) flag denoting algorithm choice:

0 natural ordering

1 minimal degree ordering on JT J

2 minimal degree ordering on JT + J

3 COLAMD

Return value The return value flag (of type int) is one of

IDASLS SUCCESS The optional value has been successfully set.

IDASLS MEM NULL The ida mem pointer is NULL.

IDASLS ILL INPUT The supplied value of ordering choice is illegal.

Notes The default ordering choice is 3 for COLAMD.

4.5.7.4 Iterative linear solvers optional input functions

If preconditioning is to be done with one of the idaspils linear solvers, then the user must supply a pre-
conditioner solve function psolve and specify its name through a call to IDASpilsSetPreconditioner.
The evaluation and preprocessing of any Jacobian-related data needed by the user’s preconditioner

solve function is done in the optional user-supplied function psetup. Both of these functions are
fully specified in §4.6. If used, the name of the psetup function should be specified in the call to
IDASpilsSetPreconditioner.

The pointer user data received through IDASetUserData (or a pointer to NULL if user data was
not specified) is passed to the preconditioner psetup and psolve functions. This allows the user to
create an arbitrary structure with relevant problem data and access it during the execution of the
user-supplied preconditioner functions without using global data in the program.

The idaspils solvers require a function to compute an approximation to the product between
the Jacobian matrix J(t, y) and a vector v. The user can supply his/her own Jacobian-times-vector
approximation function, or use the default internal difference quotient function that comes with the
idaspils solvers. A user-defined Jacobian-vector function must be of type IDASpilsJacTimesVecFn

and can be specified through a call to IDASpilsSetJacTimesVecFn (see §4.6.8 for specification details).
As with the preconditioner user-supplied functions, a pointer to the user-defined data structure,
user data, specified through IDASetUserData (or a NULL pointer otherwise) is passed to the Jacobian-
times-vector function jtimes each time it is called.
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IDASpilsSetPreconditioner

Call flag = IDASpilsSetPreconditioner(ida mem, psetup, psolve);

Description The function IDASpilsSetPreconditioner specifies the preconditioner setup and solve
functions.

Arguments ida mem (void *) pointer to the ida memory block.

psetup (IDASpilsPrecSetupFn) user-defined preconditioner setup function. Pass NULL
if no setup is to be done.

psolve (IDASpilsPrecSolveFn) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional values have been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

Notes The function type IDASpilsPrecSolveFn is described in §4.6.9. The function type
IDASpilsPrecSetupFn is described in §4.6.10.

IDASpilsSetJacTimesVecFn

Call flag = IDASpilsSetJacTimesVecFn(ida mem, jtimes);

Description The function IDASpilsSetJacTimesFn specifies the Jacobian-vector function to be used.

Arguments ida mem (void *) pointer to the ida memory block.

jtimes (IDASpilsJacTimesVecFn) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

Notes By default, the idaspils solvers use the difference quotient function. If NULL is passed
to jtimes, this default function is used.

The function type IDASpilsJacTimesVecFn is described in §4.6.8.

IDASpilsSetGSType

Call flag = IDASpilsSetGSType(ida mem, gstype);

Description The function IDASpilsSetGSType specifies the Gram-Schmidt orthogonalization to be
used. This must be one of the enumeration constants MODIFIED GS or CLASSICAL GS.
These correspond to using modified Gram-Schmidt and classical Gram-Schmidt, respec-
tively.

Arguments ida mem (void *) pointer to the ida memory block.

gstype (int) type of Gram-Schmidt orthogonalization.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASPILS ILL INPUT The value of gstype is not valid.

Notes The default value is MODIFIED GS.

This option is available only for the idaspgmr linear solver. !
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IDASpilsSetMaxRestarts

Call flag = IDASpilsSetMaxRestarts(ida mem, maxrs);

Description The function IDASpilsSetMaxRestarts specifies the maximum number of restarts to
be used in the GMRES algorithm.

Arguments ida mem (void *) pointer to the ida memory block.

maxrs (int) maximum number of restarts.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASPILS ILL INPUT The maxrs argument is negative.

Notes The default value is 5. Pass maxrs = 0 to specify no restarts.

This option is available only for the idaspgmr linear solver.!

IDASpilsSetEpsLin

Call flag = IDASpilsSetEpsLin(ida mem, eplifac);

Description The function IDASpilsSetEpsLin specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the Newton iteration test constant. (See
Chapter 2).

Arguments ida mem (void *) pointer to the ida memory block.

eplifac (realtype) linear convergence safety factor (>= 0.0).

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASPILS ILL INPUT The value of eplifac is negative.

Notes The default value is 0.05.

Passing a value eplifac= 0.0 also indicates using the default value.

IDASpilsSetIncrementFactor

Call flag = IDASpilsSetIncrementFactor(ida mem, dqincfac);

Description The function IDASpilsSetIncrementFactor specifies a factor in the increments to y
used in the difference quotient approximations to the Jacobian-vector products. (See
Chapter 2). The increment used to approximate Jv will be σ = dqincfac/‖v‖.

Arguments ida mem (void *) pointer to the ida memory block.

dqincfac (realtype) difference quotient increment factor.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASPILS ILL INPUT The increment factor was non-positive.

Notes The default value is dqincfac = 1.0.
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IDASpilsSetMaxl

Call flag = IDASpilsSetMaxl(ida mem, maxl);

Description The function IDASpilsSetMaxl resets the maximum Krylov subspace dimension for the
Bi-CGStab or TFQMR methods.

Arguments ida mem (void *) pointer to the ida memory block.

maxl (int) maximum dimension of the Krylov subspace.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

Notes The maximum subspace dimension is initially specified in the call to the linear solver
specification function (see §4.5.3). This function call is needed only if maxl is being
changed from its previous value.

An input value maxl ≤ 0 will result in the default value, 5.

This option is available only for the idaspbcg and idasptfqmr linear solvers. !

4.5.7.5 Initial condition calculation optional input functions

The following functions can be called just prior to calling IDACalcIC to set optional inputs controlling
the initial condition calculation.

IDASetNonlinConvCoefIC

Call flag = IDASetNonlinConvCoefIC(ida mem, epiccon);

Description The function IDASetNonlinConvCoefIC specifies the positive constant in the Newton
iteration convergence test within the initial condition calculation.

Arguments ida mem (void *) pointer to the ida memory block.

epiccon (realtype) coefficient in the Newton convergence test (> 0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The epiccon factor is <= 0.0.

Notes The default value is 0.01 · 0.33.

This test uses a weighted RMS norm (with weights defined by the tolerances). For
new initial value vectors y and ẏ to be accepted, the norm of J−1F (t0, y, ẏ) must be ≤
epiccon, where J is the system Jacobian.

IDASetMaxNumStepsIC

Call flag = IDASetMaxNumStepsIC(ida mem, maxnh);

Description The function IDASetMaxNumStepsIC specifies the maximum number of steps allowed
when icopt=IDA YA YDP INIT in IDACalcIC, where h appears in the system Jacobian,
J = ∂F/∂y + (1/h)∂F/∂ẏ.

Arguments ida mem (void *) pointer to the ida memory block.

maxnh (int) maximum allowed number of values for h.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.
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IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT maxnh is non-positive.

Notes The default value is 5.

IDASetMaxNumJacsIC

Call flag = IDASetMaxNumJacsIC(ida mem, maxnj);

Description The function IDASetMaxNumJacsIC specifies the maximum number of the approximate
Jacobian or preconditioner evaluations allowed when the Newton iteration appears to
be slowly converging.

Arguments ida mem (void *) pointer to the ida memory block.

maxnj (int) maximum allowed number of Jacobian or preconditioner evaluations.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT maxnj is non-positive.

Notes The default value is 4.

IDASetMaxNumItersIC

Call flag = IDASetMaxNumItersIC(ida mem, maxnit);

Description The function IDASetMaxNumItersIC specifies the maximum number of Newton itera-
tions allowed in any one attempt to solve the initial conditions calculation problem.

Arguments ida mem (void *) pointer to the ida memory block.

maxnit (int) maximum number of Newton iterations.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT maxnit is non-positive.

Notes The default value is 10.

IDASetLineSearchOffIC

Call flag = IDASetLineSearchOffIC(ida mem, lsoff);

Description The function IDASetLineSearchOffIC specifies whether to turn on or off the linesearch
algorithm.

Arguments ida mem (void *) pointer to the ida memory block.

lsoff (booleantype) a flag to turn off (TRUE) or keep (FALSE) the linesearch algo-
rithm.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The default value is FALSE.
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IDASetStepToleranceIC

Call flag = IDASetStepToleranceIC(ida mem, steptol);

Description The function IDASetStepToleranceIC specifies a positive lower bound on the Newton
step.

Arguments ida mem (void *) pointer to the ida memory block.

steptol (int) Minimum allowed WRMS-norm of the Newton step (> 0.0).

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT The steptol tolerance is <= 0.0.

Notes The default value is (unit roundoff)2/3.

4.5.7.6 Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm.

IDASetRootDirection

Call flag = IDASetRootDirection(ida mem, rootdir);

Description The function IDASetRootDirection specifies the direction of zero-crossings to be lo-
cated and returned to the user.

Arguments ida mem (void *) pointer to the ida memory block.

rootdir (int *) state array of length nrtfn, the number of root functions gi, as spec-
ified in the call to the function IDARootInit. A value of 0 for rootdir[i]

indicates that crossing in either direction should be reported for gi. A value
of +1 or −1 indicates that the solver should report only zero-crossings where
gi is increasing or decreasing, respectively.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA ILL INPUT rootfinding has not been activated through a call to IDARootInit.

Notes The default behavior is to locate both zero-crossing directions.

IDASetNoInactiveRootWarn

Call flag = IDASetNoInactiveRootWarn(ida mem);

Description The function IDASetNoInactiveRootWarn disables issuing a warning if some root func-
tion appears to be identically zero at the beginning of the integration.

Arguments ida mem (void *) pointer to the ida memory block.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes ida will not report the initial conditions as a possible zero-crossing (assuming that one
or more components gi are zero at the initial time). However, if it appears that some gi

is identically zero at the initial time (i.e., gi is zero at the initial time and after the first
step), ida will issue a warning which can be disabled with this optional input function.
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4.5.8 Interpolated output function

An optional function IDAGetDky is available to obtain additional output values. This function must be
called after a successful return from IDASolve and provides interpolated values of y or its derivatives
of order up to the last internal order used for any value of t in the last internal step taken by ida.

The call to the IDAGetDky function has the following form:

IDAGetDky

Call flag = IDAGetDky(ida mem, t, k, dky);

Description The function IDAGetDky computes the interpolated values of the kth derivative of y for
any value of t in the last internal step taken by ida. The value of k must be non-negative
and smaller than the last internal order used. A value of 0 for k means that the y is
interpolated. The value of t must satisfy tn −hu ≤ t ≤ tn, where tn denotes the current
internal time reached, and hu is the last internal step size used successfully.

Arguments ida mem (void *) pointer to the ida memory block.

t (realtype) time at which to interpolate.

k (int) integer specifying the order of the derivative of y wanted.

dky (N Vector) vector containing the interpolated kth derivative of y(t).

Return value The return value flag (of type int) is one of

IDA SUCCESS IDAGetDky succeeded.

IDA MEM NULL The ida mem argument was NULL.

IDA BAD T t is not in the interval [tn − hu, tn].

IDA BAD K k is not one of {0, 1, . . . , klast}.
IDA BAD DKY dky is NULL.

Notes It is only legal to call the function IDAGetDky after a successful return from IDASolve.
Functions IDAGetCurrentTime, IDAGetLastStep and IDAGetLastOrder (see §4.5.9.1)
can be used to access tn, hu and klast.

4.5.9 Optional output functions

ida provides an extensive list of functions that can be used to obtain solver performance information.
Table 4.2 lists all optional output functions in ida, which are then described in detail in the remainder
of this section.

Some of the optional outputs, especially the various counters, can be very useful in determining
how successful the ida solver is in doing its job. For example, the counters nsteps and nrevals

provide a rough measure of the overall cost of a given run, and can be compared among runs with
differing input options to suggest which set of options is most efficient. The ratio nniters/nsteps

measures the performance of the Newton iteration in solving the nonlinear systems at each time step;
typical values for this range from 1.1 to 1.8. The ratio njevals/nniters (in the case of a direct
linear solver), and the ratio npevals/nniters (in the case of an iterative linear solver) measure the
overall degree of nonlinearity in these systems, and also the quality of the approximate Jacobian
or preconditioner being used. Thus, for example, njevals/nniters can indicate if a user-supplied
Jacobian is inaccurate, if this ratio is larger than for the case of the corresponding internal Jacobian.
The ratio nliters/nniters measures the performance of the Krylov iterative linear solver, and thus
(indirectly) the quality of the preconditioner.

4.5.9.1 Main solver optional output functions

ida provides several user-callable functions that can be used to obtain different quantities that may
be of interest to the user, such as solver workspace requirements, solver performance statistics, as well
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Table 4.2: Optional outputs from ida, idadls, idasls, and idaspils

Optional output Function name
IDA main solver

Size of ida real and integer workspace IDAGetWorkSpace

Cumulative number of internal steps IDAGetNumSteps

No. of calls to residual function IDAGetNumResEvals

No. of calls to linear solver setup function IDAGetNumLinSolvSetups

No. of local error test failures that have occurred IDAGetNumErrTestFails

Order used during the last step IDAGetLastOrder

Order to be attempted on the next step IDAGetCurrentOrder

Order reductions due to stability limit detection IDAGetNumStabLimOrderReds

Actual initial step size used IDAGetActualInitStep

Step size used for the last step IDAGetLastStep

Step size to be attempted on the next step IDAGetCurrentStep

Current internal time reached by the solver IDAGetCurrentTime

Suggested factor for tolerance scaling IDAGetTolScaleFactor

Error weight vector for state variables IDAGetErrWeights

Estimated local errors IDAGetEstLocalErrors

No. of nonlinear solver iterations IDAGetNumNonlinSolvIters

No. of nonlinear convergence failures IDAGetNumNonlinSolvConvFails

Array showing roots found IDAGetRootInfo

No. of calls to user root function IDAGetNumGEvals

Name of constant associated with a return flag IDAGetReturnFlagName

IDA initial conditions calculation
Number of backtrack operations IDAGetNumBacktrackops

Corrected initial conditions IDAGetConsistentIC

IDADLS linear solver
Size of real and integer workspace IDADlsGetWorkSpace

No. of Jacobian evaluations IDADlsGetNumJacEvals

No. of residual calls for finite diff. Jacobian evals. IDADlsGetNumResEvals

Last return from a linear solver function IDADlsGetLastFlag

Name of constant associated with a return flag IDADlsGetReturnFlagName

IDASLS linear solver
No. of Jacobian evaluations IDASlsGetNumJacEvals

Last return from a linear solver function IDASlsGetLastFlag

Name of constant associated with a return flag IDASlsGetReturnFlagName

IDASPILS linear solvers
Size of real and integer workspace IDASpilsGetWorkSpace

No. of linear iterations IDASpilsGetNumLinIters

No. of linear convergence failures IDASpilsGetNumConvFails

No. of preconditioner evaluations IDASpilsGetNumPrecEvals

No. of preconditioner solves IDASpilsGetNumPrecSolves

No. of Jacobian-vector product evaluations IDASpilsGetNumJtimesEvals

No. of residual calls for finite diff. Jacobian-vector evals. IDASpilsGetNumResEvals

Last return from a linear solver function IDASpilsGetLastFlag

Name of constant associated with a return flag IDASpilsGetReturnFlagName
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as additional data from the ida memory block (a suggested tolerance scaling factor, the error weight
vector, and the vector of estimated local errors). Also provided are functions to extract statistics
related to the performance of the ida nonlinear solver being used. As a convenience, additional
extraction functions provide the optional outputs in groups. These optional output functions are
described next.

IDAGetWorkSpace

Call flag = IDAGetWorkSpace(ida mem, &lenrw, &leniw);

Description The function IDAGetWorkSpace returns the ida real and integer workspace sizes.

Arguments ida mem (void *) pointer to the ida memory block.

lenrw (long int) number of real values in the ida workspace.

leniw (long int) number of integer values in the ida workspace.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes In terms of the problem size N , the maximum method order maxord, and the number
nrtfn of root functions (see §4.5.5), the actual size of the real workspace, in realtype

words, is given by the following:

• base value: lenrw = 55 + (m + 6) ∗ Nr + 3∗nrtfn;
• with IDASVtolerances: lenrw = lenrw +Nr;

• with constraint checking (see IDASetConstraints): lenrw = lenrw +Nr;

• with id specified (see IDASetId): lenrw = lenrw +Nr;

where m = max(maxord, 3), and Nr is the number of real words in one N Vector (≈ N).

The size of the integer workspace (without distinction between int and long int words)
is given by:

• base value: leniw = 38 + (m + 6) ∗ Ni + nrtfn;

• with IDASVtolerances: leniw = leniw +Ni;

• with constraint checking: lenrw = lenrw +Ni;

• with id specified: lenrw = lenrw +Ni;

where Ni is the number of integer words in one N Vector (= 1 for nvector serial

and 2*npes for nvector parallel on npes processors).

For the default value of maxord, with no rootfinding, no id, no constraints, and with
no call to IDASVtolerances, these lengths are given roughly by: lenrw = 55 + 11N ,
leniw = 49.

IDAGetNumSteps

Call flag = IDAGetNumSteps(ida mem, &nsteps);

Description The function IDAGetNumSteps returns the cumulative number of internal steps taken
by the solver (total so far).

Arguments ida mem (void *) pointer to the ida memory block.

nsteps (long int) number of steps taken by ida.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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IDAGetNumResEvals

Call flag = IDAGetNumResEvals(ida mem, &nrevals);

Description The function IDAGetNumResEvals returns the number of calls to the user’s residual
evaluation function.

Arguments ida mem (void *) pointer to the ida memory block.

nrevals (long int) number of calls to the user’s res function.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The nrevals value returned by IDAGetNumResEvals does not account for calls made to
res from a linear solver or preconditioner module.

IDAGetNumLinSolvSetups

Call flag = IDAGetNumLinSolvSetups(ida mem, &nlinsetups);

Description The function IDAGetNumLinSolvSetups returns the cumulative number of calls made
to the linear solver’s setup function (total so far).

Arguments ida mem (void *) pointer to the ida memory block.

nlinsetups (long int) number of calls made to the linear solver setup function.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetNumErrTestFails

Call flag = IDAGetNumErrTestFails(ida mem, &netfails);

Description The function IDAGetNumErrTestFails returns the cumulative number of local error
test failures that have occurred (total so far).

Arguments ida mem (void *) pointer to the ida memory block.

netfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetLastOrder

Call flag = IDAGetLastOrder(ida mem, &klast);

Description The function IDAGetLastOrder returns the integration method order used during the
last internal step.

Arguments ida mem (void *) pointer to the ida memory block.

klast (int) method order used on the last internal step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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IDAGetCurrentOrder

Call flag = IDAGetCurrentOrder(ida mem, &kcur);

Description The function IDAGetCurrentOrder returns the integration method order to be used on
the next internal step.

Arguments ida mem (void *) pointer to the ida memory block.

kcur (int) method order to be used on the next internal step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetLastStep

Call flag = IDAGetLastStep(ida mem, &hlast);

Description The function IDAGetLastStep returns the integration step size taken on the last internal
step.

Arguments ida mem (void *) pointer to the ida memory block.

hlast (realtype) step size taken on the last internal step by ida, or last artificial
step size used in IDACalcIC, whichever was called last.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetCurrentStep

Call flag = IDAGetCurrentStep(ida mem, &hcur);

Description The function IDAGetCurrentStep returns the integration step size to be attempted on
the next internal step.

Arguments ida mem (void *) pointer to the ida memory block.

hcur (realtype) step size to be attempted on the next internal step.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetActualInitStep

Call flag = IDAGetActualInitStep(ida mem, &hinused);

Description The function IDAGetActualInitStep returns the value of the integration step size used
on the first step.

Arguments ida mem (void *) pointer to the ida memory block.

hinused (realtype) actual value of initial step size.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes Even if the value of the initial integration step size was specified by the user through a
call to IDASetInitStep, this value might have been changed by ida to ensure that the
step size is within the prescribed bounds (hmin ≤ h0 ≤ hmax), or to meet the local error
test.
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IDAGetCurrentTime

Call flag = IDAGetCurrentTime(ida mem, &tcur);

Description The function IDAGetCurrentTime returns the current internal time reached by the
solver.

Arguments ida mem (void *) pointer to the ida memory block.

tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetTolScaleFactor

Call flag = IDAGetTolScaleFactor(ida mem, &tolsfac);

Description The function IDAGetTolScaleFactor returns a suggested factor by which the user’s
tolerances should be scaled when too much accuracy has been requested for some internal
step.

Arguments ida mem (void *) pointer to the ida memory block.

tolsfac (realtype) suggested scaling factor for user tolerances.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetErrWeights

Call flag = IDAGetErrWeights(ida mem, eweight);

Description The function IDAGetErrWeights returns the solution error weights at the current time.
These are the Wi given by Eq. (2.6) (or by the user’s IDAEwtFn).

Arguments ida mem (void *) pointer to the ida memory block.

eweight (N Vector) solution error weights at the current time.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The user must allocate space for eweight. !

IDAGetEstLocalErrors

Call flag = IDAGetEstLocalErrors(ida mem, ele);

Description The function IDAGetEstLocalErrors returns the estimated local errors.

Arguments ida mem (void *) pointer to the ida memory block.

ele (N Vector) estimated local errors at the current time.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes The user must allocate space for ele. !

The values returned in ele are only valid if IDASolve returned a non-negative value.

The ele vector, togther with the eweight vector from IDAGetErrWeights, can be used
to determine how the various components of the system contributed to the estimated
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local error test. Specifically, that error test uses the RMS norm of a vector whose
components are the products of the components of these two vectors. Thus, for example,
if there were recent error test failures, the components causing the failures are those
with largest values for the products, denoted loosely as eweight[i]*ele[i].

IDAGetIntegratorStats

Call flag = IDAGetIntegratorStats(ida mem, &nsteps, &nrevals, &nlinsetups,

&netfails, &klast, &kcur, &hinused,

&hlast, &hcur, &tcur);

Description The function IDAGetIntegratorStats returns the ida integrator statistics as a group.

Arguments ida mem (void *) pointer to the ida memory block.

nsteps (long int) cumulative number of steps taken by ida.

nrevals (long int) cumulative number of calls to the user’s res function.

nlinsetups (long int) cumulative number of calls made to the linear solver setup
function.

netfails (long int) cumulative number of error test failures.

klast (int) method order used on the last internal step.

kcur (int) method order to be used on the next internal step.

hinused (realtype) actual value of initial step size.

hlast (realtype) step size taken on the last internal step.

hcur (realtype) step size to be attempted on the next internal step.

tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

IDA SUCCESS the optional output values have been successfully set.

IDA MEM NULL the ida mem pointer is NULL.

IDAGetNumNonlinSolvIters

Call flag = IDAGetNumNonlinSolvIters(ida mem, &nniters);

Description The function IDAGetNumNonlinSolvIters returns the cumulative number of nonlinear
(functional or Newton) iterations performed.

Arguments ida mem (void *) pointer to the ida memory block.

nniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetNumNonlinSolvConvFails

Call flag = IDAGetNumNonlinSolvConvFails(ida mem, &nncfails);

Description The function IDAGetNumNonlinSolvConvFails returns the cumulative number of non-
linear convergence failures that have occurred.

Arguments ida mem (void *) pointer to the ida memory block.

nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
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IDAGetNonlinSolvStats

Call flag = IDAGetNonlinSolvStats(ida mem, &nniters, &nncfails);

Description The function IDAGetNonlinSolvStats returns the ida nonlinear solver statistics as a
group.

Arguments ida mem (void *) pointer to the ida memory block.

nniters (long int) cumulative number of nonlinear iterations performed.

nncfails (long int) cumulative number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetReturnFlagName

Call name = IDAGetReturnFlagName(flag);

Description The function IDAGetReturnFlagName returns the name of the ida constant correspond-
ing to flag.

Arguments The only argument, of type int, is a return flag from an ida function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.9.2 Initial condition calculation optional output functions

IDAGetNumBcktrackOps

Call flag = IDAGetNumBacktrackOps(ida mem, &nbacktr);

Description The function IDAGetNumBacktrackOps returns the number of backtrack operations done
in the linesearch algorithm in IDACalcIC.

Arguments ida mem (void *) pointer to the ida memory block.

nbacktr (long int) the cumulative number of backtrack operations.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDAGetConsistentIC

Call flag = IDAGetConsistentIC(ida mem, yy0 mod, yp0 mod);

Description The function IDAGetConsistentIC returns the corrected initial conditions calculated
by IDACalcIC.

Arguments ida mem (void *) pointer to the ida memory block.

yy0 mod (N Vector) consistent solution vector.

yp0 mod (N Vector) consistent derivative vector.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA ILL INPUT The function was not called before the first call to IDASolve.

IDA MEM NULL The ida mem pointer is NULL.

Notes If the consistent solution vector or consistent derivative vector is not desired, pass NULL
for the corresponding argument.

The user must allocate space for yy0 mod and yp0 mod (if not NULL). !
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4.5.9.3 Rootfinding optional output functions

There are two optional output functions associated with rootfinding.

IDAGetRootInfo

Call flag = IDAGetRootInfo(ida mem, rootsfound);

Description The function IDAGetRootInfo returns an array showing which functions were found to
have a root.

Arguments ida mem (void *) pointer to the ida memory block.

rootsfound (int *) array of length nrtfn with the indices of the user functions gi

found to have a root. For i = 0, . . . ,nrtfn −1, rootsfound[i] 6= 0 if gi has a
root, and = 0 if not.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output values have been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

Notes Note that, for the components gi for which a root was found, the sign of rootsfound[i]
indicates the direction of zero-crossing. A value of +1 indicates that gi is increasing,
while a value of −1 indicates a decreasing gi.

The user must allocate memory for the vector rootsfound.!

IDAGetNumGEvals

Call flag = IDAGetNumGEvals(ida mem, &ngevals);

Description The function IDAGetNumGEvals returns the cumulative number of calls to the user root
function g.

Arguments ida mem (void *) pointer to the ida memory block.

ngevals (long int) number of calls to the user’s function g so far.

Return value The return value flag (of type int) is one of

IDA SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

4.5.9.4 Dense/band direct linear solvers optional output functions

The following optional outputs are available from the idadls modules: workspace requirements,
number of calls to the Jacobian routine, number of calls to the residual routine for finite-difference
Jacobian approximation, and last return value from an idadls function. Note that, where the name
of an output would otherwise conflict with the name of an optional output from the main solver, a
suffix LS (for Linear Solver) has been added here (e.g. lenrwLS).

IDADlsGetWorkSpace

Call flag = IDADlsGetWorkSpace(ida mem, &lenrwLS, &leniwLS);

Description The function IDADlsGetWorkSpace returns the sizes of the real and integer workspaces
used by an idadls linear solver (idadense or idaband).

Arguments ida mem (void *) pointer to the ida memory block.

lenrwLS (long int) the number of real values in the idadls workspace.

leniwLS (long int) the number of integer values in the idadls workspace.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The optional output value has been successfully set.
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IDADLS MEM NULL The ida mem pointer is NULL.

IDADLS LMEM NULL The idadls linear solver has not been initialized.

Notes For the idadense linear solver, in terms of the problem size N , the actual size of the real
workspace is 2N2 realtype words, while the actual size of the integer workspace is N in-
teger words. For the idaband linear solver, in terms of N and Jacobian half-bandwidths,
the actual size of the real workspace is N (2 mupper+3 mlower +2) realtype words,
while the actual size of the integer workspace is N integer words.

IDADlsGetNumJacEvals

Call flag = IDADlsGetNumJacEvals(ida mem, &njevals);

Description The function IDADlsGetNumJacEvals returns the cumulative number of calls to the
idadls (dense or banded) Jacobian approximation function.

Arguments ida mem (void *) pointer to the ida memory block.

njevals (long int) the cumulative number of calls to the Jacobian function (total so
far).

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The optional output value has been successfully set.

IDADLS MEM NULL The ida mem pointer is NULL.

IDADLS LMEM NULL The idadense linear solver has not been initialized.

IDADlsGetNumResEvals

Call flag = IDADlsGetNumResEvals(ida mem, &nrevalsLS);

Description The function IDADlsGetNumResEvals returns the cumulative number of calls to the user
residual function due to the finite difference (dense or band) Jacobian approximation.

Arguments ida mem (void *) pointer to the ida memory block.

nrevalsLS (long int) the cumulative number of calls to the user residual function.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The optional output value has been successfully set.

IDADLS MEM NULL The ida mem pointer is NULL.

IDADLS LMEM NULL The idadense linear solver has not been initialized.

Notes The value nrevalsLS is incremented only if the default internal difference quotient
function is used.

IDADlsGetLastFlag

Call flag = IDADlsGetLastFlag(ida mem, &lsflag);

Description The function IDADlsGetLastFlag returns the last return value from an idadls routine.

Arguments ida mem (void *) pointer to the ida memory block.

lsflag (long int) the value of the last return flag from an idadls function.

Return value The return value flag (of type int) is one of

IDADLS SUCCESS The optional output value has been successfully set.

IDADLS MEM NULL The ida mem pointer is NULL.

IDADLS LMEM NULL The idadense linear solver has not been initialized.

Notes If the idadense setup function failed (i.e., IDASolve returned IDA LSETUP FAIL), the
value lsflag is equal to the column index (numbered from one) at which a zero diagonal
element was encountered during the LU factorization of the (dense or band) Jacobian
matrix. For all other failures, the value of lsflag is negative.
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IDADlsGetReturnFlagName

Call name = IDADlsGetReturnFlagName(lsflag);

Description The function IDADlsGetReturnFlagName returns the name of the idadls constant cor-
responding to lsflag.

Arguments The only argument, of type long int, is a return flag from an idadls function.

Return value The return value is a string containing the name of the corresponding constant. If 1 ≤
lsflag ≤ N (LU factorization failed), this function returns “NONE”.

4.5.9.5 Sparse direct linear solvers optional output functions

The following optional outputs are available from the idasls modules: number of calls to the Jacobian
routine and last return value from an idasls function.

IDASlsGetNumJacEvals

Call flag = IDASlsGetNumJacEvals(ida mem, &njevals);

Description The function IDASlsGetNumJacEvals returns the cumulative number of calls to the
idasls sparse Jacobian approximation function.

Arguments ida mem (void *) pointer to the ida memory block.

njevals (long int) the cumulative number of calls to the Jacobian function (total so
far).

Return value The return value flag (of type int) is one of

IDASLS SUCCESS The optional output value has been successfully set.

IDASLS MEM NULL The ida mem pointer is NULL.

IDASLS LMEM NULL The idasls linear solver has not been initialized.

IDASlsGetLastFlag

Call flag = IDASlsGetLastFlag(ida mem, &lsflag);

Description The function IDASlsGetLastFlag returns the last return value from an idasls routine.

Arguments ida mem (void *) pointer to the ida memory block.

lsflag (long int) the value of the last return flag from an idasls function.

Return value The return value flag (of type int) is one of

IDASLS SUCCESS The optional output value has been successfully set.

IDASLS MEM NULL The ida mem pointer is NULL.

IDASLS LMEM NULL The idasls linear solver has not been initialized.

Notes

IDASlsGetReturnFlagName

Call name = IDASlsGetReturnFlagName(lsflag);

Description The function IDASlsGetReturnFlagName returns the name of the idasls constant cor-
responding to lsflag.

Arguments The only argument, of type long int, is a return flag from an idasls function.

Return value The return value is a string containing the name of the corresponding constant.
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4.5.9.6 Iterative linear solvers optional output functions

The following optional outputs are available from the idaspils modules: workspace requirements,
number of linear iterations, number of linear convergence failures, number of calls to the preconditioner
setup and solve routines, number of calls to the Jacobian-vector product routine, number of calls to
the residual routine for finite-difference Jacobian-vector product approximation, and last return value
from a linear solver function. Note that, where the name of an output would otherwise conflict with
the name of an optional output from the main solver, a suffix LS (for Linear Solver) has been added
here (e.g. lenrwLS).

IDASpilsGetWorkSpace

Call flag = IDASpilsGetWorkSpace(ida mem, &lenrwLS, &leniwLS);

Description The function IDASpilsGetWorkSpace returns the global sizes of the idaspils real and
integer workspaces.

Arguments ida mem (void *) pointer to the ida memory block.

lenrwLS (long int) global number of real values in the idaspils workspace.

leniwLS (long int) global number of integer values in the idaspils workspace.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

Notes In terms of the problem size N and maximum subspace size maxl, the actual size of the
real workspace is roughly:
N ∗ ( maxl +5)+ maxl ∗( maxl +4) + 1 realtype words for idaspgmr,
10 ∗ N realtype words for idaspbcg,
and 13 ∗ N realtype words for idasptfqmr.

In a parallel setting, the above values are global, summed over all processors.

IDASpilsGetNumLinIters

Call flag = IDASpilsGetNumLinIters(ida mem, &nliters);

Description The function IDASpilsGetNumLinIters returns the cumulative number of linear itera-
tions.

Arguments ida mem (void *) pointer to the ida memory block.

nliters (long int) the current number of linear iterations.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASpilsGetNumConvFails

Call flag = IDASpilsGetNumConvFails(ida mem, &nlcfails);

Description The function IDASpilsGetNumConvFails returns the cumulative number of linear con-
vergence failures.

Arguments ida mem (void *) pointer to the ida memory block.

nlcfails (long int) the current number of linear convergence failures.

Return value The return value flag (of type int) is one of
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IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASpilsGetNumPrecEvals

Call flag = IDASpilsGetNumPrecEvals(ida mem, &npevals);

Description The function IDASpilsGetNumPrecEvals returns the cumulative number of precondi-
tioner evaluations, i.e., the number of calls made to psetup.

Arguments ida mem (void *) pointer to the ida memory block.

npevals (long int) the cumulative number of calls to psetup.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASpilsGetNumPrecSolves

Call flag = IDASpilsGetNumPrecSolves(ida mem, &npsolves);

Description The function IDASpilsGetNumPrecSolves returns the cumulative number of calls made
to the preconditioner solve function, psolve.

Arguments ida mem (void *) pointer to the ida memory block.

npsolves (long int) the cumulative number of calls to psolve.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASpilsGetNumJtimesEvals

Call flag = IDASpilsGetNumJtimesEvals(ida mem, &njvevals);

Description The function IDASpilsGetNumJtimesEvals returns the cumulative number of calls
made to the Jacobian-vector function, jtimes.

Arguments ida mem (void *) pointer to the ida memory block.

njvevals (long int) the cumulative number of calls to jtimes.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

IDASpilsGetNumResEvals

Call flag = IDASpilsGetNumResEvals(ida mem, &nrevalsLS);

Description The function IDASpilsGetNumResEvals returns the cumulative number of calls to the
user residual function for finite difference Jacobian-vector product approximation.

Arguments ida mem (void *) pointer to the ida memory block.

nrevalsLS (long int) the cumulative number of calls to the user residual function.

Return value The return value flag (of type int) is one of
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IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

Notes The value nrevalsLS is incremented only if the default IDASpilsDQJtimes difference
quotient function is used.

IDASpilsGetLastFlag

Call flag = IDASpilsGetLastFlag(ida mem, &lsflag);

Description The function IDASpilsGetLastFlag returns the last return value from an idaspils

routine.

Arguments ida mem (void *) pointer to the ida memory block.

lsflag (long int) the value of the last return flag from an idaspils function.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer is NULL.

IDASPILS LMEM NULL The idaspils linear solver has not been initialized.

Notes If the idaspils setup function failed (IDASolve returned IDA LSETUP FAIL), lsflag will
be SPGMR PSET FAIL UNREC, SPBCG PSET FAIL UNREC, or SPTFQMR PSET FAIL UNREC.

If the idaspgmr solve function failed (IDASolve returned IDA LSOLVE FAIL), lsflag
contains the error return flag from SpgmrSolve and will be one of: SPGMR MEM NULL,
indicating that the spgmr memory is NULL; SPGMR ATIMES FAIL UNREC, indicating an
unrecoverable failure in the J ∗ v function; SPGMR PSOLVE FAIL UNREC, indicating that
the preconditioner solve function psolve failed unrecoverably; SPGMR GS FAIL, indicat-
ing a failure in the Gram-Schmidt procedure; or SPGMR QRSOL FAIL, indicating that the
matrix R was found to be singular during the QR solve phase.

If the idaspbcg solve function failed (IDASolve returned IDA LSOLVE FAIL), lsflag
contains the error return flag from SpbcgSolve and will be one of: SPBCG MEM NULL,
indicating that the spbcg memory is NULL; SPBCG ATIMES FAIL UNREC, indicating an
unrecoverable failure in the J ∗v function; or SPBCG PSOLVE FAIL UNREC, indicating that
the preconditioner solve function psolve failed unrecoverably.

If the idasptfqmr solve function failed (IDASolve returned IDA LSOLVE FAIL), lsflag
contains the error flag from SptfqmrSolve and will be one of: SPTFQMR MEM NULL,
indicating that the sptfqmr memory is NULL; SPTFQMR ATIMES FAIL UNREC, indicating
an unrecoverable failure in the J∗v function; or SPTFQMR PSOLVE FAIL UNREC, indicating
that the preconditioner solve function psolve failed unrecoverably.

IDASpilsGetReturnFlagName

Call name = IDASpilsGetReturnFlagName(lsflag);

Description The function IDASpilsGetReturnFlagName returns the name of the idaspils constant
corresponding to lsflag.

Arguments The only argument, of type long int, is a return flag from an idaspils function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.10 IDA reinitialization function

The function IDAReInit reinitializes the main ida solver for the solution of a problem, where a
prior call to IDAInit has been made. The new problem must have the same size as the previous
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one. IDAReInit performs the same input checking and initializations that IDAInit does, but does no
memory allocation, assuming that the existing internal memory is sufficient for the new problem. A call
to IDAReInit deletes the solution history that was stored internally during the previous integration.

The use of IDAReInit requires that the maximum method order, maxord, is no larger for the new
problem than for the problem specified in the last call to IDAInit. In addition, the same nvector

module set for the previous problem will be reused for the new problem.
If there are changes to the linear solver specifications, make the appropriate IDA*** calls, as

described in §4.5.3. If there are changes to any optional inputs, make the appropriate IDASet***

calls, as described in §4.5.7.

IDAReInit

Call flag = IDAReInit(ida mem, t0, y0, yp0);

Description The function IDAReInit provides required problem specifications and reinitializes ida.

Arguments ida mem (void *) pointer to the ida memory block.

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

yp0 (N Vector) is the initial value of ẏ.

Return value The return value flag (of type int) will be one of the following:

IDA SUCCESS The call to IDAReInit was successful.

IDA MEM NULL The ida memory block was not initialized through a previous call to
IDACreate.

IDA NO MALLOC Memory space for the ida memory block was not allocated through a
previous call to IDAInit.

IDA ILL INPUT An input argument to IDAReInit has an illegal value.

Notes If an error occurred, IDAReInit also sends an error message to the error handler func-
tion.

4.6 User-supplied functions

The user-supplied functions consist of one function defining the DAE residual, (optionally) a function
that handles error and warning messages, (optionally) a function that provides the error weight vector,
(optionally) a function that provides Jacobian-related information for the linear solver (if Newton
iteration is chosen), and (optionally) one or two functions that define the preconditioner for use in
any of the Krylov iteration algorithms.

4.6.1 Residual function

The user must provide a function of type IDAResFn defined as follows:

IDAResFn

Definition typedef int (*IDAResFn)(realtype tt, N Vector yy, N Vector yp,

N Vector rr, void *user data);

Purpose This function computes the problem residual for given values of the independent variable
t, state vector y, and derivative ẏ.

Arguments tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

rr is the output residual vector F (t, y, ẏ).
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user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

Return value An IDAResFn function type should return a value of 0 if successful, a positive value
if a recoverable error occurred (e.g. yy has an illegal value), or a negative value if a
nonrecoverable error occurred. In the last case, the integrator halts. If a recoverable
error occurred, the integrator will attempt to correct and retry.

Notes A recoverable failure error return from the IDAResFn is typically used to flag a value
of the dependent variable y that is “illegal” in some way (e.g., negative where only a
non-negative value is physically meaningful). If such a return is made, ida will attempt
to recover (possibly repeating the Newton iteration, or reducing the step size) in order
to avoid this recoverable error return.

For efficiency reasons, the DAE residual function is not evaluated at the converged solu-
tion of the nonlinear solver. Therefore, in general, a recoverable error in that converged
value cannot be corrected. (It may be detected when the right-hand side function is
called the first time during the following integration step, but a successful step cannot
be undone.)

Allocation of memory for yp is handled within ida.

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to
by errfp (see IDASetErrFile), the user may provide a function of type IDAErrHandlerFn to process
any such messages. The function type IDAErrHandlerFn is defined as follows:

IDAErrHandlerFn

Definition typedef void (*IDAErrHandlerFn)(int error code, const char *module,

const char *function, char *msg,

void *eh data);

Purpose This function processes error and warning messages from ida and its sub-modules.

Arguments error code is the error code.

module is the name of the ida module reporting the error.

function is the name of the function in which the error occurred.

msg is the error message.

eh data is a pointer to user data, the same as the eh data parameter passed to
IDASetErrHandlerFn.

Return value A IDAErrHandlerFn function has no return value.

Notes error code is negative for errors and positive (IDA WARNING) for warnings. If a function
that returns a pointer to memory encounters an error, it sets error code to 0.

4.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of
type IDAEwtFn to compute a vector ewt containing the multiplicative weights Wi used in the WRMS

norm ‖ v‖WRMS =
√

(1/N)
∑N

1 (Wi · vi)2. These weights will used in place of those defined by Eq.

(2.6). The function type IDAEwtFn is defined as follows:

IDAEwtFn

Definition typedef int (*IDAEwtFn)(N Vector y, N Vector ewt, void *user data);

Purpose This function computes the WRMS error weights for the vector y.
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Arguments y is the value of the dependent variable vector at which the weight vector is
to be computed.

ewt is the output vector containing the error weights.

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

Return value An IDAEwtFn function type must return 0 if it successfully set the error weights and −1
otherwise.

Notes Allocation of memory for ewt is handled within ida.

The error weight vector must have all components positive. It is the user’s responsiblity!

to perform this test and return −1 if it is not satisfied.

4.6.4 Rootfinding function

If a rootfinding problem is to be solved during the integration of the DAE system, the user must
supply a C function of type IDARootFn, defined as follows:

IDARootFn

Definition typedef int (*IDARootFn)(realtype t, N Vector y, N Vector yp,

realtype *gout, void *user data);

Purpose This function computes a vector-valued function g(t, y, ẏ) such that the roots of the
nrtfn components gi(t, y, ẏ) are to be found during the integration.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t), the t−derivative of y.

gout is the output array, of length nrtfn, with components gi(t, y, ẏ).

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

Return value An IDARootFn should return 0 if successful or a non-zero value if an error occurred (in
which case the integration is halted and IDASolve returns IDA RTFUNC FAIL).

Notes Allocation of memory for gout is handled within ida.

4.6.5 Jacobian information (direct method with dense Jacobian)

If the direct linear solver with dense treatment of the Jacobian is used (i.e. either IDADense or
IDALapackDense is called in Step 8 of §4.4), the user may provide a function of type IDADlsDenseJacFn
defined by

IDADlsDenseJacFn

Definition typedef int (*IDADlsDenseJacFn)(long int Neq, realtype tt, realtype cj,

N Vector yy, N Vector yp, N Vector rr,

DlsMat Jac, void *user data,

N Vector tmp1, N Vector tmp2, N Vector tmp3);

Purpose This function computes the dense Jacobian J of the DAE system (or an approximation
to it), defined by Eq. (2.5).

Arguments Neq is the problem size (number of equations).

tt is the current value of the independent variable t.

cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.5) ).

yy is the current value of the dependent variable vector, y(t).



4.6 User-supplied functions 61

yp is the current value of ẏ(t).

rr is the current value of the residual vector F (t, y, ẏ).

Jac is the output (approximate) Jacobian matrix, J = ∂F/∂y + cj ∂F/∂ẏ.

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by IDADlsDenseJacFn as temporary storage or work space.

Return value An IDADlsDenseJacFn function type should return 0 if successful, a positive value if a
recoverable error occurred, or a negative value if a nonrecoverable error occurred.

In the case of a recoverable eror return, the integrator will attempt to recover by reducing
the stepsize, and hence changing α in (2.5).

Notes A user-supplied dense Jacobian function must load the Neq × Neq dense matrix Jac

with an approximation to the Jacobian matrix J(t, y, ẏ) at the point (tt, yy, yp). Only
nonzero elements need to be loaded into Jac because Jac is set to the zero matrix before
the call to the Jacobian function. The type of Jac is DlsMat (described below and in
§8.1).

The accessor macros DENSE ELEM and DENSE COL allow the user to read and write dense
matrix elements without making explicit references to the underlying representation of
the DlsMat type. DENSE ELEM(Jac, i, j) references the (i, j)-th element of the dense
matrix Jac (i, j= 0 . . . Neq−1). This macro is for use in small problems in which effi-
ciency of access is not a major concern. Thus, in terms of indices m and n running from
1 to Neq, the Jacobian element Jm,n can be loaded with the statement DENSE ELEM(Jac,

m-1, n-1) = Jm,n. Alternatively, DENSE COL(Jac, j) returns a pointer to the storage
for the jth column of Jac (j= 0 . . . Neq−1), and the elements of the j-th column are
then accessed via ordinary array indexing. Thus Jm,n can be loaded with the state-
ments col n = DENSE COL(Jac, n-1); col n[m-1] = Jm,n. For large problems, it is
more efficient to use DENSE COL than to use DENSE ELEM. Note that both of these macros
number rows and columns starting from 0, not 1.

The DlsMat type and the accessor macros DENSE ELEM and DENSE COL are documented
in §8.1.

If the user’s IDADlsDenseJacFn function uses difference quotient approximations, it may
need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, the user will need to add the ida mem structure to
their user data and use the IDAGet* functions described in §4.5.9.1. The unit roundoff
can be accessed as UNIT ROUNDOFF defined in sundials types.h.

For the sake of uniformity, the argument Neq is of type long int, even in the case that
the Lapack dense solver is to be used.

4.6.6 Jacobian information (direct method with banded Jacobian)

If the direct linear solver with banded treatment of the Jacobian is used (i.e. either IDABand or
IDALapackBand is called in Step 8 of §4.4), the user may provide a function of type IDADlsBandJacFn
defined as follows:

IDADlsBandJacFn
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Definition typedef int (*IDADlsBandJacFn)(long int Neq, long int mupper,

long int mlower, realtype tt, realtype cj,

N Vector yy, N Vector yp, N Vector rr,

DlsMat Jac, void *user data,

N Vector tmp1, N Vector tmp2,N Vector tmp3);

Purpose This function computes the banded Jacobian J of the DAE system (or a banded ap-
proximation to it), defined by Eq. (2.5).

Arguments Neq is the problem size.

mupper

mlower are the upper and lower half bandwidth of the Jacobian.

tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

rr is the current value of the residual vector F (t, y, ẏ).

cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.5) ).

Jac is the output (approximate) Jacobian matrix, J = ∂F/∂y + cj ∂F/∂ẏ.

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by IDADlsBandJacFn as temporary storage or work space.

Return value A IDADlsBandJacFn function type should return 0 if successful, a positive value if a
recoverable error occurred, or a negative value if a nonrecoverable error occurred.

In the case of a recoverable eror return, the integrator will attempt to recover by reducing
the stepsize, and hence changing α in (2.5).

Notes A user-supplied band Jacobian function must load the band matrix Jac of type DlsMat

with the elements of the Jacobian J(t, y, ẏ) at the point (tt, yy, yp). Only nonzero
elements need to be loaded into Jac because Jac is preset to zero before the call to the
Jacobian function.

The accessor macros BAND ELEM, BAND COL, and BAND COL ELEM allow the user to read
and write band matrix elements without making specific references to the underlying
representation of the DlsMat type. BAND ELEM(Jac, i, j) references the (i, j)th ele-
ment of the band matrix Jac, counting from 0. This macro is for use in small problems
in which efficiency of access is not a major concern. Thus, in terms of indices m and
n running from 1 to Neq with (m,n) within the band defined by mupper and mlower,
the Jacobian element Jm,n can be loaded with the statement BAND ELEM(Jac, m-1,

n-1) = Jm,n. The elements within the band are those with -mupper ≤ m-n ≤ mlower.
Alternatively, BAND COL(Jac, j) returns a pointer to the diagonal element of the jth
column of Jac, and if we assign this address to realtype *col j, then the ith element
of the jth column is given by BAND COL ELEM(col j, i, j), counting from 0. Thus for
(m,n) within the band, Jm,n can be loaded by setting col n = BAND COL(Jac, n-1);

BAND COL ELEM(col n, m-1, n-1) = Jm,n. The elements of the jth column can also
be accessed via ordinary array indexing, but this approach requires knowledge of the
underlying storage for a band matrix of type DlsMat. The array col n can be indexed
from −mupper to mlower. For large problems, it is more efficient to use the combination
of BAND COL and BAND COL ELEM than to use the BAND ELEM. As in the dense case, these
macros all number rows and columns starting from 0, not 1.

The DlsMat type and the accessor macros BAND ELEM, BAND COL, and BAND COL ELEM

are documented in §8.1.
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If the user’s IDADlsBandJacFn function uses difference quotient approximations, it may
need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, the user will need to add the ida mem structure to
their user data and use the IDAGet* functions described in §4.5.9.1. The unit roundoff
can be accessed as UNIT ROUNDOFF defined in sundials types.h.

For the sake of uniformity, the arguments Neq, mlower, and mupper are of type long

int, even in the case that the Lapack band solver is to be used.

4.6.7 Jacobian information (direct method with sparse Jacobian)

If the direct linear solver with sparse treatment of the Jacobian is used (i.e. either IDAKLU or
IDASuperLUMT is called in Step 8 of §4.4), the user must provide a function of type IDASlsSparseJacFn
defined as follows:

IDASlsSparseJacFn

Definition typedef int (*IDASlsSparseJacFn)(realtype t, realtype c j,

N Vector y, N Vector yp, N Vector r,

SlsMat Jac, void *user data,

N Vector tmp1, N Vector tmp2,N Vector tmp3);

Purpose This function computes the sparse Jacobian J of the DAE system (or an approximation
to it), defined by Eq. (2.5).

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

r is the current value of the residual vector F (t, y, ẏ).

c j is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.5) ).

Jac is the output (approximate) Jacobian matrix, J = ∂F/∂y + cj ∂F/∂ẏ.

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by IDASlsSparseJacFn as temporary storage or work space.

Return value A IDASlsSparseJacFn function type should return 0 if successful, a positive value if a
recoverable error occurred, or a negative value if a nonrecoverable error occurred.

In the case of a recoverable error return, the integrator will attempt to recover by
reducing the stepsize, and hence changing α in (2.5).

Notes A user-supplied sparse Jacobian function must load the compressed-sparse-column ma-
trix Jac with the elements of the Jacobian J(t, y, ẏ) at the point (t, y, yp). Storage
for Jac already exists on entry to this function, although the user should ensure that
sufficient space is allocated in Jac to hold the nonzero values to be set; if the existing
space is insufficient the user may reallocate the data and row index arrays as needed.
The type of Jac is SlsMat, and the amount of allocated space is available within the
SlsMat structure as NNZ. The SlsMat type is further documented in the Section §8.2.

If the user’s IDASlsSparseJacFn function uses difference quotient approximations to
set the specific nonzero matrix entries, then it may need to access quantities not in
the argument list. These include the current step size, the error weights, etc. To
obtain these, the user will need to add the ida mem structure to their user data and
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use the IDAGet* functions described in §4.5.9.1. The unit roundoff can be accessed as
UNIT ROUNDOFF defined in sundials types.h.

4.6.8 Jacobian information (matrix-vector product)

If one of the Krylov iterative linear solvers spgmr, spbcg, or sptfqmr is selected (IDASp* is called
in step 8 of §4.4), the user may provide a function of type IDASpilsJacTimesVecFn, described below,
to compute matrix-vector products Jv. If such a function is not supplied, the default is a difference
quotient approximation to these products.

IDASpilsJacTimesVecFn

Definition typedef int (*IDASpilsJacTimesVecFn)(realtype tt, N Vector yy,

N Vector yp, N Vector rr,

N Vector v, N Vector Jv,

realtype cj, void *user data,

N Vector tmp1, N Vector tmp2);

Purpose This function computes the product Jv of the DAE system Jacobian J (or an approxi-
mation to it) and a given vector v, where J is defined by Eq. (2.5).

Arguments tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

rr is the current value of the residual vector F (t, y, ẏ).

v is the vector by which the Jacobian must be multiplied to the right.

Jv is the computed output vector.

cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.5) ).

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

tmp1

tmp2 are pointers to memory allocated for variables of type N Vector which can
be used by IDASpilsJacTimesVecFn as temporary storage or work space.

Return value The value to be returned by the Jacobian-times-vector function should be 0 if successful.
A nonzero value indicates that a nonrecoverable error occurred.

If the user’s IDASpilsJacTimesVecFn function uses difference quotient approximations,
it may need to access quantities not in the call list. These include the current stepsize,
the error weights, etc. To obtain these, the user will need to add the ida mem structure to
their user data and use the IDAGet* functions described in §4.5.9.1. The unit roundoff
can be accessed as UNIT ROUNDOFF defined in sundials types.h.

4.6.9 Preconditioning (linear system solution)

If preconditioning is used, then the user must provide a C function to solve the linear system Pz = r
where P is a left preconditioner matrix which approximates (at least crudely) the Jacobian matrix
J = ∂F/∂y + cj ∂F/∂ẏ. This function must be of type IDASpilsPrecSolveFn, defined as follows:

IDASpilsPrecSolveFn

Definition typedef int (*IDASpilsPrecSolveFn)(realtype tt, N Vector yy,

N Vector yp, N Vector rr,

N Vector rvec, N Vector zvec,

realtype cj, realtype delta,

void *user data, N Vector tmp);
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Purpose This function solves the preconditioning system Pz = r.

Arguments tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

rr is the current value of the residual vector F (t, y, ẏ).

rvec is the right-hand side vector r of the linear system to be solved.

zvec is the computed output vector.

cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.5) ).

delta is an input tolerance to be used if an iterative method is employed in the
solution. In that case, the residual vector Res = r−Pz of the system should
be made less than delta in weighted l2 norm, i.e.,

√
∑

i(Resi · ewti)2 <
delta. To obtain the N Vector ewt, call IDAGetErrWeights (see §4.5.9.1).

user data is a pointer to user data, the same as the user data parameter passed to
the function IDASetUserData.

tmp is a pointer to memory allocated for a variable of type N Vector which can
be used for work space.

Return value The value to be returned by the preconditioner solve function is a flag indicating whether
it was successful. This value should be 0 if successful, positive for a recoverable error
(in which case the step will be retried), negative for an unrecoverable error (in which
case the integration is halted).

4.6.10 Preconditioning (Jacobian data)

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed, then
this needs to be done in a user-supplied C function of type IDASpilsPrecSetupFn, defined as follows:

IDASpilsPrecSetupFn

Definition typedef int (*IDASpilsPrecSetupFn)(realtype tt, N Vector yy,

N Vector yp, N Vector rr,

realtype cj, void *user data,

N Vector tmp1, N Vector tmp2,

N Vector tmp3);

Purpose This function evaluates and/or preprocesses Jacobian-related data needed by the pre-
conditioner.

Arguments The arguments of an IDASpilsPrecSetupFn are as follows:

tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ẏ(t).

rr is the current value of the residual vector F (t, y, ẏ).

cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (α in Eq. (2.5) ).

user data is a pointer to user data, the same as the user data parameter passed to
the function IDASetUserData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by IDASpilsPrecSetupFn as temporary storage or work space.
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Return value The value to be returned by the preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recov-
erable error (in which case the step will be retried), negative for an unrecoverable error
(in which case the integration is halted).

Notes The operations performed by this function might include forming a crude approximate
Jacobian, and performing an LU factorization on the resulting approximation.

Each call to the preconditioner setup function is preceded by a call to the IDAResFn

user function with the same (tt, yy, yp) arguments. Thus the preconditioner setup
function can use any auxiliary data that is computed and saved during the evaluation
of the DAE residual.

This function is not called in advance of every call to the preconditioner solve function,
but rather is called only as often as needed to achieve convergence in the Newton
iteration.

If the user’s IDASpilsPrecSetupFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, the user will need to add the ida mem structure to
their user data and use the IDAGet* functions described in §4.5.9.1. The unit roundoff
can be accessed as UNIT ROUNDOFF defined in sundials types.h.

4.7 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel DAE solver such as ida lies in the solution of partial differential
equations (PDEs). Moreover, the use of a Krylov iterative method for the solution of many such
problems is motivated by the nature of the underlying linear system of equations (2.4) that must be
solved at each time step. The linear algebraic system is large, sparse, and structured. However, if a
Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner needs to be
used. Otherwise, the rate of convergence of the Krylov iterative method is usually unacceptably slow.
Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-
based problems. It has been successfully used for several realistic, large-scale problems [19] and is
included in a software module within the ida package. This module works with the parallel vector
module nvector parallel and generates a preconditioner that is a block-diagonal matrix with each
block being a band matrix. The blocks need not have the same number of super- and sub-diagonals
and these numbers may vary from block to block. This Band-Block-Diagonal Preconditioner module
is called idabbdpre.

One way to envision these preconditioners is to think of the domain of the computational PDE
problem as being subdivided into M non-overlapping sub-domains. Each of these sub-domains is then
assigned to one of the M processors to be used to solve the DAE system. The basic idea is to isolate the
preconditioning so that it is local to each processor, and also to use a (possibly cheaper) approximate
residual function. This requires the definition of a new function G(t, y, ẏ) which approximates the
function F (t, y, ẏ) in the definition of the DAE system (2.1). However, the user may set G = F .
Corresponding to the domain decomposition, there is a decomposition of the solution vectors y and ẏ
into M disjoint blocks ym and ẏm, and a decomposition of G into blocks Gm. The block Gm depends
on ym and ẏm, and also on components of ym′ and ẏm′ associated with neighboring sub-domains
(so-called ghost-cell data). Let ȳm and ¯̇ym denote ym and ẏm (respectively) augmented with those
other components on which Gm depends. Then we have

G(t, y, ẏ) = [G1(t, ȳ1, ¯̇y1), G2(t, ȳ2, ¯̇y2), . . . , GM (t, ȳM , ¯̇yM )]T , (4.1)

and each of the blocks Gm(t, ȳm, ¯̇ym) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

P = diag[P1, P2, . . . , PM ] (4.2)
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where
Pm ≈ ∂Gm/∂ym + α∂Gm/∂ẏm (4.3)

This matrix is taken to be banded, with upper and lower half-bandwidths mudq and mldq defined as
the number of non-zero diagonals above and below the main diagonal, respectively. The difference
quotient approximation is computed using mudq + mldq +2 evaluations of Gm, but only a matrix of
bandwidth mukeep + mlkeep +1 is retained.

Neither pair of parameters need be the true half-bandwidths of the Jacobians of the local block of
G, if smaller values provide a more efficient preconditioner. Such an efficiency gain may occur if the
couplings in the DAE system outside a certain bandwidth are considerably weaker than those within
the band. Reducing mukeep and mlkeep while keeping mudq and mldq at their true values, discards
the elements outside the narrower band. Reducing both pairs has the additional effect of lumping the
outer Jacobian elements into the computed elements within the band, and requires more caution and
experimentation.

The solution of the complete linear system

Px = b (4.4)

reduces to solving each of the equations
Pmxm = bm (4.5)

and this is done by banded LU factorization of Pm followed by a banded backsolve.
Similar block-diagonal preconditioners could be considered with different treatment of the blocks

Pm. For example, incomplete LU factorization or an iterative method could be used instead of banded
LU factorization.

The idabbdpre module calls two user-provided functions to construct P : a required function
Gres (of type IDABBDLocalFn) which approximates the residual function G(t, y, ẏ) ≈ F (t, y, ẏ) and
which is computed locally, and an optional function Gcomm (of type IDABBDCommFn) which performs
all inter-process communication necessary to evaluate the approximate residual G. These are in
addition to the user-supplied residual function res. Both functions take as input the same pointer
user data as passed by the user to IDASetUserData and passed to the user’s function res. The user
is responsible for providing space (presumably within user data) for components of yy and yp that
are communicated by Gcomm from the other processors, and that are then used by Gres, which should
not do any communication.

IDABBDLocalFn

Definition typedef int (*IDABBDLocalFn)(long int Nlocal, realtype tt,

N Vector yy, N Vector yp, N Vector gval,

void *user data);

Purpose This Gres function computes G(t, y, ẏ). It loads the vector gval as a function of tt,
yy, and yp.

Arguments Nlocal is the local vector length.

tt is the value of the independent variable.

yy is the dependent variable.

yp is the derivative of the dependent variable.

gval is the output vector.

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

Return value An IDABBDLocalFn function type should return 0 to indicate success, 1 for a recoverable
error, or -1 for a non-recoverable error.

Notes This function must assume that all inter-processor communication of data needed to
calculate gval has already been done, and this data is accessible within user data.

The case where G is mathematically identical to F is allowed.
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IDABBDCommFn

Definition typedef int (*IDABBDCommFn)(long int Nlocal, realtype tt,

N Vector yy, N Vector yp, void *user data);

Purpose This Gcomm function performs all inter-processor communications necessary for the ex-
ecution of the Gres function above, using the input vectors yy and yp.

Arguments Nlocal is the local vector length.

tt is the value of the independent variable.

yy is the dependent variable.

yp is the derivative of the dependent variable.

user data is a pointer to user data, the same as the user data parameter passed to
IDASetUserData.

Return value An IDABBDCommFn function type should return 0 to indicate success, 1 for a recoverable
error, or -1 for a non-recoverable error.

Notes The Gcomm function is expected to save communicated data in space defined within the
structure user data.

Each call to the Gcomm function is preceded by a call to the residual function res with
the same (tt, yy, yp) arguments. Thus Gcomm can omit any communications done by
res if relevant to the evaluation of Gres. If all necessary communication was done in
res, then Gcomm = NULL can be passed in the call to IDABBDPrecInit (see below).

Besides the header files required for the integration of the DAE problem (see §4.3), to use the
idabbdpre module, the main program must include the header file ida bbdpre.h which declares the
needed function prototypes.

The following is a summary of the usage of this module and describes the sequence of calls in
the user main program. Steps that are unchanged from the user main program presented in §4.4 are
grayed-out.

1. Initialize MPI

2. Set problem dimensions

3. Set vector of initial values

4. Create ida object

5. Allocate internal memory

6. Set optional inputs

7. Attach iterative linear solver, one of:

(a) flag = IDASpgmr(ida mem, maxl);

(b) flag = IDASpbcg(ida mem, maxl);

(c) flag = IDASptfqmr(ida mem, maxl);

8. Initialize the idabbdpre preconditioner module

Specify the upper and lower bandwidths mudq, mldq and mukeep, mlkeep and call

flag = IDABBDPrecInit(ida mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq rel yy, Gres, Gcomm);

to allocate memory and initialize the internal preconditioner data. The last two arguments of
IDABBDPrecInit are the two user-supplied functions described above.
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9. Set linear solver optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through
calls to idaspils optional input functions.

10. Correct initial values

11. Specify rootfinding problem

12. Advance solution in time

13. Get optional outputs

Additional optional outputs associated with idabbdpre are available by way of two routines
described below, IDABBDPrecGetWorkSpace and IDABBDPrecGetNumGfnEvals.

14. Deallocate memory for solution vector

15. Free solver memory

16. Finalize MPI

The user-callable functions that initialize (step 8 above) or re-initialize the idabbdpre preconditioner
module are described next.

IDABBDPrecInit

Call flag = IDABBDPrecInit(ida mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq rel yy, Gres, Gcomm);

Description The function IDABBDPrecInit initializes and allocates (internal) memory for the id-

abbdpre preconditioner.

Arguments ida mem (void *) pointer to the ida memory block.

Nlocal (long int) local vector dimension.

mudq (long int) upper half-bandwidth to be used in the difference-quotient Ja-
cobian approximation.

mldq (long int) lower half-bandwidth to be used in the difference-quotient Jaco-
bian approximation.

mukeep (long int) upper half-bandwidth of the retained banded approximate Ja-
cobian block.

mlkeep (long int) lower half-bandwidth of the retained banded approximate Jaco-
bian block.

dq rel yy (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dq rel yy=

√
unit roundoff, which

can be specified by passing dq rel yy= 0.0.

Gres (IDABBDLocalFn) the C function which computes the local residual approx-
imation G(t, y, ẏ).

Gcomm (IDABBDCommFn) the optional C function which performs all inter-process
communication required for the computation of G(t, y, ẏ).

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The call to IDABBDPrecInit was successful.

IDASPILS MEM NULL The ida mem pointer was NULL.

IDASPILS MEM FAIL A memory allocation request has failed.

IDASPILS LMEM NULL An idaspils linear solver memory was not attached.

IDASPILS ILL INPUT The supplied vector implementation was not compatible with
block band preconditioner.
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Notes If one of the half-bandwidths mudq or mldq to be used in the difference-quotient cal-
culation of the approximate Jacobian is negative or exceeds the value Nlocal−1, it is
replaced by 0 or Nlocal−1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jaco-
bian of the local block of G, when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computation costs further.

For all four half-bandwidths, the values need not be the same on every processor.

The idabbdpre module also provides a reinitialization function to allow for a sequence of problems
of the same size with idaspgmr/idabbdpre, idaspbcg/idabbdpre, or idasptfqmr/idabbdpre,
provided there is no change in local N, mukeep, or mlkeep. After solving one problem, and after calling
IDAReInit to re-initialize ida for a subsequent problem, a call to IDABBDPrecReInit can be made
to change any of the following: the half-bandwidths mudq and mldq used in the difference-quotient
Jacobian approximations, the relative increment dq rel yy, or one of the user-supplied functions Gres
and Gcomm.

IDABBDPrecReInit

Call flag = IDABBDPrecReInit(ida mem, mudq, mldq, dq rel yy);

Description The function IDABBDPrecReInit reinitializes the idabbdpre preconditioner.

Arguments ida mem (void *) pointer to the ida memory block.

mudq (long int) upper half-bandwidth to be used in the difference-quotient Ja-
cobian approximation.

mldq (long int) lower half-bandwidth to be used in the difference-quotient Jaco-
bian approximation.

dq rel yy (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dq rel yy =

√
unit roundoff, which

can be specified by passing dq rel yy = 0.0.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The call to IDABBDPrecReInit was successful.

IDASPILS MEM NULL The ida mem pointer was NULL.

IDASPILS LMEM NULL An idaspils linear solver memory was not attached.

IDASPILS PMEM NULL The function IDABBDPrecInit was not previously called.

Notes If one of the half-bandwidths mudq or mldq is negative or exceeds the value Nlocal−1,
it is replaced by 0 or Nlocal−1, accordingly.

The following two optional output functions are available for use with the idabbdpre module:

IDABBDPrecGetWorkSpace

Call flag = IDABBDPrecGetWorkSpace(ida mem, &lenrwBBDP, &leniwBBDP);

Description The function IDABBDPrecGetWorkSpace returns the local sizes of the idabbdpre real
and integer workspaces.

Arguments ida mem (void *) pointer to the ida memory block.

lenrwBBDP (long int) local number of real values in the idabbdpre workspace.

leniwBBDP (long int) local number of integer values in the idabbdpre workspace.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer was NULL.

IDASPILS PMEM NULL The idabbdpre preconditioner has not been initialized.



4.7 A parallel band-block-diagonal preconditioner module 71

Notes In terms of the local vector dimension Nl, and smu = min(Nl − 1, mukeep + mlkeep),
the actual size of the real workspace is Nl (2 mlkeep + mukeep + smu +2) realtype

words. The actual size of the integer workspace is Nl integer words.

IDABBDPrecGetNumGfnEvals

Call flag = IDABBDPrecGetNumGfnEvals(ida mem, &ngevalsBBDP);

Description The function IDABBDPrecGetNumGfnEvals returns the cumulative number of calls to
the user Gres function due to the finite difference approximation of the Jacobian blocks
used within idabbdpre’s preconditioner setup function.

Arguments ida mem (void *) pointer to the ida memory block.

ngevalsBBDP (long int) the cumulative number of calls to the user Gres function.

Return value The return value flag (of type int) is one of

IDASPILS SUCCESS The optional output value has been successfully set.

IDASPILS MEM NULL The ida mem pointer was NULL.

IDASPILS PMEM NULL The idabbdpre preconditioner has not been initialized.

In addition to the ngevalsBBDP Gres evaluations, the costs associated with idabbdpre also include
nlinsetups LU factorizations, nlinsetups calls to Gcomm, npsolves banded backsolve calls, and
nrevalsLS residual function evaluations, where nlinsetups is an optional ida output (see §4.5.9.1),
and npsolves and nrevalsLS are linear solver optional outputs (see §4.5.9.6).





Chapter 5

FIDA, an Interface Module for
FORTRAN Applications

The fida interface module is a package of C functions which support the use of the ida solver, for the
solution of DAE systems, in a mixed Fortran/C setting. While ida is written in C, it is assumed here
that the user’s calling program and user-supplied problem-defining routines are written in Fortran.
This package provides the necessary interface to ida for all supplied serial and the parallel nvector

implementations.

5.1 Important note on portability

In this package, the names of the interface functions, and the names of the Fortran user routines
called by them, appear as dummy names which are mapped to actual values by a series of definitions
in the header files. By default, those mapping definitions depend in turn on the C macro F77 FUNC

defined in the header file sundials config.h. The mapping defined by F77 FUNC in turn transforms
the C interface names to match the name-mangling approach used by the supplied Fortran compiler.

By “name-mangling”, we mean that due to the case-independent nature of the Fortran language,
Fortran compilers convert all subroutine and object names to use either all lower-case or all upper-
case characters, and append either zero, one or two underscores as a prefix or suffix to the name. For
example, the Fortran subroutine MyFunction() will be changed to one of myfunction, MYFUNCTION,
myfunction , MYFUNCTION , and so on, depending on the Fortran compiler used.

sundials determines this name-mangling scheme at configuration time (see Appendix A).

5.2 Fortran Data Types

Throughout this documentation, we will refer to data types according to their usage in C. The equiv-
alent types to these may vary, depending on your computer architecture and on how SUNDIALS was
compiled (see Appendix A). A Fortran user should first determine the equivalent types for their
architecture and compiler, and then take care that all arguments passed through this Fortran/C
interface are declared of the appropriate type.

Integers: sundials uses both int and long int types:

• int – equivalent to an INTEGER or INTEGER*4 in Fortran

• long int – this will depend on the computer architecture:

– 32-bit architecture – equivalent to an INTEGER or INTEGER*4 in Fortran

– 64-bit architecture – equivalent to an INTEGER*8 in Fortran
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Real numbers: As discussed in Appendix A, at compilation sundials allows the configuration
option --with-precision, that accepts values of single, double or extended (the default is double).
This choice dictates the size of a realtype variable. The corresponding Fortran types for these
realtype sizes are:

• single – equivalent to a REAL or REAL*4 in Fortran

• double – equivalent to a DOUBLE PRECISION or REAL*8 in Fortran

• extended – equivalent to a REAL*16 in Fortran

5.3 FIDA routines

The user-callable functions, with the corresponding ida functions, are as follows:

• Interface to the nvector modules

– FNVINITS (defined by nvector serial) interfaces to N VNewEmpty Serial.

– FNVINITOMP (defined by nvector openmp) interfaces to N VNewEmpty OpenMP.

– FNVINITPTS (defined by nvector pthreads) interfaces to N VNewEmpty Pthreads.

– FNVINITP (defined by nvector parallel) interfaces to N VNewEmpty Parallel.

• Interface to the main ida module

– FIDAMALLOC interfaces to IDACreate, IDASetUserData, IDAInit, IDASStolerances, and
IDASVtolerances.

– FIDAREINIT interfaces to IDAReInit and IDASStolerances/IDASVtolerances.

– FIDASETIIN, FIDASETVIN, and FIDASETRIN interface to IDASet* functions.

– FIDATOLREINIT interfaces to IDASStolerances/IDASVtolerances.

– FIDACALCIC interfaces to IDACalcIC.

– FIDAEWTSET interfaces to IDAWFtolerances.

– FIDASOLVE interfaces to IDASolve, IDAGet* functions, and to the optional output functions
for the selected linear solver module.

– FIDAGETDKY interfaces to IDAGetDky.

– FIDAGETERRWEIGHTS interfaces to IDAGetErrWeights.

– FIDAGETESTLOCALERR interfaces to IDAGetEstLocalErrors.

– FIDAFREE interfaces to IDAFree.

• Interface to the linear solver modules

– FIDADENSE interfaces to IDADense.

– FIDADENSESETJAC interfaces to IDADlsSetDenseJacFn.

– FIDALAPACKDENSE interfaces to IDALapackDense.

– FIDALAPACKDENSESETJAC interfaces to IDADlsSetDenseJacFn.

– FIDABAND interfaces to IDABand.

– FIDABANDSETJAC interfaces to IDADlsSetBandJacFn.

– FIDALAPACKBAND interfaces to IDALapackBand.

– FIDALAPACKBANDSETJAC interfaces to IDADlsSetBandJacFn.

– FIDAKLU interfaces to IDAKLU.

– FIDAKLUREINIT interfaces to IDAKLUReInit.
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– FIDASUPERLUMT interfaces to IDASuperLUMT.

– FIDASPGMR interfaces to IDASpgmr and spgmr optional input functions.

– FIDASPGMRREINIT interfaces to spgmr optional input functions.

– FIDASPBCG interfaces to IDASpbcg and spbcg optional input functions.

– FIDASPBCGREINIT interfaces to spbcg optional input functions.

– FIDASPTFQMR interfaces to IDASptfqmr and sptfqmr optional input functions.

– FIDASPTFQMRREINIT interfaces to sptfqmr optional input functions.

– FIDASPILSSETJAC interfaces to IDASpilsSetJacTimesVecFn.

– FIDASPILSSETPREC interfaces to IDASpilsSetPreconditioner.

The user-supplied functions, each listed with the corresponding internal interface function which
calls it (and its type within ida), are as follows:

fida routine ida function ida type of
(Fortran, user-supplied) (C, interface) interface function

FIDARESFUN FIDAresfn IDAResFn

FIDAEWT FIDAEwtSet IDAEwtFn

FIDADJAC FIDADenseJac IDADlsDenseJacFn

FIDALapackDenseJac IDADlsDenseJacFn

FIDABJAC FIDABandJac IDADlsBandJacFn

FIDALapackBandJac IDADlsBandJacFn

FIDASPJAC FIDASparseJac IDASlsSparseJacFn

FIDAPSOL FIDAPSol IDASpilsPrecSolveFn

FIDAPSET FIDAPSet IDASpilsPrecSetupFn

FIDAJTIMES FIDAJtimes IDASpilsJacTimesVecFn

In contrast to the case of direct use of ida, and of most Fortran DAE solvers, the names of all user-
supplied routines here are fixed, in order to maximize portability for the resulting mixed-language
program.

5.4 Usage of the FIDA interface module

The usage of fida requires calls to five or more interface functions, depending on the method options
selected, and one or more user-supplied routines which define the problem to be solved. These function
calls and user routines are summarized separately below. Some details are omitted, and the user is
referred to the description of the corresponding ida functions for information on the arguments of
any given user-callable interface routine, or of a given user-supplied function called by an interface
function. The usage of fida for rootfinding, and usage of fida with preconditioner modules, are each
described in later sections.

In the instructions below, steps marked [S] apply to the NVECTOR module nvector serial,
steps marked [O] apply to nvector openmp, steps marked [T] apply to nvector pthreads, while
steps marked [P] apply to nvector parallel,

1. Residual function specification

The user must, in all cases, supply the following Fortran routine

SUBROUTINE FIDARESFUN (T, Y, YP, R, IPAR, RPAR, IER)

DIMENSION Y(*), YP(*), R(*), IPAR(*), RPAR(*)

It must set the R array to F (t, y, ẏ), the residual function of the DAE system, as a function of T
= t and the arrays Y = y and YP = ẏ. The arrays IPAR (of integers) and RPAR (of reals) contain
user data and are the same as those passed to FIDAMALLOC. It should return IER = 0 if it was
successful, IER = 1 if it had a recoverable failure, or IER = -1 if it had a non-recoverable failure.
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2. nvector module initialization

[S] To initialize the serial nvector module, the user must make the following call:

CALL FNVINITS (KEY, NEQ, IER)

where KEY is the solver id (KEY = 2 for ida), NEQ is the size of vectors, and IER is a return flag,
which is set to 0 on success and −1 if a failure occurred.

[O] To initialize the nvector openmp nvector module, the user must make the following call:

CALL FNVINITOMP(KEY, NEQ, NUMTHREADS, IER)

where KEY is the solver id (KEY = 2 for ida), NEQ is the size of vectors, NUMTHREADS is the number
of threads, and IER is a return completion flag which is 0 on success and −1 if a failure occurred.

[T] To initialize the nvector pthreads nvector module, the user must make the following
call:

CALL FNVINITPTS(KEY, NEQ, NUMTHREADS, IER)

where KEY is the solver id (KEY = 2 for ida), NEQ is the size of vectors, NUMTHREADS is the number
of threads, and IER is a return completion flag which is 0 on success and −1 if a failure occurred.

[P] To initialize the distributed memory parallel vector module, the user must make the following
call:

CALL FNVINITP (COMM, KEY, NLOCAL, NGLOBAL, IER)

in which the arguments are: COMM = MPI communicator, KEY = 2 for ida, NLOCAL = the local
size of all vectors on this processor, and NGLOBAL = the system size (and the global size of vectors,
equal to the sum of all values of NLOCAL). The return flag IER is set to 0 on a successful return
and to −1 otherwise.

NOTE: The integers NEQ, NLOCAL, and NGLOBAL should be declared so as to match C type long

int.

If the header file sundials config.h defines SUNDIALS MPI COMM F2C to be 1 (meaning the MPI!

implementation used to build sundials includes the MPI Comm f2c function), then COMM can be
any valid MPI communicator. Otherwise, MPI COMM WORLD will be used, so just pass an integer
value as a placeholder.

3. Problem specification

To set various problem and solution parameters and allocate internal memory, make the following
call:

FIDAMALLOC

Call CALL FIDAMALLOC(T0, Y0, YP0, IATOL, RTOL, ATOL,

& IOUT, ROUT, IPAR, RPAR, IER)

Description This function provides required problem and solution specifications, specifies op-
tional inputs, allocates internal memory, and initializes ida.

Arguments T0 is the initial value of t.
Y0 is an array of initial conditions for y.
YP0 is an array of initial conditions for ẏ.
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IATOL specifies the type for absolute tolerance ATOL: 1 for scalar or 2 for array. If
IATOL= 3, the arguments RTOL and ATOL are ignored and the user is expected
to subsequently call FIDAEWTSET and provide the function FIDAEWT.

RTOL is the relative tolerance (scalar).
ATOL is the absolute tolerance (scalar or array).
IOUT is an integer array of length at least 21 for integer optional outputs.
ROUT is a real array of length at least 6 for real optional outputs.
IPAR is an integer array of user data which will be passed unmodified to all user-

provided routines.
RPAR is a real array of user data which will be passed unmodified to all user-

provided routines.

Return value IER is a return completion flag. Values are 0 for successful return and −1 otherwise.
See printed message for details in case of failure.

Notes The user integer data arrays IOUT and IPAR must be declared as INTEGER*4 or
INTEGER*8 according to the C type long int.

Modifications to the user data arrays IPAR and RPAR inside a user-provided routine
will be propagated to all subsequent calls to such routines.

The optional outputs associated with the main ida integrator are listed in Table 5.2.

As an alternative to providing tolerances in the call to FIDAMALLOC, the user may provide a routine
to compute the error weights used in the WRMS norm evaluations. If supplied, it must have the
following form:

SUBROUTINE FIDAEWT (Y, EWT, IPAR, RPAR, IER)

DIMENSION Y(*), EWT(*), IPAR(*), RPAR(*)

It must set the positive components of the error weight vector EWT for the calculation of the
WRMS norm of Y. On return, set IER = 0 if FIDAEWT was successful, and nonzero otherwise. The
arrays IPAR (of integers) and RPAR (of reals) contain user data and are the same as those passed
to FIDAMALLOC.

If the FIDAEWT routine is provided, then, following the call to FIDAMALLOC, the user must make
the call:

CALL FIDAEWTSET (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied error weight routine. The argument IER is an
error return flag, which is 0 for success or non-zero if an error occurred.

4. Set optional inputs

Call FIDASETIIN, FIDASETRIN, and/or FIDASETVIN to set desired optional inputs, if any. See §5.5
for details.

5. Linear solver specification

The variable-order, variable-coefficient BDF method used by ida involves the solution of linear
systems related to the system Jacobian J = ∂F/∂y + α∂F/∂ẏ. See Eq. (2.4). The user of fida

must call a routine with a specific name to make the desired choice of linear solver.

[S] Dense treatment of the linear system

To use the direct dense linear solver based on the internal ida implementation, the user must
make the call:

CALL FIDADENSE (NEQ, IER)

or
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CALL FIDALAPACKDENSE (NEQ, IER)

where NEQ is the size of the DAE system, depending on whether the internal or a Lapack dense
linear solver is to be used. The argument IER is an error return flag, which is 0 for success , −1
if a memory allocation failure occurred, or −2 for illegal input. In the case of FIDALAPACKDENSE,
NEQ must be declared so as to match C type int.

As an option when using the dense linear solver, the user may supply a routine that computes a
dense approximation of the system Jacobian. If supplied, it must have the following form:

SUBROUTINE FIDADJAC (NEQ, T, Y, YP, R, DJAC, CJ, EWT, H,

& IPAR, RPAR, WK1, WK2, WK3, IER)

DIMENSION Y(*), YP(*), R(*), EWT(*), DJAC(NEQ,*),

& IPAR(*), RPAR(*), WK1(*), WK2(*), WK3(*)

This routine must compute the Jacobian and store it columnwise in DJAC. The vectors WK1, WK2,
and WK3 of length NEQ are provided as work space for use in FIDADJAC. The input arguments T, Y,
YP, R, and CJ are the current values of t, y, ẏ, F (t, y, ẏ), and α, respectively. The arrays IPAR (of
integers) and RPAR (of reals) contain user data and are the same as those passed to FIDAMALLOC.
NOTE: The argument NEQ has a type consistent with C type long int even in the case when the
Lapack dense solver is to be used.

If the user’s FIDADJAC uses difference quotient approximations, it may need to use the error weight
array EWT and current stepsize H in the calculation of suitable increments. It may also need the
unit roundoff, which can be obtained as the optional output ROUT(6), passed from the calling
program to this routine using COMMON.

If the FIDADJAC routine is provided, then, following the call to FIDADENSE (or FIDALAPACKDENSE),
the user must make the call:

CALL FIDADENSESETJAC (FLAG, IER)

or

CALL FIDALAPACKDENSESETJAC (FLAG, IER)

respectively, with FLAG 6= 0 to specify use of the user-supplied Jacobian approximation. The
argument IER is an error return flag, which is 0 for success or non-zero if an error occurred.

Optional outputs specific to the dense case are listed in Table 5.2.

[S] Band treatment of the linear system

The user must make the call:

CALL FIDABAND (NEQ, MU, ML, IER)

or

CALL FIDALAPACKBAND (NEQ, MU, ML, IER)

depending on whether the internal or a Lapack band linear solver is to be used. The arguments
are: MU, the upper half-bandwidth; ML, the lower half-bandwidth; and IER, an error return flag,
which is 0 for success , −1 if a memory allocation failure occurred, or −2 in case an input has an
illegal value. In the case of FIDALAPACKBAND, the arguments NEQ, MU, and ML must be declared so
as to match C type int.

As an option when using the band linear solver, the user may supply a routine that computes a
band approximation of the system Jacobian. If supplied, it must have the following form:
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SUBROUTINE FIDABJAC(NEQ, MU, ML, MDIM, T, Y, YP, R, CJ, BJAC,

& EWT, H, IPAR, RPAR, WK1, WK2, WK3, IER)

DIMENSION Y(*), YP(*), R(*), EWT(*), BJAC(MDIM,*),

& IPAR(*), RPAR(*), WK1(*), WK2(*), WK3(*)

This routine must load the MDIM by NEQ array BJAC with the Jacobian matrix at the current (t, y, ẏ)
in band form. Store in BJAC(k, j) the Jacobian element Ji,j with k = i − j+MU+1 (k = 1 · · · ML +
MU + 1) and j = 1 · · ·N . The vectors WK1, WK2, and WK3 of length NEQ are provided as work space
for use in FIDABJAC. The input arguments T, Y, YP, R, and CJ are the current values of t, y, ẏ,
F (t, y, ẏ), and α, respectively. The arrays IPAR (of integers) and RPAR (of reals) contain user data
and are the same as those passed to FIDAMALLOC. NOTE: The arguments NEQ, MU, ML, and MDIM

have a type consistent with C type long int even in the case when the Lapack band solver is to
be used.

If the user’s FIDABJAC uses difference quotient approximations, it may need to use the error weight
array EWT and current stepsize H in the calculation of suitable increments. It may also need the
unit roundoff, which can be obtained as the optional output ROUT(6), passed from the calling
program to this routine using COMMON.

If the FIDABJAC routine is provided, then, following the call to FIDABAND (or FIDALAPACKBAND),
the user must make the call:

CALL FIDABANDSETJAC (FLAG, IER)

or

CALL FIDALAPACKBANDSETJAC (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian approximation. The argument IER is
an error return flag, which is 0 for success or non-zero if an error occurred.

Optional outputs specific to the band case are listed in Table 5.2.

[S] Sparse direct treatment of the linear system

To use the KLU sparse direct linear solver, the user must make the call:

CALL FIDAKLU (NEQ, NNZ, ORDERING, IER)

where NEQ is the size of the DAE system, NNZ is the maximum number of nonzeros in the Jacobian
matrix, and ORDERING is the matrix ordering desired with possible values from the KLU package
(0 = AMD, 1 = COLAMD). The argument IER is an error return flag which is 0 for success or
negative for an error.

The ida KLU solver will reuse much of the factorization information from one nonlinear iteration
and time step to the next. If at any time the user wants to force a full refactorization or if the
number of nonzeros in the Jacobian matrix changes, the user should make the call

CALL FIDAKLUREINIT(NEQ, NNZ, REINIT_TYPE)

where NEQ is the size of the DAE system, NNZ is the maximum number of nonzeros in the Jacobian
matrix, and REINIT TYPE is 1 or 2. For a value of 1, the matrix will be destroyed and a new one
will be allocated with NNZ nonzeros. For a value of 2, only symbolic and numeric factorizations
will be completed.

Alternatively, to use the SuperLUMT linear solver, the user must make the call:

CALL FIDASUPERLUMT (NEQ, NNZ, ORDERING, IER)
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where the arguments have the same meanings as for FIDAKLU, except that here possible values
for ORDERING derive from the superlumt package and include: 0 for Natural ordering, 1 for
Minimum degree on AT A, 2 for Minimum degree on AT + A, and 3 for COLAMD.

If the either of the sparse direct interface packages are used, then the user must supply the
FIDASPJAC routine that computes a compressed-sparse-column approximation of the system Ja-
cobian J = dF (y)/dy′ + cjdF/dy. If supplied, it must have the following form:

SUBROUTINE FIDASPJAC(T, CJ, Y, YP, R, N, NNZ, JDATA, JRVALS,

& JCPTRS, H, IPAR, RPAR, WK1, WK2, WK3, IER)

It must load the N by N compressed sparse column matrix with storage for NNZ nonzeros, stored in
the arrays JDATA (nonzero values), JRVALS (row indices for each nonzero), JCOLPTRS (indices
for start of each column), with the Jacobian matrix at the current (t, y) in CSC form (see
sundials sparse.h for more information). The arguments are T, the current time, CJ, scalar
in the system proportional to the inverse step size, Y, an array containing state variables, YP,
an array containing state derivatives, R, an array containing the system nonlinear residual, N,
the number of matrix rows/columns in the Jacobian, NNZ, allocated length of nonzero storage,
JDATA, nonzero values in the Jacobian (of length NNZ), JRVALS, row indices for each nonzero in
Jacobian (of length NNZ), JCPTRS, pointers to each Jacobian column in the two preceding arrays
(of length N+1), H, the current step size, IPAR, an array containing integer user data that was
passed to FIDAMALLOC, RPAR, an array containing real user data that was passed to FIDAMALLOC,
WK*, work arrays containing temporary workspace of same size as Y, and IER, error return code
(0 if successful, ¿0 if a recoverable error occurred, or ¡0 if an unrecoverable error ocurred.)

Optional outputs specific to the dense case are listed in Table 5.2.

[S][P] SPGMR treatment of the linear systems

For the Scaled Preconditioned GMRES solution of the linear systems, the user must make the call

CALL FIDASPGMR (MAXL, IGSTYPE, MAXRS, EPLIFAC, DQINCFAC, IER)

The arguments are as follows. MAXL is the maximum Krylov subspace dimension. IGSTYPE indi-
cates the Gram-Schmidt process type: 1 for modified, or 2 for classical. MAXRS maximum number
of restarts. EPLIFAC is the linear convergence tolerance factor. DQINCFAC is the optional incre-
ment factor used in the matrix-vector product Jv. For all the input arguments, a value of 0 or 0.0
indicates the default. IER is an error return flag, which is 0 to indicate success, −1 if a memory
allocation failure occurred, or −2 to indicate an illegal input.

Optional outputs specific to the spgmr case are listed in Table 5.2.

For descriptions of the relevant optional user-supplied routines, see User-supplied routines for
SPGMR/SPBCG/SPTFQMR below.

[S][P] SPBCG treatment of the linear systems

For the Scaled Preconditioned Bi-CGStab solution of the linear systems, the user must make the
call

CALL FIDASPBCG (MAXL, EPLIFAC, DQINCFAC, IER)

The arguments are as follows. MAXL is the maximum Krylov subspace dimension. EPLIFAC is the
linear convergence tolerance factor. DQINCFAC is the optional increment factor used in the matrix-
vector product Jv. For all the input arguments, a value of 0 or 0.0 indicates the default. IER is
an error return flag, which is 0 to indicate success, −1 if a memory allocation failure occurred, or
−2 to indicate an illegal input.

Optional outputs specific to the spbcg case are listed in Table 5.2.
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For descriptions of the relevant optional user-supplied routines, see User-supplied routines for
SPGMR/SPBCG/SPTFQMR below.

[S][P] SPTFQMR treatment of the linear systems

For the Scaled Preconditioned Transpose-Free Quasi-Minimal Residual solution of the linear sys-
tems, the user must make the call

CALL FIDASPTFQMR (MAXL, EPLIFAC, DQINCFAC, IER)

The arguments are as follows. MAXL is the maximum Krylov subspace dimension. EPLIFAC is the
linear convergence tolerance factor. DQINCFAC is the optional increment factor used in the matrix-
vector product Jv. For all the input arguments, a value of 0 or 0.0 indicates the default. IER is
an error return flag, which is 0 to indicate success, −1 if a memory allocation failure occurred, or
−2 to indicate an illegal input.

Optional outputs specific to the sptfqmr case are listed in Table 5.2.

For descriptions of the relevant optional user-supplied routines, see below.

[S][P] Functions used by SPGMR/SPBCG/SPTFQMR

An optional user-supplied routine, FIDAJTIMES, can be provided for Jacobian-vector products. If
it is, then, following the call to FIDASPGMR, FIDASPBCG, or FIDASPTFQMR, the user must make the
call:

CALL FIDASPILSSETJAC (FLAG, IER)

with FLAG 6= 0. The return flag IER is 0 if successful, or negative if a memory error occurred.

If preconditioning is to be done, then the user must call

CALL FIDASPILSSETPREC (FLAG, IER)

with FLAG 6= 0. The return flag IER is 0 if successful, or negative if a memory error occurred. In
addition, the user must supply preconditioner routines FIDAPSET and FIDAPSOL.

[S][P] User-supplied routines for SPGMR/SPBCG/SPTFQMR

With treatment of the linear systems by any of the Krylov iterative solvers, there are three
optional user-supplied routines — FIDAJTIMES, FIDAPSOL, and FIDAPSET. The specifications for
these routines are given below.

As an option when using any of the Krylov iterative solvers, the user may supply a routine that
computes the product of the system Jacobian J = ∂F/∂y + α∂F/∂ẏ and a given vector v. If
supplied, it must have the following form:

SUBROUTINE FIDAJTIMES(T, Y, YP, R, V, FJV, CJ, EWT, H,

& IPAR, RPAR, WK1, WK2, IER)

DIMENSION Y(*), YP(*), R(*), V(*), FJV(*), EWT(*),

& IPAR(*), RPAR(*), WK1(*), WK2(*)

This routine must compute the product vector Jv, where the vector v is stored in V, and store
the product in FJV. On return, set IER = 0 if FIDAJTIMES was successful, and nonzero otherwise.
The vectors W1K and WK2, of length NEQ, are provided as work space for use in FIDAJTIMES. The
input arguments T, Y, YP, R, and CJ are the current values of t, y, ẏ, F (t, y, ẏ), and α, respectively.
The arrays IPAR (of integers) and RPAR (of reals) contain user data and are the same as those
passed to FIDAMALLOC.

If the user’s FIDAJTIMES uses difference quotient approximations, it may need to use the error
weight array EWT and current stepsize H in the calculation of suitable increments. It may also need
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the unit roundoff, which can be obtained as the optional output ROUT(6), passed from the calling
program to this routine using COMMON.

If preconditioning is to be included, the following routine must be supplied, for solution of the
preconditioner linear system:

SUBROUTINE FIDAPSOL(T, Y, YP, R, RV, ZV, CJ, DELTA, EWT,

& IPAR, RPAR, WK1, IER)

DIMENSION Y(*), YP(*), R(*), RV(*), ZV(*), EWT(*),

& IPAR(*), RPAR(*), WK1(*)

It must solve the preconditioner linear system Pz = r, where r = RV is input, and store the solution
z in ZV. Here P is the left preconditioner. The input arguments T, Y, YP, R, and CJ are the current
values of t, y, ẏ, F (t, y, ẏ), and α, respectively. On return, set IER = 0 if FIDAPSOL was successful,
set IER positive if a recoverable error occurred, and set IER negative if a non-recoverable error
occurred.

The arguments EWT and DELTA are input and provide the error weight array and a scalar tolerance,
respectively, for use by FIDAPSOL if it uses an iterative method in its solution. In that case, the
residual vector ρ = r − Pz of the system should be made less than DELTA in weighted ℓ2 norm,
i.e.

√

∑

(ρi ∗ EWT[i])2 < DELTA. The argument WK1 is a work array of length NEQ for use by this
routine. The arrays IPAR (of integers) and RPAR (of reals) contain user data and are the same as
those passed to FIDAMALLOC.

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed,
then the following routine is to be used for the evaluation and preprocessing of the preconditioner:

SUBROUTINE FIDAPSET(T, Y, YP, R, CJ, EWT, H,

& IPAR, RPAR, WK1, WK2, WK3, IER)

DIMENSION Y(*), YP(*), R(*), EWT(*),

& IPAR(*), RPAR(*), WK1(*), WK2(*), WK3(*)

It must perform any evaluation of Jacobian-related data and preprocessing needed for the solution
of the preconditioner linear systems by FIDAPSOL. The input arguments T, Y, YP, R, and CJ are
the current values of t, y, ẏ, F (t, y, ẏ), and α, respectively. On return, set IER = 0 if FIDAPSET
was successful, set IER positive if a recoverable error occurred, and set IER negative if a non-
recoverable error occurred. The arrays IPAR (of integers) and RPAR (of reals) contain user data
and are the same as those passed to FIDAMALLOC.

If the user’s FIDAPSET uses difference quotient approximations, it may need to use the error weight
array EWT and current stepsize H in the calculation of suitable increments. It may also need the
unit roundoff, which can be obtained as the optional output ROUT(6), passed from the calling
program to this routine using COMMON.

If the user calls FIDASPILSSETPREC, the subroutine FIDAPSET must be provided, even if it is not!

needed, and it must return IER = 0.

6. Correct initial values

Optionally, to correct the initial values y and/or ẏ, make the call

CALL FIDACALCIC (ICOPT, TOUT1, IER)

(See §2.1 for details.) The arguments are as follows: ICOPT is 1 for initializing the algebraic
components of y and differential components of ẏ, or 2 for initializing all of y. IER is an error
return flag, which is 0 for success, or negative for a failure (see IDACalcIC return values).
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7. Problem solution

Carrying out the integration is accomplished by making calls as follows:

CALL FIDASOLVE (TOUT, T, Y, YP, ITASK, IER)

The arguments are as follows. TOUT specifies the next value of t at which a solution is desired
(input). T is the value of t reached by the solver on output. Y is an array containing the computed
solution vector y on output. YP is an array containing the computed solution vector ẏ on output.
ITASK is a task indicator and should be set to 1 for normal mode (overshoot TOUT and interpolate),
or to 2 for one-step mode (return after each internal step taken). IER is a completion flag and
will be set to a positive value upon successful return or to a negative value if an error occurred.
These values correspond to the IDASolve returns (see §4.5.6 and §B.2). The current values of the
optional outputs are available in IOUT and ROUT (see Table 5.2).

8. Additional solution output

After a successful return from FIDASOLVE, the routine FIDAGETDKY may be called to get interpo-
lated values of y or any derivative dky/dtk for k not exceeding the current method order, and for
any value of t in the last internal step taken by ida. The call is as follows:

CALL FIDAGETDKY (T, K, DKY, IER)

where T is the input value of t at which solution derivative is desired, K is the derivative order,
and DKY is an array containing the computed vector y(K)(t) on return. The value of T must lie
between TCUR - HLAST and TCUR. The value of K must satisfy 0 ≤ K ≤QLAST. (See the optional
outputs for TCUR, HLAST, and QLAST.) The return flag IER is set to 0 upon successful return, or to
a negative value to indicate an illegal input.

9. Problem reinitialization

To re-initialize the ida solver for the solution of a new problem of the same size as one already
solved, make the following call:

CALL FIDAREINIT (T0, Y0, YP0, IATOL, RTOL, ATOL, IER)

The arguments have the same names and meanings as those of FIDAMALLOC. FIDAREINIT performs
the same initializations as FIDAMALLOC, but does no memory allocation, using instead the existing
internal memory created by the previous FIDAMALLOC call.

Following this call, a call to specify the linear system solver must be made if the choice of linear
solver is being changed. Otherwise, a call to reinitialize the linear solver last used may or may
not be needed, depending on changes in the inputs to it.

In the case of the band solver, for any change in the half-bandwidth parameters, call FIDABAND
(or FIDALAPACKBAND) as described above.

In the case of spgmr, for a change of inputs other than MAXL, make the call

CALL FIDASPGMRREINIT (IGSTYPE, MAXRS, EPLIFAC, DQINCFAC, IER)

which reinitializes spgmr without reallocating its memory. The arguments have the same names
and meanings as those of FIDASPGMR. If MAXL is being changed, then call FIDASPGMR.

In the case of spbcg, for a change in any inputs, make the call

CALL FIDASPBCGREINIT (MAXL, EPLIFAC, DQINCFAC, IER)
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which reinitializes spbcg without reallocating its memory. The arguments have the same names
and meanings as those of FIDASPBCG.

In the case of sptfqmr, for a change in any inputs, make the call

CALL FIDASPTFQMRREINIT (MAXL, EPLIFAC, DQINCFAC, IER)

which reinitializes sptfqmr without reallocating its memory. The arguments have the same names
and meanings as those of FIDASPTFQMR.

10. Memory deallocation

To free the internal memory created by the call to FIDAMALLOC, make the call

CALL FIDAFREE

5.5 FIDA optional input and output

In order to keep the number of user-callable fida interface routines to a minimum, optional inputs
to the ida solver are passed through only three routines: FIDASETIIN for integer optional inputs,
FIDASETRIN for real optional inputs, and FIDASETVIN for real vector (array) optional inputs. These
functions should be called as follows:

CALL FIDASETIIN(KEY, IVAL, IER)

CALL FIDASETRIN(KEY, RVAL, IER)

CALL FIDASETVIN(KEY, VVAL, IER)

where KEY is a quoted string indicating which optoinal input is set (see Table 5.1), IVAL is the input
integer value, RVAL is the input real value (scalar), VVAL is the input real array, and IER is an integer
return flag which is set to 0 on success and a negative value if a failure occurred. IVAL should be
declared so as to match C type long int.

When using FIDASETVIN to specify the variable types (KEY = ’ID VEC’) the components in the
array VVAL must be 1.0 to indicate a differential variable, or 0.0 to indicate an algebraic variable. Note
that this array is required only if FIDACALCIC is to be called with ICOPT = 1, or if algebraic variables
are suppressed from the error test (indicated using FIDASETIIN with KEY = ’SUPPRESS ALG’). When
using FIDASETVIN to specify optional constraints on the solution vector (KEY = ’CONSTR VEC’) the
components in the array VVAL should be one of −2.0, −1.0, 0.0, 1.0, or 2.0. See the description of
IDASetConstraints (§4.5.7.1) for details.

The optional outputs from the ida solver are accessed not through individual functions, but rather
through a pair of arrays, IOUT (integer type) of dimension at least 21, and ROUT (real type) of dimension
at least 6. These arrays are owned (and allocated) by the user and are passed as arguments to
FIDAMALLOC. Table 5.2 lists the entries in these two arrays and specifies the optional variable as well
as the ida function which is actually called to extract the optional output.

For more details on the optional inputs and outputs, see §4.5.7 and §4.5.9.
In addition to the optional inputs communicated through FIDASET* calls and the optional outputs

extracted from IOUT and ROUT, the following user-callable routines are available:
To reset the tolerances at any time, make the following call:

CALL FIDATOLREINIT (IATOL, RTOL, ATOL, IER)

The tolerance arguments have the same names and meanings as those of FIDAMALLOC. The error return
flag IER is 0 if successful, and negative if there was a memory failure or illegal input.

To obtain the error weight array EWT, containing the multiplicative error weights used the WRMS
norms, make the following call:

CALL FIDAGETERRWEIGHTS (EWT, IER)
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Table 5.1: Keys for setting fida optional inputs

Integer optional inputs (FIDASETIIN)
Key Optional input Default value

MAX ORD Maximum LMM method order 5
MAX NSTEPS Maximum no. of internal steps before tout 500
MAX ERRFAIL Maximum no. of error test failures 10
MAX NITERS Maximum no. of nonlinear iterations 4

MAX CONVFAIL Maximum no. of convergence failures 10
SUPPRESS ALG Suppress alg. vars. from error test (1 = TRUE) 0 (= FALSE)
MAX NSTEPS IC Maximum no. of steps for IC calc. 5
MAX NITERS IC Maximum no. of Newton iterations for IC calc. 10

MAX NJE IC Maximum no. of Jac. evals fo IC calc. 4
LS OFF IC Turn off line search (1 = TRUE) 0 (= FALSE)

Real optional inputs (FIDASETRIN)
Key Optional input Default value

INIT STEP Initial step size estimated
MAX STEP Maximum absolute step size ∞

STOP TIME Value of tstop undefined
NLCONV COEF Coeff. in the nonlinear conv. test 0.33

NLCONV COEF IC Coeff. in the nonlinear conv. test for IC calc. 0.0033
STEP TOL IC Lower bound on Newton step for IC calc. uround2/3

Real vector optional inputs (FIDASETVIN)
Key Optional input Default value

ID VEC Differential/algebraic component types undefined
CONSTR VEC Inequality constraints on solution undefined
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Table 5.2: Description of the fida optional output arrays IOUT and ROUT

Integer output array IOUT

Index Optional output ida function
ida main solver

1 LENRW IDAGetWorkSpace

2 LENIW IDAGetWorkSpace

3 NST IDAGetNumSteps

4 NRE IDAGetNumResEvals

5 NETF IDAGetNumErrTestFails

6 NNCFAILS IDAGetNonlinSolvConvFails

7 NNI IDAGetNumNonlinSolvIters

8 NSETUPS IDAGetNumLinSolvSetups

9 QLAST IDAGetLastOrder

10 QCUR IDAGetCurrentOrder

11 NBCKTRKOPS IDAGetNumBacktrackOps

12 NGE IDAGetNumGEvals

idadense and idaband linear solvers
13 LENRWLS IDADlsGetWorkSpace

14 LENIWLS IDADlsGetWorkSpace

15 LS FLAG IDADlsGetLastFlag

16 NRELS IDADlsGetNumResEvals

17 NJE IDADlsGetNumJacEvals

idadense linear solvers
14 LS FLAG IDADlsGetLastFlag

16 NJE IDADlsGetNumJacEvals

idaspgmr, idaspbcg, idasptfqmr linear solvers
13 LENRWLS IDASpilsGetWorkSpace

14 LENIWLS IDASpilsGetWorkSpace

15 LS FLAG IDASpilsGetLastFlag

16 NRELS IDASpilsGetNumResEvals

17 NJE IDASpilsGetNumJtimesEvals

18 NPE IDASpilsGetNumPrecEvals

19 NPS IDASpilsGetNumPrecSolves

20 NLI IDASpilsGetNumLinIters

21 NCFL IDASpilsGetNumConvFails

Real output array ROUT

Index Optional output ida function
1 H0 USED IDAGetActualInitStep

2 HLAST IDAGetLastStep

3 HCUR IDAGetCurrentStep

4 TCUR IDAGetCurrentTime

5 TOLFACT IDAGetTolScaleFactor

6 UROUND unit roundoff
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This computes the EWT array, normally defined by Eq. (2.6). The array EWT, of length NEQ or NLOCAL,
must already have been declared by the user. The error return flag IER is zero if successful, and
negative if there was a memory error.

To obtain the estimated local errors, following a successful call to FIDASOLVE, make the following
call:

CALL FIDAGETESTLOCALERR (ELE, IER)

This computes the ELE array of estimated local errors as of the last step taken. The array ELE must
already have been declared by the user. The error return flag IER is zero if successful, and negative
if there was a memory error.

5.6 Usage of the FIDAROOT interface to rootfinding

The fidaroot interface package allows programs written in Fortran to use the rootfinding feature
of the ida solver module. The user-callable functions in fidaroot, with the corresponding ida

functions, are as follows:

• FIDAROOTINIT interfaces to IDARootInit.

• FIDAROOTINFO interfaces to IDAGetRootInfo.

• FIDAROOTFREE interfaces to IDARootFree.

Note that, at this time fidaroot does not provide support to specify the direction of zero-crossing that
is to be monitored. Instead, all roots are considered. However, the actual direction of zero-crossing is
reported (through the sign of the non-zero elements in the array INFO returned by FIDAROTINFO).

In order to use the rootfinding feature of ida, the following call must be made, after calling
FIDAMALLOC but prior to calling FIDASOLVE, to allocate and initialize memory for the FIDAROOT module:

CALL FIDAROOTINIT (NRTFN, IER)

The arguments are as follows: NRTFN is the number of root functions. IER is a return completion flag;
its values are 0 for success, −1 if the IDA memory was NULL, and −14 if a memory allocation failed.

To specifiy the functions whose roots are to be found, the user must define the following routine:

SUBROUTINE FIDAROOTFN (T, Y, YP, G, IPAR, RPAR, IER)

DIMENSION Y(*), YP(*), G(*), IPAR(*), RPAR(*)

It must set the G array, of length NRTFN, with components gi(t, y, ẏ), as a function of T = t and the
arrays Y = y and YP = ẏ. The arrays IPAR (of integers) and RPAR (of reals) contain user data and are
the same as those passed to FIDAMALLOC. Set IER on 0 if successful, or on a non-zero value if an error
occurred.

When making calls to FIDASOLVE to solve the DAE system, the occurrence of a root is flagged by
the return value IER = 2. In that case, if NRTFN > 1, the functions gi which were found to have a root
can be identified by making the following call:

CALL FIDAROOTINFO (NRTFN, INFO, IER)

The arguments are as follows: NRTFN is the number of root functions. INFO is an integer array of
length NRTFN with root information. IER is a return completion flag; its values are 0 for success,
negative if there was a memory failure. The returned values of INFO(i) (i= 1, . . . , NRTFN) are 0 or
±1, such that INFO(i) = +1 if gi was found to have a root and gi is increasing, INFO(i) = −1 if gi
was found to have a root and gi is dereasing, and INFO(i) = 0 otherwise.

The total number of calls made to the root function FIDAROOTFN, denoted NGE, can be obtained
from IOUT(12). If the fida/ida memory block is reinitialized to solve a different problem via a call
to FIDAREINIT, then the counter NGE is reset to zero.

To free the memory resources allocated by a prior call to FIDAROOTINIT, make the following call:

CALL FIDAROOTFREE

See §4.5.5 for additional information on the rootfinding feature.
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5.7 Usage of the FIDABBD interface to IDABBDPRE

The fidabbd interface sub-module is a package of C functions which, as part of the fida interface
module, support the use of the ida solver with the parallel nvector parallel module, in a combi-
nation of any of the Krylov iterative solver modules with the idabbdpre preconditioner module (see
§4.7).

The user-callable functions in this package, with the corresponding ida and idabbdpre functions,
are as follows:

• FIDABBDINIT interfaces to IDABBDPrecAlloc.

• FIDABBDREINIT interfaces to IDABBDPrecReInit.

• FIDABBDOPT interfaces to idabbdpre optional output functions.

• FIDABBDFREE interfaces to IDABBDPrecFree.

In addition to the Fortran residual function FIDARESFUN, the user-supplied functions used by
this package, are listed below, each with the corresponding interface function which calls it (and its
type within idabbdpre or ida):

fidabbd routine (Fortran) ida function (C) ida function type
FIDAGLOCFN FIDAgloc IDABBDLocalFn

FIDACOMMFN FIDAcfn IDABBDCommFn

FIDAJTIMES FIDAJtimes IDASpilsJacTimesVecFn

As with the rest of the fida routines, the names of all user-supplied routines here are fixed, in order to
maximize portability for the resulting mixed-language program. Additionally, based on flags discussed
above in §5.3, the names of the user-supplied routines are mapped to actual values through a series
of definitions in the header file fidabbd.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main
program described in §5.4 are grayed-out.

1. Residual function specification

2. nvector module initialization

3. Problem specification

4. Set optional inputs

5. Iterative linear solver specification

6. BBD preconditioner initialization

To initialize the idabbdpre preconditioner, make the following call:

CALL FIDABBDINIT (NLOCAL, MUDQ, MLDQ, MU, ML, DQRELY, IER)

The arguments are as follows. NLOCAL is the local size of vectors on this processor. MUDQ and MLDQ

are the upper and lower half-bandwidths to be used in the computation of the local Jacobian blocks
by difference quotients. These may be smaller than the true half-bandwidths of the Jacobian of
the local block of G, when smaller values may provide greater efficiency. MU and ML are the upper
and lower half-bandwidths of the band matrix that is retained as an approximation of the local
Jacobian block. These may be smaller than MUDQ and MLDQ. DQRELY is the relative increment factor
in y for difference quotients (optional). A value of 0.0 indicates the default,

√
unit roundoff. IER

is a return completion flag. A value of 0 indicates success, while a value of −1 indicates that a
memory failure occurred or that an input had an illegal value.
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7. Problem solution

8. idabbdpre Optional outputs

Optional outputs specific to the spgmr, spbcg, or sptfqmr solver are listed in Table 5.2. To
obtain the optional outputs associated with the idabbdpre module, make the following call:

CALL FIDABBDOPT (LENRWBBD, LENIWBBD, NGEBBD)

The arguments should be consistent with C type long int. Their returned values are as follows:
LENRWBBD is the length of real preconditioner work space, in realtype words. LENIWBBD is the
length of integer preconditioner work space, in integer words. Both of these sizes are local to the
current processor. NGEBBD is the number of G(t, y, ẏ) evaluations (calls to FIDALOCFN) so far.

9. Problem reinitialization

If a sequence of problems of the same size is being solved using the spgmr, spbcg, or sptfqmr

linear solver in combination with the idabbdpre preconditioner, then the ida package can be re-
initialized for the second and subsequent problems by calling FIDAREINIT, following which a call
to FIDABBDINIT may or may not be needed. If the input arguments are the same, no FIDABBDINIT

call is needed. If there is a change in input arguments other than MU, ML, or MAXL, then the user
program should make the call

CALL FIDABBDREINIT (NLOCAL, MUDQ, MLDQ, DQRELY, IER)

This reinitializes the idabbdpre preconditioner, but without reallocating its memory. The argu-
ments of the FIDABBDREINIT routine have the same names and meanings as those of FIDABBDINIT.
If the value of MU or ML is being changed, then a call to FIDABBDINIT must be made. Finally, if
MAXL is being changed, then a call to FIDASPGMR, FIDASPBCG, or FIDASPTFQMR must be made; in
this case the linear solver memory is reallocated.

10. Memory deallocation

(The memory allocated for the fidabbd module is deallocated automatically by FIDAFREE.)

11. User-supplied routines

The following two routines must be supplied for use with the idabbdpre module:

SUBROUTINE FIDAGLOCFN (NLOC, T, YLOC, YPLOC, GLOC, IPAR, RPAR, IER)

DIMENSION YLOC(*), YPLOC(*), GLOC(*), IPAR(*), RPAR(*)

This routine is to evaluate the function G(t, y, ẏ) approximating F (possibly identical to F ), in
terms of T = t, and the arrays YLOC and YPLOC (of length NLOC), which are the sub-vectors of y
and ẏ local to this processor. The resulting (local) sub-vector is to be stored in the array GLOC.
IER is a return flag that should be set to 0 if successful, to 1 (for a recoverable error), or to -1 (for
a non-recoverable error). The arrays IPAR (of integers) and RPAR (of reals) contain user data and
are the same as those passed to FIDAMALLOC.

SUBROUTINE FIDACOMMFN (NLOC, T, YLOC, YPLOC, IPAR, RPAR, IER)

DIMENSION YLOC(*), YPLOC(*), IPAR(*), RPAR(*)

This routine is to perform the inter-processor communication necessary for the FIDAGLOCFN rou-
tine. Each call to FIDACOMMFN is preceded by a call to the residual routine FIDARESFUN with the
same arguments T, YLOC, and YPLOC. Thus FIDACOMMFN can omit any communications done by
FIDARESFUN if relevant to the evaluation of GLOC. The arrays IPAR (of integers) and RPAR (of reals)
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contain user data and are the same as those passed to FIDAMALLOC. IER is a return flag that should
be set to 0 if successful, to 1 (for a recoverable error), or to -1 (for a non-recoverable error).

The subroutine FIDACOMMFN must be supplied even if it is empty, and it must return IER = 0. !

Optionally, the user can supply a routine FIDAJTIMES for the evaluation of Jacobian-vector prod-
ucts, as described above in step 5 in §5.4.



Chapter 6

Description of the NVECTOR
module

The sundials solvers are written in a data-independent manner. They all operate on generic vectors
(of type N Vector) through a set of operations defined by the particular nvector implementation.
Users can provide their own specific implementation of the nvector module, or use one of four
provided within sundials – a serial implementation and three parallel implementations. The generic
operations are described below. In the sections following, the implementations provided with sundials

are described.
The generic N Vector type is a pointer to a structure that has an implementation-dependent

content field containing the description and actual data of the vector, and an ops field pointing to a
structure with generic vector operations. The type N Vector is defined as

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {

void *content;

struct _generic_N_Vector_Ops *ops;

};

The generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {

N_Vector (*nvclone)(N_Vector);

N_Vector (*nvcloneempty)(N_Vector);

void (*nvdestroy)(N_Vector);

void (*nvspace)(N_Vector, long int *, long int *);

realtype* (*nvgetarraypointer)(N_Vector);

void (*nvsetarraypointer)(realtype *, N_Vector);

void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst)(realtype, N_Vector);

void (*nvprod)(N_Vector, N_Vector, N_Vector);

void (*nvdiv)(N_Vector, N_Vector, N_Vector);

void (*nvscale)(realtype, N_Vector, N_Vector);

void (*nvabs)(N_Vector, N_Vector);

void (*nvinv)(N_Vector, N_Vector);

void (*nvaddconst)(N_Vector, realtype, N_Vector);

realtype (*nvdotprod)(N_Vector, N_Vector);

realtype (*nvmaxnorm)(N_Vector);

realtype (*nvwrmsnorm)(N_Vector, N_Vector);
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realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvmin)(N_Vector);

realtype (*nvwl2norm)(N_Vector, N_Vector);

realtype (*nvl1norm)(N_Vector);

void (*nvcompare)(realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient)(N_Vector, N_Vector);

};

The generic nvector module defines and implements the vector operations acting on N Vector.
These routines are nothing but wrappers for the vector operations defined by a particular nvector

implementation, which are accessed through the ops field of the N Vector structure. To illustrate
this point we show below the implementation of a typical vector operation from the generic nvector

module, namely N VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)

{

z->ops->nvscale(c, x, z);

}

Table 6.1 contains a complete list of all vector operations defined by the generic nvector module.
Finally, note that the generic nvector module defines the functions N VCloneVectorArray and

N VCloneEmptyVectorArray. Both functions create (by cloning) an array of count variables of type
N Vector, each of the same type as an existing N Vector. Their prototypes are

N_Vector *N_VCloneVectorArray(int count, N_Vector w);

N_Vector *N_VCloneEmptyVectorArray(int count, N_Vector w);

and their definitions are based on the implementation-specific N VClone and N VCloneEmpty opera-
tions, respectively.

An array of variables of type N Vector can be destroyed by calling N VDestroyVectorArray, whose
prototype is

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N VDestroy operation.
A particular implementation of the nvector module must:

• Specify the content field of N Vector.

• Define and implement the vector operations. Note that the names of these routines should be
unique to that implementation in order to permit using more than one nvector module (each
with different N Vector internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an
N Vector with the new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
N Vector (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to
access different parts in the content field of the newly defined N Vector.
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Table 6.1: Description of the NVECTOR operations

Name Usage and Description

N VClone v = N VClone(w);

Creates a new N Vector of the same type as an existing vector w and sets
the ops field. It does not copy the vector, but rather allocates storage
for the new vector.

N VCloneEmpty v = N VCloneEmpty(w);

Creates a new N Vector of the same type as an existing vector w and
sets the ops field. It does not allocate storage for data.

N VDestroy N VDestroy(v);

Destroys the N Vector v and frees memory allocated for its internal
data.

N VSpace N VSpace(nvSpec, &lrw, &liw);

Returns storage requirements for one N Vector. lrw contains the num-
ber of realtype words and liw contains the number of integer words.
This function is advisory only, for use in determining a user’s total space
requirements; it could be a dummy function in a user-supplied nvector

module if that information is not of interest.

N VGetArrayPointer vdata = N VGetArrayPointer(v);

Returns a pointer to a realtype array from the N Vector v. Note
that this assumes that the internal data in N Vector is a contiguous
array of realtype. This routine is only used in the solver-specific in-
terfaces to the dense and banded (serial) linear solvers, the sparse lin-
ear solvers (serial and threaded), and in the interfaces to the banded
(serial) and band-block-diagonal (parallel) preconditioner modules pro-
vided with sundials.

N VSetArrayPointer N VSetArrayPointer(vdata, v);

Overwrites the data in an N Vector with a given array of realtype.
Note that this assumes that the internal data in N Vector is a contigu-
ous array of realtype. This routine is only used in the interfaces to
the dense (serial) linear solver, hence need not exist in a user-supplied
nvector module for a parallel environment.

N VLinearSum N VLinearSum(a, x, b, y, z);

Performs the operation z = ax+ by, where a and b are realtype scalars
and x and y are of type N Vector: zi = axi + byi, i = 0, . . . , n − 1.

N VConst N VConst(c, z);

Sets all components of the N Vector z to realtype c: zi = c, i =
0, . . . , n − 1.

continued on next page
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continued from last page

Name Usage and Description

N VProd N VProd(x, y, z);

Sets the N Vector z to be the component-wise product of the N Vector

inputs x and y: zi = xiyi, i = 0, . . . , n − 1.

N VDiv N VDiv(x, y, z);

Sets the N Vector z to be the component-wise ratio of the N Vector

inputs x and y: zi = xi/yi, i = 0, . . . , n − 1. The yi may not be tested
for 0 values. It should only be called with a y that is guaranteed to have
all nonzero components.

N VScale N VScale(c, x, z);

Scales the N Vector x by the realtype scalar c and returns the result
in z: zi = cxi, i = 0, . . . , n − 1.

N VAbs N VAbs(x, z);

Sets the components of the N Vector z to be the absolute values of the
components of the N Vector x: yi = |xi|, i = 0, . . . , n − 1.

N VInv N VInv(x, z);

Sets the components of the N Vector z to be the inverses of the compo-
nents of the N Vector x: zi = 1.0/xi, i = 0, . . . , n− 1. This routine may
not check for division by 0. It should be called only with an x which is
guaranteed to have all nonzero components.

N VAddConst N VAddConst(x, b, z);

Adds the realtype scalar b to all components of x and returns the result
in the N Vector z: zi = xi + b, i = 0, . . . , n − 1.

N VDotProd d = N VDotProd(x, y);

Returns the value of the ordinary dot product of x and y: d =
∑n−1

i=0 xiyi.

N VMaxNorm m = N VMaxNorm(x);

Returns the maximum norm of the N Vector x: m = maxi |xi|.
N VWrmsNorm m = N VWrmsNorm(x, w)

Returns the weighted root-mean-square norm of the N Vector x with

realtype weight vector w: m =

√

(

∑n−1
i=0 (xiwi)2

)

/n.

N VWrmsNormMask m = N VWrmsNormMask(x, w, id);

Returns the weighted root mean square norm of the N Vector x with
realtype weight vector w built using only the elements of x correspond-
ing to nonzero elements of the N Vector id:

m =

√

(

∑n−1
i=0 (xiwisign(idi))2

)

/n.

N VMin m = N VMin(x);

Returns the smallest element of the N Vector x: m = mini xi.

continued on next page
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continued from last page

Name Usage and Description

N VWL2Norm m = N VWL2Norm(x, w);

Returns the weighted Euclidean ℓ2 norm of the N Vector x with

realtype weight vector w: m =
√

∑n−1
i=0 (xiwi)2.

N VL1Norm m = N VL1Norm(x);

Returns the ℓ1 norm of the N Vector x: m =
∑n−1

i=0 |xi|.
N VCompare N VCompare(c, x, z);

Compares the components of the N Vector x to the realtype scalar c

and returns an N Vector z such that: zi = 1.0 if |xi| ≥ c and zi = 0.0
otherwise.

N VInvTest t = N VInvTest(x, z);

Sets the components of the N Vector z to be the inverses of the com-
ponents of the N Vector x, with prior testing for zero values: zi =
1.0/xi, i = 0, . . . , n−1. This routine returns a boolean assigned to TRUE

if all components of x are nonzero (successful inversion) and returns
FALSE otherwise.

N VConstrMask t = N VConstrMask(c, x, m);

Performs the following constraint tests: xi > 0 if ci = 2, xi ≥ 0 if ci = 1,
xi ≤ 0 if ci = −1, xi < 0 if ci = −2. There is no constraint on xi if
ci = 0. This routine returns a boolean assigned to FALSE if any element
failed the constraint test and assigned to TRUE if all passed. It also
sets a mask vector m, with elements equal to 1.0 where the constraint
test failed, and 0.0 where the test passed. This routine is used only for
constraint checking.

N VMinQuotient minq = N VMinQuotient(num, denom);

This routine returns the minimum of the quotients obtained by term-
wise dividing numi by denomi. A zero element in denom will be skipped.
If no such quotients are found, then the large value BIG REAL (defined
in the header file sundials types.h) is returned.

6.1 The NVECTOR SERIAL implementation

The serial implementation of the nvector module provided with sundials, nvector serial, defines
the content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, and a boolean flag own data which specifies the ownership of
data.

struct _N_VectorContent_Serial {

long int length;

booleantype own_data;

realtype *data;

};

The following five macros are provided to access the content of an nvector serial vector. The suffix
S in the names denotes the serial version.

• NV CONTENT S

This routine gives access to the contents of the serial vector N Vector.
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The assignment v cont = NV CONTENT S(v) sets v cont to be a pointer to the serial N Vector

content structure.

Implementation:

#define NV_CONTENT_S(v) ( (N_VectorContent_Serial)(v->content) )

• NV OWN DATA S, NV DATA S, NV LENGTH S

These macros give individual access to the parts of the content of a serial N Vector.

The assignment v data = NV DATA S(v) sets v data to be a pointer to the first component of
the data for the N Vector v. The assignment NV DATA S(v) = v data sets the component array
of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH S(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH S(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_S(v) ( NV_CONTENT_S(v)->own_data )

#define NV_DATA_S(v) ( NV_CONTENT_S(v)->data )

#define NV_LENGTH_S(v) ( NV_CONTENT_S(v)->length )

• NV Ith S

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n − 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) ( NV_DATA_S(v)[i] )

The nvector serial module defines serial implementations of all vector operations listed in Table
6.1. Their names are obtained from those in Table 6.1 by appending the suffix Serial. The module
nvector serial provides the following additional user-callable routines:

• N VNew Serial

This function creates and allocates memory for a serial N Vector. Its only argument is the
vector length.

N_Vector N_VNew_Serial(long int vec_length);

• N VNewEmpty Serial

This function creates a new serial N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Serial(long int vec_length);

• N VMake Serial

This function creates and allocates memory for a serial vector with user-provided data array.

N_Vector N_VMake_Serial(long int vec_length, realtype *v_data);

• N VCloneVectorArray Serial

This function creates (by cloning) an array of count serial vectors.

N_Vector *N_VCloneVectorArray_Serial(int count, N_Vector w);

• N VCloneEmptyVectorArray Serial

This function creates (by cloning) an array of count serial vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneEmptyVectorArray_Serial(int count, N_Vector w);
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• N VDestroyVectorArray Serial

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Serial or with N VCloneEmptyVectorArray Serial.

void N_VDestroyVectorArray_Serial(N_Vector *vs, int count);

• N VPrint Serial

This function prints the content of a serial vector to stdout.

void N_VPrint_Serial(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA S(v) and then access v data[i] within the loop than
it is to use NV Ith S(v,i) within the loop.

• N VNewEmpty Serial, N VMake Serial, and N VCloneEmptyVectorArray Serial set the field !

own data = FALSE. N VDestroy Serial and N VDestroyVectorArray Serial will not attempt
to free the pointer data for any N Vector with own data set to FALSE. In such a case, it is the
user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector serial implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.2 The NVECTOR PARALLEL implementation

The nvector parallel implementation of the nvector module provided with sundials is based on
MPI. It defines the content field of N Vector to be a structure containing the global and local lengths
of the vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, an
a boolean flag own data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {

long int local_length;

long int global_length;

booleantype own_data;

realtype *data;

MPI_Comm comm;

};

The following seven macros are provided to access the content of a nvector parallel vector. The
suffix P in the names denotes the distributed memory parallel version.

• NV CONTENT P

This macro gives access to the contents of the parallel vector N Vector.

The assignment v cont = NV CONTENT P(v) sets v cont to be a pointer to the N Vector content
structure of type struct N VectorParallelContent.

Implementation:

#define NV_CONTENT_P(v) ( (N_VectorContent_Parallel)(v->content) )

• NV OWN DATA P, NV DATA P, NV LOCLENGTH P, NV GLOBLENGTH P

These macros give individual access to the parts of the content of a parallel N Vector.
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The assignment v data = NV DATA P(v) sets v data to be a pointer to the first component of
the local data for the N Vector v. The assignment NV DATA P(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v llen = NV LOCLENGTH P(v) sets v llen to be the length of the local part of
v. The call NV LENGTH P(v) = llen v sets the local length of v to be llen v.

The assignment v glen = NV GLOBLENGTH P(v) sets v glen to be the global length of the vector
v. The call NV GLOBLENGTH P(v) = glen v sets the global length of v to be glen v.

Implementation:

#define NV_OWN_DATA_P(v) ( NV_CONTENT_P(v)->own_data )

#define NV_DATA_P(v) ( NV_CONTENT_P(v)->data )

#define NV_LOCLENGTH_P(v) ( NV_CONTENT_P(v)->local_length )

#define NV_GLOBLENGTH_P(v) ( NV_CONTENT_P(v)->global_length )

• NV COMM P

This macro provides access to the MPI communicator used by the nvector parallel vectors.

Implementation:

#define NV_COMM_P(v) ( NV_CONTENT_P(v)->comm )

• NV Ith P

This macro gives access to the individual components of the local data array of an N Vector.

The assignment r = NV Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV Ith P(v,i) = r sets the value of the i-th component of the local
part of v to be r.

Here i ranges from 0 to n − 1, where n is the local length.

Implementation:

#define NV_Ith_P(v,i) ( NV_DATA_P(v)[i] )

The nvector parallel module defines parallel implementations of all vector operations listed in
Table 6.1 Their names are obtained from those in Table 6.1 by appending the suffix Parallel. The
module nvector parallel provides the following additional user-callable routines:

• N VNew Parallel

This function creates and allocates memory for a parallel vector.

N_Vector N_VNew_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VNewEmpty Parallel

This function creates a new parallel N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VMake Parallel

This function creates and allocates memory for a parallel vector with user-provided data array.
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N_Vector N_VMake_Parallel(MPI_Comm comm,

long int local_length,

long int global_length,

realtype *v_data);

• N VCloneVectorArray Parallel

This function creates (by cloning) an array of count parallel vectors.

N_Vector *N_VCloneVectorArray_Parallel(int count, N_Vector w);

• N VCloneEmptyVectorArray Parallel

This function creates (by cloning) an array of count parallel vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneEmptyVectorArray_Parallel(int count, N_Vector w);

• N VDestroyVectorArray Parallel

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Parallel or with N VCloneEmptyVectorArray Parallel.

void N_VDestroyVectorArray_Parallel(N_Vector *vs, int count);

• N VPrint Parallel

This function prints the content of a parallel vector to stdout.

void N_VPrint_Parallel(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the local
component array via v data = NV DATA P(v) and then access v data[i] within the loop than
it is to use NV Ith P(v,i) within the loop.

• N VNewEmpty Parallel, N VMake Parallel, and N VCloneEmptyVectorArray Parallel set the !

field own data = FALSE. N VDestroy Parallel and N VDestroyVectorArray Parallel will not
attempt to free the pointer data for any N Vector with own data set to FALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector parallel implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.3 The NVECTOR OPENMP implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel
threads with shared memory, sundials provides an implementation of nvector using OpenMP,
called nvector openmp, and an implementation using pThreads, called nvector pthreads. Test-
ing has shown that vectors should be of length at least 100, 000 before the overhead associated with
creating and using the threads is made up by the parallelism in the vector calculations.

The OpenMP nvector implementation provided with sundials, nvector openmp, defines the
content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, a boolean flag own data which specifies the ownership of data,
and the number of threads. Operations on the vector are threaded using OpenMP.
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struct _N_VectorContent_OpenMP {

long int length;

booleantype own_data;

realtype *data;

int num_threads;

};

The following six macros are provided to access the content of an nvector openmp vector. The
suffix OMP in the names denotes the OpenMP version.

• NV CONTENT OMP

This routine gives access to the contents of the OpenMP vector N Vector.

The assignment v cont = NV CONTENT OMP(v) sets v cont to be a pointer to the OpenMP
N Vector content structure.

Implementation:

#define NV_CONTENT_OMP(v) ( (N_VectorContent_OpenMP)(v->content) )

• NV OWN DATA OMP, NV DATA OMP, NV LENGTH OMP, NV NUM THREADS OMP

These macros give individual access to the parts of the content of a OpenMP N Vector.

The assignment v data = NV DATA OMP(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA OMP(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH OMP(v) sets v len to be the length of v. On the other
hand, the call NV LENGTH OMP(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS OMP(v) sets v num threads to be the num-
ber of threads from v. On the other hand, the call NV NUM THREADS OMP(v) = num threads v

sets the number of threads for v to be num threads v.

Implementation:

#define NV_OWN_DATA_OMP(v) ( NV_CONTENT_OMP(v)->own_data )

#define NV_DATA_OMP(v) ( NV_CONTENT_OMP(v)->data )

#define NV_LENGTH_OMP(v) ( NV_CONTENT_OMP(v)->length )

#define NV_NUM_THREADS_OMP(v) ( NV_CONTENT_OMP(v)->num_threads )

• NV Ith OMP

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith OMP(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith OMP(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n − 1 for a vector of length n.

Implementation:

#define NV_Ith_OMP(v,i) ( NV_DATA_OMP(v)[i] )

The nvector openmp module defines OpenMP implementations of all vector operations listed in
Table 6.1. Their names are obtained from those in Table 6.1 by appending the suffix OpenMP. The
module nvector openmp provides the following additional user-callable routines:

• N VNew OpenMP

This function creates and allocates memory for a OpenMP N Vector. Arguments are the vector
length and number of threads.

N_Vector N_VNew_OpenMP(long int vec_length, int num_threads);
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• N VNewEmpty OpenMP

This function creates a new OpenMP N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_OpenMP(long int vec_length, int num_threads);

• N VMake OpenMP

This function creates and allocates memory for a OpenMP vector with user-provided data array.

N_Vector N_VMake_OpenMP(long int vec_length, realtype *v_data, int num_threads);

• N VCloneVectorArray OpenMP

This function creates (by cloning) an array of count OpenMP vectors.

N_Vector *N_VCloneVectorArray_OpenMP(int count, N_Vector w);

• N VCloneEmptyVectorArray OpenMP

This function creates (by cloning) an array of count OpenMP vectors, each with an empty
(NULL) data array.

N_Vector *N_VCloneEmptyVectorArray_OpenMP(int count, N_Vector w);

• N VDestroyVectorArray OpenMP

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray OpenMP or with N VCloneEmptyVectorArray OpenMP.

void N_VDestroyVectorArray_OpenMP(N_Vector *vs, int count);

• N VPrint OpenMP

This function prints the content of a OpenMP vector to stdout.

void N_VPrint_OpenMP(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA OMP(v) and then access v data[i] within the loop
than it is to use NV Ith OMP(v,i) within the loop.

• N VNewEmpty OpenMP, N VMake OpenMP, and N VCloneEmptyVectorArray OpenMP set the field !

own data = FALSE. N VDestroy OpenMP and N VDestroyVectorArray OpenMP will not attempt
to free the pointer data for any N Vector with own data set to FALSE. In such a case, it is the
user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector openmp implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.4 The NVECTOR PTHREADS implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel
threads with shared memory, sundials provides an implementation of nvector using OpenMP,
called nvector openmp, and an implementation using pThreads, called nvector pthreads. Test-
ing has shown that vectors should be of length at least 100, 000 before the overhead associated with
creating and using the threads is made up by the parallelism in the vector calculations.

The Pthreads nvector implementation provided with sundials, nvector pthreads, defines
the content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, a boolean flag own data which specifies the ownership of data,
and the number of threads. Operations on the vector are threaded using POSIX threads (Pthreads).
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struct _N_VectorContent_Pthreads {

long int length;

booleantype own_data;

realtype *data;

int num_threads;

};

The following six macros are provided to access the content of an nvector pthreads vector. The
suffix PT in the names denotes the Pthreads version.

• NV CONTENT PT

This routine gives access to the contents of the Pthreads vector N Vector.

The assignment v cont = NV CONTENT PT(v) sets v cont to be a pointer to the Pthreads
N Vector content structure.

Implementation:

#define NV_CONTENT_PT(v) ( (N_VectorContent_Pthreads)(v->content) )

• NV OWN DATA PT, NV DATA PT, NV LENGTH PT, NV NUM THREADS PT

These macros give individual access to the parts of the content of a Pthreads N Vector.

The assignment v data = NV DATA PT(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA PT(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH PT(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH PT(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS PT(v) sets v num threads to be the number
of threads from v. On the other hand, the call NV NUM THREADS PT(v) = num threads v sets
the number of threads for v to be num threads v.

Implementation:

#define NV_OWN_DATA_PT(v) ( NV_CONTENT_PT(v)->own_data )

#define NV_DATA_PT(v) ( NV_CONTENT_PT(v)->data )

#define NV_LENGTH_PT(v) ( NV_CONTENT_PT(v)->length )

#define NV_NUM_THREADS_PT(v) ( NV_CONTENT_PT(v)->num_threads )

• NV Ith PT

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith PT(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith PT(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n − 1 for a vector of length n.

Implementation:

#define NV_Ith_PT(v,i) ( NV_DATA_PT(v)[i] )

The nvector pthreads module defines Pthreads implementations of all vector operations listed in
Table 6.1. Their names are obtained from those in Table 6.1 by appending the suffix Pthreads. The
module nvector pthreads provides the following additional user-callable routines:

• N VNew Pthreads

This function creates and allocates memory for a Pthreads N Vector. Arguments are the vector
length and number of threads.

N_Vector N_VNew_Pthreads(long int vec_length, int num_threads);
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• N VNewEmpty Pthreads

This function creates a new Pthreads N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Pthreads(long int vec_length, int num_threads);

• N VMake Pthreads

This function creates and allocates memory for a Pthreads vector with user-provided data array.

N_Vector N_VMake_Pthreads(long int vec_length, realtype *v_data, int num_threads);

• N VCloneVectorArray Pthreads

This function creates (by cloning) an array of count Pthreads vectors.

N_Vector *N_VCloneVectorArray_Pthreads(int count, N_Vector w);

• N VCloneEmptyVectorArray Pthreads

This function creates (by cloning) an array of count Pthreads vectors, each with an empty
(NULL) data array.

N_Vector *N_VCloneEmptyVectorArray_Pthreads(int count, N_Vector w);

• N VDestroyVectorArray Pthreads

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Pthreads or with N VCloneEmptyVectorArray Pthreads.

void N_VDestroyVectorArray_Pthreads(N_Vector *vs, int count);

• N VPrint Pthreads

This function prints the content of a Pthreads vector to stdout.

void N_VPrint_Pthreads(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA PT(v) and then access v data[i] within the loop than
it is to use NV Ith PT(v,i) within the loop.

• N VNewEmpty Pthreads, N VMake Pthreads, and N VCloneEmptyVectorArray Pthreads set the !

field own data = FALSE. N VDestroy Pthreads and N VDestroyVectorArray Pthreads will not
attempt to free the pointer data for any N Vector with own data set to FALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector pthreads implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.5 NVECTOR Examples

There are NVector examples that may be installed for each implementation, serial, parallel, OpenMP
and Pthreads. Each implementation makes use of the functions in test nvector.c. These example
functions show simple usage of the NVector family of functions. The input to the examples are are
the vector length, number of threads (if threaded implementation), and a print timing flag.
The following is a list of the example functions in test nvector.c:

• Test N VClone: Creates clone of vector and checks validity of clone.

• Test N VCloneEmpty: Creates clone of empty vector and checks validity of clone.
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• Test N VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.

• Test N VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned
array.

• Test N VGetArrayPointer: Get array pointer.

• Test N VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check
values.

• Test N VLinearSum Case 1a: Test y = x + y

• Test N VLinearSum Case 1b: Test y = -x + y

• Test N VLinearSum Case 1c: Test y = ax + y

• Test N VLinearSum Case 2a: Test x = x + y

• Test N VLinearSum Case 2b: Test x = x - y

• Test N VLinearSum Case 2c: Test x = x + by

• Test N VLinearSum Case 3: Test z = x + y

• Test N VLinearSum Case 4a: Test z = x - y

• Test N VLinearSum Case 4b: Test z = -x + y

• Test N VLinearSum Case 5a: Test z = x + by

• Test N VLinearSum Case 5b: Test z = ax + y

• Test N VLinearSum Case 6a: Test z = -x + by

• Test N VLinearSum Case 6b: Test z = ax - y

• Test N VLinearSum Case 7: Test z = a(x + y)

• Test N VLinearSum Case 8: Test z = a(x - y)

• Test N VLinearSum Case 9: Test z = ax + by

• Test N VConst: Fill vector with constant and check result.

• Test N VProd: Test vector multiply: z = x * y

• Test N VDiv: Test vector division: z = x / y

• Test N VScale: Case 1: scale: x = cx

• Test N VScale: Case 2: copy: z = x

• Test N VScale: Case 3: negate: z = -x

• Test N VScale: Case 4: combination: z = cx

• Test N VAbs: Create absolute value of vector.

• Test N VAddConst: add constant vector: z = c + x

• Test N VDotProd: Calculate dot product of two vectors.

• Test N VMaxNorm: Create vector with known values, find and validate max norm.

• Test N VWrmsNorm: Create vector of known values, find and validate weighted root mean square.
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• Test N VWrmsNormMask: Case 1:Create vector of known values, find and validate weighted root
mean square using all elements.

• Test N VWrmsNormMask: Case 2:Create vector of known values, find and validate weighted root
mean square using no elements.

• Test N VMin: Create vector, find and validate the min.

• Test N VWL2Norm: Create vector, find and validate the weighted Euclidean L2 norm.

• Test N VL1Norm: Create vector, find and validate the L1 norm.

• Test N VCompare: Compare vector with constant returning and validating comparison vector.

• Test N VInvTest: Test z[i] = 1 / x[i]

• Test N VConstrMask: Test mask of vector x with vector c.

• Test N VMinQuotient: Fill two vectors with known values. Calculate and validate minimum
quotient.

6.6 NVECTOR functions used by IDA

In Table 6.2 below, we list the vector functions used in the nvector module used by the ida package.
The table also shows, for each function, which of the code modules uses the function. The ida column
shows function usage within the main integrator module, while the remaining five columns show
function usage within each of the seven ida linear solvers, the idabbdpre preconditioner module, and
the fida module. Here idadls stands for idadense and idaband; idaspils stands for idaspgmr,
idaspbcg, and idasptfqmr; and idasls stands for idaklu and idasuperlumt.

There is one subtlety in the idaspils column hidden by the table, explained here for the case of
the idaspgmr module. The N VDotProd function is called both within the interface file ida spgmr.c

and within the implementation files sundials spgmr.c and sundials iterative.c for the generic
spgmr solver upon which the idaspgmr solver is built. Also, although N VDiv and N VProd are
not called within the interface file ida spgmr.c, they are called within the implementation file
sundials spgmr.c, and so are required by the idaspgmr solver module. Analogous statements apply
to the idaspbcg and idasptfqmr modules, except that they do not use sundials iterative.c.
This issue does not arise for the direct ida linear solvers because the generic dense and band solvers
(used in the implementation of idadense and idaband) do not make calls to any vector functions.

Of the functions listed in Table 6.1, N VWL2Norm, N VL1Norm, and N VInvTest are not used by ida.
Therefore a user-supplied nvector module for ida could omit these three functions.
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Table 6.2: List of vector functions usage by ida code modules
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N VClone X X X X

N VCloneEmpty X

N VDestroy X X X X

N VSpace X

N VGetArrayPointer X X X X

N VSetArrayPointer X X

N VLinearSum X X X

N VConst X X

N VProd X X

N VDiv X X

N VScale X X X X X

N VAbs X

N VInv X

N VAddConst X

N VDotProd X

N VMaxNorm X

N VWrmsNorm X X

N VMin X

N VMinQuotient X

N VConstrMask X

N VWrmsNormMask X

N VCompare X



Chapter 7

Providing Alternate Linear Solver
Modules

The central ida module interfaces with a linear solver module by way of calls to five functions. These
are denoted here by linit, lsetup, lsolve, lperf, and lfree. Briefly, their purposes are as follows:

• linit: initialize memory specific to the linear solver;

• lsetup: evaluate and preprocess the Jacobian or preconditioner;

• lsolve: solve the linear system;

• lperf: monitor performance and issue warnings;

• lfree: free the linear solver memory.

A linear solver module must also provide a user-callable specification function (like those described
in §4.5.3) which will attach the above five functions to the main ida memory block. The ida memory
block is a structure defined in the header file ida impl.h. A pointer to such a structure is defined as
the type IDAMem. The five fields in an IDAMem structure that must point to the linear solver’s functions
are ida linit, ida lsetup, ida lsolve, ida lperf, and ida lfree, respectively. Note that of the
five interface functions, only lsolve is required. The lfree function must be provided only if the
solver specification function makes any memory allocation. For any of the functions that are not
provided, the corresponding field should be set to NULL. The linear solver specification function must
also set the value of the field ida setupNonNull in the ida memory block — to TRUE if lsetup is
used, or FALSE otherwise.

Typically, the linear solver will require a block of memory specific to the solver, and a principal
function of the specification function is to allocate that memory block, and initialize it. Then the field
ida lmem in the ida memory block is available to attach a pointer to that linear solver memory. This
block can then be used to facilitate the exchange of data between the five interface functions.

If the linear solver involves adjustable parameters, the specification function should set the default
values of those. User-callable functions may be defined that could, optionally, override the default
parameter values.

We encourage the use of performance counters in connection with the various operations involved
with the linear solver. Such counters would be members of the linear solver memory block, would
be initialized in the linit function, and would be incremented by the lsetup and lsolve functions.
Then, user-callable functions would be needed to obtain the values of these counters.

For consistency with the existing ida linear solver modules, we recommend that the return value of
the specification function be 0 for a successful return, and a negative value if an error occurs. Possible
error conditions include: the pointer to the main ida memory block is NULL, an input is illegal, the
nvector implementation is not compatible, or a memory allocation fails.



108 Providing Alternate Linear Solver Modules

These five functions, which interface between ida and the linear solver module, necessarily have
fixed call sequences. Thus a user wishing to implement another linear solver within the ida package
must adhere to this set of interfaces. The following is a complete description of the call list for each
of these functions. Note that the call list of each function includes a pointer to the main ida memory
block, by which the function can access various data related to the ida solution. The contents of this
memory block are given in the file ida impl.h (but not reproduced here, for the sake of space).

7.1 Initialization function

The type definition of linit is

linit

Definition int (*linit)(IDAMem IDA mem);

Purpose The purpose of linit is to complete initializations for the specific linear solver, such
as counters and statistics. It should also set pointers to data blocks that will later be
passed to functions associated with the linear solver. The linit function is called once
only, at the start of the problem, during the first call to IDASolve.

Arguments IDA mem is the ida memory pointer of type IDAMem.

Return value An linit function should return 0 if it has successfully initialized the ida linear solver
and a negative value otherwise.

7.2 Setup function

The type definition of lsetup is

lsetup

Definition int (*lsetup)(IDAMem IDA mem, N Vector yyp, N Vector ypp, N Vector resp,

N Vector vtemp1, N Vector vtemp2, N Vector vtemp3);

Purpose The job of lsetup is to prepare the linear solver for subsequent calls to lsolve, in the
solution of systems Mx = b, where M is some approximation to the system Jacobian,
J = ∂F/∂y + cj ∂F/∂ẏ. (See Eqn. (2.5), in which α = cj). Here cj is available as
IDA mem->ida cj.

The lsetup function may call a user-supplied function, or a function within the linear
solver module, to compute Jacobian-related data that is required by the linear solver.
It may also preprocess that data as needed for lsolve, which may involve calling a
generic function (such as for LU factorization). This data may be intended either for
direct use (in a direct linear solver) or for use in a preconditioner (in a preconditioned
iterative linear solver).

The lsetup function is not called at every time step, but only as frequently as the solver
determines that it is appropriate to perform the setup task. In this way, Jacobian-related
data generated by lsetup is expected to be used over a number of time steps.

Arguments IDA mem is the ida memory pointer of type IDAMem.

yyp is the predicted y vector for the current ida internal step.

ypp is the predicted ẏ vector for the current ida internal step.

resp is the value of the residual function at yyp and ypp, i.e. F (tn, ypred, ẏpred).

vtemp1

vtemp2

vtemp3 are temporary variables of type N Vector provided for use by lsetup.
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Return value The lsetup function should return 0 if successful, a positive value for a recoverable
error, and a negative value for an unrecoverable error. On a recoverable error return,
the solver will attempt to recover by reducing the step size.

7.3 Solve function

The type definition of lsolve is

lsolve

Definition int (*lsolve)(IDAMem IDA mem, N Vector b, N Vector weight,

N Vector ycur, N Vector ypcur, N Vector rescur);

Purpose The lsolve function must solve the linear system, Mx = b, where M is some approxi-
mation to the system Jacobian, J = ∂F/∂y+cj ∂F/∂ẏ (see Eqn. (2.5), in which α = cj),
and the right-hand side vector, b, is input. Here cj is available as IDA mem->ida cj.

lsolve is called once per Newton iteration, hence possibly several times per time step.

If there is an lsetup function, this lsolve function should make use of any Jacobian
data that was computed and preprocessed by lsetup, either for direct use, or for use
in a preconditioner.

Arguments IDA mem is the ida memory pointer of type IDAMem.

b is the right-hand side vector b. The solution is to be returned in the vector b.

weight is a vector that contains the error weights. These are the Wi of (2.6). This
weight vector is included here to enable the computation of weighted norms
needed to test for the convergence of iterative methods (if any) within the
linear solver.

ycur is a vector that contains the solver’s current approximation to y(tn).

ypcur is a vector that contains the solver’s current approximation to ẏ(tn).

rescur is a vector that contains the current residual, F (tn, ycur, ypcur).

Return value The lsolve function should return a positive value for a recoverable error and a neg-
ative value for an unrecoverable error. Success is indicated by a 0 return value. On
a recoverable error return, the solver will attempt to recover, such as by calling the
lsetup function with current arguments.

7.4 Performance monitoring function

The type definition of lperf is

lperf

Definition int (*lperf)(IDAMem IDA mem, int perftask);

Purpose The lperf function is to monitor the performance of the linear solver. It can be used to
compute performance metrics related to the linear solver and issue warnings if these in-
dicate poor performance of the linear solver. The lperf function is called with perftask

= 0 at the start of each call to IDASolve, and then is called with perftask = 1 just
before each internal time step.

Arguments IDA mem is the ida memory pointer of type IDAMem.

perftask is a task flag. perftask = 0 means initialize needed counters. perftask =
1 means evaluate performance and issue warnings if needed. Counters that
are used to compute performance metrics (e.g. counts of iterations within the
lsolve function) should be initialized here when perftask = 0, and used for
the calculation of metrics when perftask = 1.
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Return value The lperf return value is ignored.

7.5 Memory deallocation function

The type definition of lfree is

lfree

Definition void (*lfree)(IDAMem IDA mem);

Purpose The lfree function should free up any memory allocated by the linear solver.

Arguments The argument IDA mem is the ida memory pointer of type IDAMem.

Return value The lfree function has no return value.

Notes This function is called once a problem has been completed and the linear solver is no
longer needed.



Chapter 8

General Use Linear Solver
Components in SUNDIALS

In this chapter, we describe linear solver code components that are included in sundials, but which
are of potential use as generic packages in themselves, either in conjunction with the use of sundials

or separately.
These generic modules in sundials are organized in three families, the dls family, which includes

direct linear solvers appropriate for sequential computations; the sls family, which includes sparse
matrix solvers; and the spils family, which includes scaled preconditioned iterative (Krylov) linear
solvers. The solvers in each family share common data structures and functions.

The dls family contains the following two generic linear solvers:

• The dense package, a linear solver for dense matrices either specified through a matrix type
(defined below) or as simple arrays.

• The band package, a linear solver for banded matrices either specified through a matrix type
(defined below) or as simple arrays.

Note that this family also includes the Blas/Lapack linear solvers (dense and band) available to the
sundials solvers, but these are not discussed here.

The sls family contains a sparse matrix package and interfaces between it and two sparse direct
solver packages:

• The klu package, a linear solver for compressed-sparse-column matrices, [1, 12].

• The superlumt package, a threaded linear solver for compressed-sparse-column matrices, [2,
20, 13].

The spils family contains the following generic linear solvers:

• The spgmr package, a solver for the scaled preconditioned GMRES method.

• The spfgmr package, a solver for the scaled preconditioned Flexible GMRES method.

• The spbcg package, a solver for the scaled preconditioned Bi-CGStab method.

• The sptfqmr package, a solver for the scaled preconditioned TFQMR method.

For reasons related to installation, the names of the files involved in these packages begin with the
prefix sundials . But despite this, each of the dls and spils solvers is in fact generic, in that it is
usable completely independently of sundials.

For the sake of space, the functions for the dense and band modules that work with a matrix
type, and the functions in the spgmr, spfgmr, spbcg, and sptfqmr modules are only summarized
briefly, since they are less likely to be of direct use in connection with a sundials solver. However, the
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functions for dense matrices treated as simple arrays and sparse matrices are fully described, because
we expect that they will be useful in the implementation of preconditioners used with the combination
of one of the sundials solvers and one of the spils linear solvers.

8.1 The DLS modules: DENSE and BAND

The files comprising the dense generic linear solver, and their locations in the sundials srcdir, are
as follows:

• header files (located in srcdir/include/sundials)
sundials direct.h, sundials dense.h,
sundials types.h, sundials math.h, sundials config.h

• source files (located in srcdir/src/sundials)
sundials direct.c, sundials dense.c, sundials math.c

The files comprising the band generic linear solver are as follows:

• header files (located in srcdir/include/sundials)
sundials direct.h, sundials band.h,
sundials types.h, sundials math.h, sundials config.h

• source files (located in srcdir/src/sundials)
sundials direct.c, sundials band.c, sundials math.c

Only two of the preprocessing directives in the header file sundials config.h are relevant to the
dense and band packages by themselves.

• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions: #define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the macros SUNMIN and SUNMAX,
and the function SUNRabs.

The files listed above for either module can be extracted from the sundials srcdir and compiled
by themselves into a separate library or into a larger user code.

8.1.1 Type DlsMat

The type DlsMat, defined in sundials direct.h is a pointer to a structure defining a generic matrix,
and is used with all linear solvers in the dls family:

typedef struct _DlsMat {

int type;

long int M;

long int N;

long int ldim;

long int mu;

long int ml;

long int s_mu;

realtype *data;

long int ldata;

realtype **cols;

} *DlsMat;



8.1 The DLS modules: DENSE and BAND 113

For the dense module, the relevant fields of this structure are as follows. Note that a dense matrix
of type DlsMat need not be square.

type - SUNDIALS DENSE (=1)

M - number of rows

N - number of columns

ldim - leading dimension (ldim ≥ M)

data - pointer to a contiguous block of realtype variables

ldata - length of the data array (= ldim·N). The (i,j)-th element of a dense matrix A of type DlsMat

(with 0 ≤ i < M and 0 ≤ j < N) is given by the expression (A->data)[0][j*M+i]

cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the
array data. The (i,j)-th element of a dense matrix A of type DlsMat (with 0 ≤ i < M and 0 ≤
j < N) is given by the expression (A->cols)[j][i]

For the band module, the relevant fields of this structure are as follows (see Figure 8.1 for a diagram
of the underlying data representation in a banded matrix of type DlsMat). Note that only square
band matrices are allowed.

type - SUNDIALS BAND (=2)

M - number of rows

N - number of columns (N = M)

mu - upper half-bandwidth, 0 ≤ mu < min(M,N)

ml - lower half-bandwidth, 0 ≤ ml < min(M,N)

s mu - storage upper bandwidth, mu ≤ s mu < N. The LU decomposition routine writes the LU
factors into the storage for A. The upper triangular factor U, however, may have an upper
bandwidth as big as min(N-1,mu+ml) because of partial pivoting. The s mu field holds the upper
half-bandwidth allocated for A.

ldim - leading dimension (ldim ≥ s mu)

data - pointer to a contiguous block of realtype variables. The elements of a banded matrix of type
DlsMat are stored columnwise (i.e. columns are stored one on top of the other in memory). Only
elements within the specified half-bandwidths are stored. data is a pointer to ldata contiguous
locations which hold the elements within the band of A.

ldata - length of the data array (= ldim·(s mu+ml+1)

cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the j-th
column. This pointer may be treated as an array indexed from s mu−mu (to access the uppermost
element within the band in the j-th column) to s mu+ml (to access the lowest element within the
band in the j-th column). Indices from 0 to s mu−mu−1 give access to extra storage elements
required by the LU decomposition function. Finally, cols[j][i-j+s mu] is the (i, j)-th element,
j−mu ≤ i ≤ j+ml.



114 General Use Linear Solver Components in SUNDIALS

A (type BandMat)

size data

N

mu ml smu

data[0]

data[1]

data[j]

data[j+1]

data[N−1]

data[j][smu−mu]

data[j][smu]

data[j][smu+ml]

mu+ml+1

smu−mu

A(j−mu−1,j)

A(j−mu,j)

A(j,j)

A(j+ml,j)

Figure 8.1: Diagram of the storage for a banded matrix of type DlsMat. Here A is an N × N band
matrix of type DlsMat with upper and lower half-bandwidths mu and ml, respectively. The rows and
columns of A are numbered from 0 to N − 1 and the (i, j)-th element of A is denoted A(i,j). The
greyed out areas of the underlying component storage are used by the BandGBTRF and BandGBTRS

routines.
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8.1.2 Accessor macros for the DLS modules

The macros below allow a user to efficiently access individual matrix elements without writing out
explicit data structure references and without knowing too much about the underlying element storage.
The only storage assumption needed is that elements are stored columnwise and that a pointer to the
j-th column of elements can be obtained via the DENSE COL or BAND COL macros. Users should use
these macros whenever possible.

The following two macros are defined by the dense module to provide access to data in the DlsMat
type:

• DENSE ELEM

Usage : DENSE ELEM(A,i,j) = a ij; or a ij = DENSE ELEM(A,i,j);

DENSE ELEM references the (i,j)-th element of the M × N DlsMat A, 0 ≤ i < M , 0 ≤ j < N .

• DENSE COL

Usage : col j = DENSE COL(A,j);

DENSE COL references the j-th column of the M × N DlsMat A, 0 ≤ j < N . The type of the
expression DENSE COL(A,j) is realtype * . After the assignment in the usage above, col j

may be treated as an array indexed from 0 to M − 1. The (i, j)-th element of A is referenced
by col j[i].

The following three macros are defined by the band module to provide access to data in the DlsMat
type:

• BAND ELEM

Usage : BAND ELEM(A,i,j) = a ij; or a ij = BAND ELEM(A,i,j);

BAND ELEM references the (i,j)-th element of the N ×N band matrix A, where 0 ≤ i, j ≤ N −1.
The location (i,j) should further satisfy j−(A->mu) ≤ i ≤ j+(A->ml).

• BAND COL

Usage : col j = BAND COL(A,j);

BAND COL references the diagonal element of the j-th column of the N × N band matrix A, 0 ≤
j ≤ N − 1. The type of the expression BAND COL(A,j) is realtype *. The pointer returned by
the call BAND COL(A,j) can be treated as an array which is indexed from −(A->mu) to (A->ml).

• BAND COL ELEM

Usage : BAND COL ELEM(col j,i,j) = a ij; or a ij = BAND COL ELEM(col j,i,j);

This macro references the (i,j)-th entry of the band matrix A when used in conjunction with
BAND COL to reference the j-th column through col j. The index (i,j) should satisfy j−(A->mu)
≤ i ≤ j+(A->ml).

8.1.3 Functions in the DENSE module

The dense module defines two sets of functions with corresponding names. The first set contains
functions (with names starting with a capital letter) that act on dense matrices of type DlsMat. The
second set contains functions (with names starting with a lower case letter) that act on matrices
represented as simple arrays.

The following functions for DlsMat dense matrices are available in the dense package. For full
details, see the header files sundials direct.h and sundials dense.h.

• NewDenseMat: allocation of a DlsMat dense matrix;

• DestroyMat: free memory for a DlsMat matrix;
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• PrintMat: print a DlsMat matrix to standard output.

• NewLintArray: allocation of an array of long int integers for use as pivots with DenseGETRF

and DenseGETRS;

• NewIntArray: allocation of an array of int integers for use as pivots with the Lapack dense
solvers;

• NewRealArray: allocation of an array of realtype for use as right-hand side with DenseGETRS;

• DestroyArray: free memory for an array;

• SetToZero: load a matrix with zeros;

• AddIdentity: increment a square matrix by the identity matrix;

• DenseCopy: copy one matrix to another;

• DenseScale: scale a matrix by a scalar;

• DenseGETRF: LU factorization with partial pivoting;

• DenseGETRS: solution of Ax = b using LU factorization (for square matrices A);

• DensePOTRF: Cholesky factorization of a real symmetric positive matrix;

• DensePOTRS: solution of Ax = b using the Cholesky factorization of A;

• DenseGEQRF: QR factorization of an m × n matrix, with m ≥ n;

• DenseORMQR: compute the product w = Qv, with Q calculated using DenseGEQRF;

• DenseMatvec: compute the product y = Ax, for an M by N matrix A;

The following functions for small dense matrices are available in the dense package:

• newDenseMat

newDenseMat(m,n) allocates storage for an m by n dense matrix. It returns a pointer to the newly
allocated storage if successful. If the memory request cannot be satisfied, then newDenseMat

returns NULL. The underlying type of the dense matrix returned is realtype**. If we allocate
a dense matrix realtype** a by a = newDenseMat(m,n), then a[j][i] references the (i,j)-th
element of the matrix a, 0 ≤ i < m, 0 ≤ j < n, and a[j] is a pointer to the first element in
the j-th column of a. The location a[0] contains a pointer to m × n contiguous locations which
contain the elements of a.

• destroyMat

destroyMat(a) frees the dense matrix a allocated by newDenseMat;

• newLintArray

newLintArray(n) allocates an array of n integers, all long int. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

• newIntArray

newIntArray(n) allocates an array of n integers, all int. It returns a pointer to the first element
in the array if successful. It returns NULL if the memory request could not be satisfied.

• newRealArray

newRealArray(n) allocates an array of n realtype values. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.
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• destroyArray

destroyArray(p) frees the array p allocated by newLintArray, newIntArray, or newRealArray;

• denseCopy

denseCopy(a,b,m,n) copies the m by n dense matrix a into the m by n dense matrix b;

• denseScale

denseScale(c,a,m,n) scales every element in the m by n dense matrix a by the scalar c;

• denseAddIdentity

denseAddIdentity(a,n) increments the square n by n dense matrix a by the identity matrix
In;

• denseGETRF

denseGETRF(a,m,n,p) factors the m by n dense matrix a, using Gaussian elimination with row
pivoting. It overwrites the elements of a with its LU factors and keeps track of the pivot rows
chosen in the pivot array p.

A successful LU factorization leaves the matrix a and the pivot array p with the following
information:

1. p[k] contains the row number of the pivot element chosen at the beginning of elimination
step k, k = 0, 1, ...,n−1.

2. If the unique LU factorization of a is given by Pa = LU , where P is a permutation matrix,
L is an m by n lower trapezoidal matrix with all diagonal elements equal to 1, and U is an
n by n upper triangular matrix, then the upper triangular part of a (including its diagonal)
contains U and the strictly lower trapezoidal part of a contains the multipliers, I −L. If a
is square, L is a unit lower triangular matrix.

denseGETRF returns 0 if successful. Otherwise it encountered a zero diagonal element during
the factorization, indicating that the matrix a does not have full column rank. In this case
it returns the column index (numbered from one) at which it encountered the zero.

• denseGETRS

denseGETRS(a,n,p,b) solves the n by n linear system ax = b. It assumes that a (of size
n × n) has been LU-factored and the pivot array p has been set by a successful call to
denseGETRF(a,n,n,p). The solution x is written into the b array.

• densePOTRF

densePOTRF(a,m) calculates the Cholesky decomposition of the m by m dense matrix a, assumed
to be symmetric positive definite. Only the lower triangle of a is accessed and overwritten with
the Cholesky factor.

• densePOTRS

densePOTRS(a,m,b) solves the m by m linear system ax = b. It assumes that the Cholesky
factorization of a has been calculated in the lower triangular part of a by a successful call to
densePOTRF(a,m).

• denseGEQRF

denseGEQRF(a,m,n,beta,wrk) calculates the QR decomposition of the m by n matrix a (m ≥
n) using Householder reflections. On exit, the elements on and above the diagonal of a contain
the n by n upper triangular matrix R; the elements below the diagonal, with the array beta,
represent the orthogonal matrix Q as a product of elementary reflectors. The real array wrk, of
length m, must be provided as temporary workspace.
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• denseORMQR

denseORMQR(a,m,n,beta,v,w,wrk) calculates the product w = Qv for a given vector v of length
n, where the orthogonal matrix Q is encoded in the m by n matrix a and the vector beta of
length n, after a successful call to denseGEQRF(a,m,n,beta,wrk). The real array wrk, of length
m, must be provided as temporary workspace.

• denseMatvec

denseMatvec(a,x,y,m,n) calculates the product y = ax for a given vector x of length n, and m

by n matrix a.

8.1.4 Functions in the BAND module

The band module defines two sets of functions with corresponding names. The first set contains
functions (with names starting with a capital letter) that act on band matrices of type DlsMat. The
second set contains functions (with names starting with a lower case letter) that act on matrices
represented as simple arrays.

The following functions for DlsMat banded matrices are available in the band package. For full
details, see the header files sundials direct.h and sundials band.h.

• NewBandMat: allocation of a DlsMat band matrix;

• DestroyMat: free memory for a DlsMat matrix;

• PrintMat: print a DlsMat matrix to standard output.

• NewLintArray: allocation of an array of int integers for use as pivots with BandGBRF and
BandGBRS;

• NewIntArray: allocation of an array of int integers for use as pivots with the Lapack band
solvers;

• NewRealArray: allocation of an array of realtype for use as right-hand side with BandGBRS;

• DestroyArray: free memory for an array;

• SetToZero: load a matrix with zeros;

• AddIdentity: increment a square matrix by the identity matrix;

• BandCopy: copy one matrix to another;

• BandScale: scale a matrix by a scalar;

• BandGBTRF: LU factorization with partial pivoting;

• BandGBTRS: solution of Ax = b using LU factorization;

• BandMatvec: compute the product y = Ax, for a square band matrix A;

The following functions for small band matrices are available in the band package:

• newBandMat

newBandMat(n, smu, ml) allocates storage for an n by n band matrix with lower half-bandwidth
ml.

• destroyMat

destroyMat(a) frees the band matrix a allocated by newBandMat;
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• newLintArray

newLintArray(n) allocates an array of n integers, all long int. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

• newIntArray

newIntArray(n) allocates an array of n integers, all int. It returns a pointer to the first element
in the array if successful. It returns NULL if the memory request could not be satisfied.

• newRealArray

newRealArray(n) allocates an array of n realtype values. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

• destroyArray

destroyArray(p) frees the array p allocated by newLintArray, newIntArray, or newRealArray;

• bandCopy

bandCopy(a,b,n,a smu, b smu,copymu, copyml) copies the n by n band matrix a into the n

by n band matrix b;

• bandScale

bandScale(c,a,n,mu,ml,smu) scales every element in the n by n band matrix a by c;

• bandAddIdentity

bandAddIdentity(a,n,smu) increments the n by n band matrix a by the identity matrix;

• bandGETRF

bandGETRF(a,n,mu,ml,smu,p) factors the n by n band matrix a, using Gaussian elimination
with row pivoting. It overwrites the elements of a with its LU factors and keeps track of the
pivot rows chosen in the pivot array p.

• bandGETRS

bandGETRS(a,n,smu,ml,p,b) solves the n by n linear system ax = b. It assumes that a (of
size n × n) has been LU-factored and the pivot array p has been set by a successful call to
bandGETRF(a,n,mu,ml,smu,p). The solution x is written into the b array.

• bandMatvec

bandMatvec(a,x,y,n,mu,ml,smu) calculates the product y = ax for a given vector x of length
n, and n by n band matrix a.

8.2 The SLS module

sundials provides a compressed-sparse-column matrix type and sparse matrix support functions. In
addition, sundials provides interfaces to the publically available KLU and SuperLU MT sparse direct
solver packages. The files comprising the sls matrix module, used in the klu and superlumt linear
solver packages, and their locations in the sundials srcdir, are as follows:

• header files (located in srcdir/include/sundials)
sundials sparse.h, sundials klu impl.h,
sundials superlumt impl.h, sundials types.h,
sundials math.h, sundials config.h

• source files (located in srcdir/src/sundials)
sundials sparse.c, sundials math.c
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Only two of the preprocessing directives in the header file sundials config.h are relevant to the sls

package by itself:

• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions: #define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the macros SUNMIN and SUNMAX,
and the function SUNRabs.

8.2.1 Type SlsMat

The type SlsMat, defined in sundials sparse.h is a pointer to a structure defining a generic
compressed-sparse-column matrix, and is used with all linear solvers in the sls family:

typedef struct _SlsMat {

int M;

int N;

int NNZ;

realtype *data;

int *rowvals;

int *colptrs;

} *SlsMat;

The fields of this structure are as follows (see Figure 8.2 for a diagram of the underlying compressed-
sparse-column representation in a sparse matrix of type SlsMat). Note that a sparse matrix of type
SlsMat need not be square.

M - number of rows

N - number of columns

NNZ - maximum number of nonzero entries in the matrix (allocated length of data and rowvals

arrays)

data - pointer to a contiguous block of realtype variables (of length NNZ), containing the values of
the nonzero entries in the matrix

rowvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices
of each nonzero entry held in data

colptrs - pointer to a contiguous block of int variables (of length N+1). Each entry provides the
index of the first column entry into the data and rowvals arrays, e.g. if colptr[3]=7, then
the first nonzero entry in the fourth column of the matrix is located in data[7], and is located
in row rowvals[7] of the matrix. The last entry contains the total number of nonzero values
in the matrix and hence points one past the end of the active data in the data and rowvals

arrays.

For example, the 5 × 4 matrix












0 3 1 0
3 0 0 2
0 7 0 0
1 0 0 9
0 0 0 5













could be stored in a SlsMat structure as either
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M = 5;

N = 4;

NNZ = 8;

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};

rowvals = {1, 3, 0, 2, 0, 1, 3, 4};

colptrs = {0, 2, 4, 5, 8};

or

M = 5;

N = 4;

NNZ = 10;

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};

rowvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};

colptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with *

may contain any values). Note in both cases that the final value in colptrs is 8. The work associated
with operations on the sparse matrix is proportional to this value and so one should use the best
understanding of the number of nonzeroes here.

8.2.2 Functions in the SLS module

The sls module defines functions that act on sparse matrices of type SlsMat. For full details, see the
header file sundials sparse.h.

• NewSparseMat

NewSparseMat(M, N, NNZ) allocates storage for an M by N sparse matrix, with storage for up
to NNZ nonzero entries.

• SlsConvertDls

SlsConvertDls(A) converts a dense or band matrix A of type DlsMat into a new sparse matrix
of type SlsMat by retaining only the nonzero values of the matrix A.

• DestroySparseMat

DestroySparseMat(A) frees the memory for a sparse matrix A allocated by either NewSparseMat
or SlsConvertDls.

• SlsSetToZero(A) zeros out the SlsMat matrix A. The storage for A is left unchanged.

• CopySparseMat

CopySparseMat(A, B) copies the SlsMat A into the SlsMat B. It is assumed that the matrices
have the same row/column dimensions. If B has insufficient storage to hold all the nonzero
entries of A, the data and row index arrays in B are reallocated to match those in A.

• ScaleSparseMat

ScaleSparseMat(c, A) scales every element in the SlsMat A by the realtype scalar c.

• AddIdentitySparseMat

AddIdentitySparseMat(A) increments the SlsMat A by the identity matrix. If A is not square,
only the existing diagonal values are incremented. Resizes the data and rowvals arrays of A to
allow for new nonzero entries on the diagonal.

• SlsAddMat

SlsAddMat(A, B) adds two SlsMat matrices A and B, placing the result back in A. Resizes the
data and rowvals arrays of A upon completion to exactly match the nonzero storage for the
result. Upon successful completion, the return value is zero; otherwise -1 is returned.
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colptrs

M

rowvals data

NNZNA (type SlsMat)

k

nz

0

j

A(rowvals[nz−1],N−1)

A(rowvals[k],N−1)

A(rowvals[j],1)

A(rowvals[1],0)

A(rowvals[0],0)

column 0

column N−1

unused
storage

Figure 8.2: Diagram of the storage for a compressed-sparse-column matrix of type SlsMat. Here A

is an M × N sparse matrix of type SlsMat with storage for up to NNZ nonzero entries (the allocated
length of both data and rowvals). The entries in rowvals may assume values from 0 to M − 1,
corresponding to the row index (zero-based) of each nonzero value. The entries in data contain the
values of the nonzero entries, with the row i, column j entry of A (again, zero-based) denoted as
A(i,j). The colptrs array contains N + 1 entries; the first N denote the starting index of each
column within the rowvals and data arrays, while the final entry points one past the final nonzero
entry. Here, although NNZ values are allocated, only nz are actually filled in; the greyed-out portions
of data and rowvals indicate extra allocated space.
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• ReallocSparseMat

ReallocSparseMat(A) eliminates unused storage in the SlsMat A by resizing the internal data
and rowvals arrays to contain exactly colptrs[N] values.

• SlsMatvec

SlsMatvec(A, x, y) computes the sparse matrix-vector product, y = Ax. If the SlsMat A is a
sparse matrix of dimension M × N , then it is assumed that x is a realtype array of length N ,
and y is a realtype array of length M . Upon successful completion, the return value is zero;
otherwise -1 is returned.

• PrintSparseMat

PrintSparseMat(A) Prints the SlsMat matrix A to standard output.

8.2.3 The KLU solver

klu is a sparse matrix factorization and solver library written by Tim Davis [1, 12]. klu has a
symbolic factorization routine that computes the permutation of the linear system matrix to block
triangular form and the permutations that will pre-order the diagonal blocks (the only ones that need
to be factored) to reduce fill-in (using AMD, COLAMD, CHOLAMD, natural, or an ordering given
by the user). Note that SUNDIALS uses the COLAMD ordering by default with klu.

klu breaks the factorization into two separate parts. The first is a symbolic factorization and the
second is a numeric factorization that returns the factored matrix along with final pivot information.
klu also has a refactor routine that can be called instead of the numeric factorization. This routine
will reuse the pivot information. This routine also returns diagnostic information that a user can
examine to determine if numerical stability is being lost and a full numerical factorization should be
done instead of the refactor.

The klu interface in sundials will perform the symbolic factorization once. It then calls the
numerical factorization once and will call the refactor routine until estimates of the numerical condi-
tioning suggest a new factorization should be completed. The klu interface also has a ReInit routine
that can be used to force a full refactorization at the next solver setup call.

In order to use the sundials interface to klu, it is assumed that klu has been installed on the
system prior to installation of sundials, and that sundials has been configured appropriately to link
with klu (see Appendix A for details).

Designed for serial calculations only, klu is supported for calculations employing sundials’ serial
or shared-memory parallel nvector modules (see Sections 6.1, 6.3 and 6.4 for details).

8.2.4 The SUPERLUMT solver

superlumt is a threaded sparse matrix factorization and solver library written by X. Sherry Li
[2, 20, 13]. The package performs matrix factorization using threads to enhance efficiency in shared
memory parallel environments. It should be noted that threads are only used in the factorization step.

In order to use the sundials interface to superlumt, it is assumed that superlumt has been
installed on the system prior to installation of sundials, and that sundials has been configured
appropriately to link with superlumt (see Appendix A for details).

Designed for serial and threaded calculations only, superlumt is supported for calculations em-
ploying sundials’ serial or shared-memory parallel nvector modules (see Sections 6.1, 6.3 and 6.4
for details).

8.3 The SPILS modules: SPGMR, SPFGMR, SPBCG, and
SPTFQMR

The spils modules contain implementations of some of the most commonly use scaled preconditioned
Krylov solvers. A linear solver module from the spils family can be used in conjunction with any
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nvector implementation library.

8.3.1 The SPGMR module

The spgmr package, in the files sundials spgmr.h and sundials spgmr.c, includes an implemen-
tation of the scaled preconditioned GMRES method. A separate code module, implemented in
sundials iterative.(h,c), contains auxiliary functions that support spgmr, as well as the other
Krylov solvers in sundials (spfgmr, spbcg, and sptfqmr). For full details, including usage instruc-
tions, see the header files sundials spgmr.h and sundials iterative.h.

The files comprising the spgmr generic linear solver, and their locations in the sundials srcdir,
are as follows:

• header files (located in srcdir/include/sundials)
sundials spgmr.h, sundials iterative.h, sundials nvector.h,
sundials types.h, sundials math.h, sundials config.h

• source files (located in srcdir/src/sundials)
sundials spgmr.c, sundials iterative.c, sundials nvector.c

Only two of the preprocessing directives in the header file sundials config.h are required to use the
spgmr package by itself:

• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions:
#define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the macros SUNMIN, SUNMAX, and
SUNSQR, and the functions SUNRabs and SUNRsqrt.

The generic nvector files, sundials nvector.(h,c) are needed for the definition of the generic
N Vector type and functions. The nvector functions used by the spgmr module are: N VDotProd,
N VLinearSum, N VScale, N VProd, N VDiv, N VConst, N VClone, N VCloneVectorArray, N VDestroy,
and N VDestroyVectorArray.

The nine files listed above can be extracted from the sundials srcdir and compiled by themselves
into an spgmr library or into a larger user code.

The following functions are available in the spgmr package:

• SpgmrMalloc: allocation of memory for SpgmrSolve;

• SpgmrSolve: solution of Ax = b by the spgmr method;

• SpgmrFree: free memory allocated by SpgmrMalloc.

The following functions are available in the support package sundials iterative.(h,c):

• ModifiedGS: performs modified Gram-Schmidt procedure;

• ClassicalGS: performs classical Gram-Schmidt procedure;

• QRfact: performs QR factorization of Hessenberg matrix;

• QRsol: solves a least squares problem with a Hessenberg matrix factored by QRfact.
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8.3.2 The SPFGMR module

The spfgmr package, in the files sundials spfgmr.h and sundials spfgmr.c, includes an imple-
mentation of the scaled preconditioned Flexible GMRES method. For full details, including usage
instructions, see the file sundials spfgmr.h.

The files needed to use the spfgmr module by itself are the same as for the spgmr module, but
with sundials spfgmr.(h,c) in place of sundials spgmr.(h,c).

The following functions are available in the spfgmr package:

• SpfgmrMalloc: allocation of memory for SpfgmrSolve;

• SpfgmrSolve: solution of Ax = b by the spfgmr method;

• SpfgmrFree: free memory allocated by SpfgmrMalloc.

8.3.3 The SPBCG module

The spbcg package, in the files sundials spbcgs.h and sundials spbcgs.c, includes an implemen-
tation of the scaled preconditioned Bi-CGStab method. For full details, including usage instructions,
see the file sundials spbcgs.h.

The files needed to use the spbcg module by itself are the same as for the spgmr module, but
with sundials spbcgs.(h,c) in place of sundials spgmr.(h,c).

The following functions are available in the spbcg package:

• SpbcgMalloc: allocation of memory for SpbcgSolve;

• SpbcgSolve: solution of Ax = b by the spbcg method;

• SpbcgFree: free memory allocated by SpbcgMalloc.

8.3.4 The SPTFQMR module

The sptfqmr package, in the files sundials sptfqmr.h and sundials sptfqmr.c, includes an imple-
mentation of the scaled preconditioned TFQMR method. For full details, including usage instructions,
see the file sundials sptfqmr.h.

The files needed to use the sptfqmr module by itself are the same as for the spgmr module, but
with sundials sptfqmr.(h,c) in place of sundials spgmr.(h,c).

The following functions are available in the sptfqmr package:

• SptfqmrMalloc: allocation of memory for SptfqmrSolve;

• SptfqmrSolve: solution of Ax = b by the sptfqmr method;

• SptfqmrFree: free memory allocated by SptfqmrMalloc.





Appendix A

SUNDIALS Package Installation
Procedure

The installation of any sundials package is accomplished by installing the sundials suite as a whole,
according to the instructions that follow. The same procedure applies whether or not the downloaded
file contains one or all solvers in sundials.

The sundials suite (or individual solvers) are distributed as compressed archives (.tar.gz).
The name of the distribution archive is of the form solver-x.y.z.tar.gz, where solver is one of:
sundials, cvode, cvodes, arkode, ida, idas, or kinsol, and x.y.z represents the version number
(of the sundials suite or of the individual solver) . To begin the installation, first uncompress and
expand the sources, by issuing

% tar xzf solver-x.y.z.tar.gz

This will extract source files under a directory solver-x.y.z.
Starting with version 2.6.0 of sundials, CMake is the only supported method of installation.

The explanations on the installation procedure begins with a few common observations:

• The remainder of this chapter will follow these conventions:

srcdir is the directory solver-x.y.z created above; i.e., the directory containing the sundials

sources.

builddir is the (temporary) directory under which sundials is built.

instdir is the directory under which the sundials exported header files and libraries will be
installed. Typically, header files are exported under a directory instdir/include while
libraries are installed under instdir/lib, with instdir specified at configuration time.

• For sundials CMake-based installation, in-source builds are prohibited; in other words, the
build directory builddir can not be the same as srcdir and such an attempt will lead to an error.
This prevents “polluting” the source tree and allows efficient builds for different configurations
and/or options.

• The installation directory instdir can not be the same as the source directory srcdir. !

• By default, only the libraries and header files are exported to the installation directory instdir.
If enabled by the user (with the appropriate toggle for CMake), the examples distributed with
sundials will be built together with the solver libraries but the installation step will result
in exporting (by default in a subdirectory of the installation directory) the example sources
and sample outputs together with automatically generated configuration files that reference the
installed sundials headers and libraries. As such, these configuration files for the sundials ex-
amples can be used as ”templates” for your own problems. CMake installs CMakeLists.txt files
and also (as an option available only under Unix/Linux) Makefile files. Note this installation
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approach also allows the option of building the sundials examples without having to install
them. (This can be used as a sanity check for the freshly built libraries.)

• Even if generation of shared libraries is enabled, only static libraries are created for the FCMIX
modules. (Because of the use of fixed names for the Fortran user-provided subroutines, FCMIX
shared libraries would result in ”undefined symbol” errors at link time.)

A.1 CMake-based installation

CMake-based installation provides a platform-independent build system. CMake can generate Unix
and Linux Makefiles, as well as KDevelop, Visual Studio, and (Apple) XCode project files from the
same configuration file. In addition, CMake also provides a GUI front end and which allows an
interactive build and installation process.

The sundials build process requires CMake version 2.8.1 or higher and a working compiler. On
Unix-like operating systems, it also requires Make (and curses, including its development libraries, for
the GUI front end to CMake, ccmake), while on Windows it requires Visual Studio. While many Linux
distributions offer CMake, the version included is probably out of date. Many new CMake features
have been added recently, and you should download the latest version from http://www.cmake.org.
Build instructions for CMake (only necessary for Unix-like systems) can be found on the CMake
website. Once CMake is installed, Linux/Unix users will be able to use ccmake, while Windows users
will be able to use CMakeSetup.

As previously noted, when using CMake to configure, build and install sundials, it is always
required to use a separate build directory. While in-source builds are possible, they are explicitly
prohibited by the sundials CMake scripts (one of the reasons being that, unlike autotools, CMake
does not provide a make distclean procedure and it is therefore difficult to clean-up the source tree
after an in-source build). By ensuring a separate build directory, it is an easy task for the user to
clean-up all traces of the build by simply removing the build directory. CMake does generate a make

clean which will remove files generated by the compiler and linker.

A.1.1 Configuring, building, and installing on Unix-like systems

The default CMake configuration will build all included solvers and associated examples and will build
static and shared libraries. The installdir defaults to /usr/local and can be changed by setting the
CMAKE INSTALL PREFIX variable. Support for FORTRAN and all other options are disabled.

CMake can be used from the command line with the cmake command, or from a curses-based
GUI by using the ccmake command. Examples for using both methods will be presented. For the
examples shown it is assumed that there is a top level sundials directory with appropriate source,
build and install directories:

% mkdir (...)sundials/instdir

% mkdir (...)sundials/builddir

% cd (...)sundials/builddir

Building with the GUI

Using CMake with the GUI follows this general process:

• Select and modify values, run configure (c key)

• New values are denoted with an asterisk

• To set a variable, move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will toggle the value

– If it is string or file, it will allow editing of the string
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– For file and directories, the <tab> key can be used to complete

• Repeat until all values are set as desired and the generate option is available (g key)

• Some variables (advanced variables) are not visible right away

• To see advanced variables, toggle to advanced mode (t key)

• To search for a variable press / key, and to repeat the search, press the n key

To build the default configuration using the GUI, from the builddir enter the ccmake command
and point to the srcdir:

% ccmake ../srcdir

The default configuration screen is shown in Figure A.1.

Figure A.1: Default configuration screen. Note: Initial screen is empty. To get this default config-
uration, press ’c’ repeatedly (accepting default values denoted with asterisk) until the ’g’ option is
available.

The default instdir for both sundials and corresponding examples can be changed by setting the
CMAKE INSTALL PREFIX and the EXAMPLES INSTALL PATH as shown in figure A.2.

Pressing the (g key) will generate makefiles including all dependencies and all rules to build sun-

dials on this system. Back at the command prompt, you can now run:

% make

To install sundials in the installation directory specified in the configuration, simply run:

% make install



130 SUNDIALS Package Installation Procedure

Figure A.2: Changing the instdir for sundials and corresponding examples

Building from the command line

Using CMake from the command line is simply a matter of specifying CMake variable settings with
the cmake command. The following will build the default configuration:

% cmake -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> ../srcdir

% make

% make install

A.1.2 Configuration options (Unix/Linux)

A complete list of all available options for a CMake-based sundials configuration is provide below.
Note that the default values shown are for a typical configuration on a Linux system and are provided
as illustration only.

BUILD ARKODE - Build the ARKODE library
Default: ON

BUILD CVODE - Build the CVODE library
Default: ON

BUILD CVODES - Build the CVODES library
Default: ON
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BUILD IDA - Build the IDA library
Default: ON

BUILD IDAS - Build the IDAS library
Default: ON

BUILD KINSOL - Build the KINSOL library
Default: ON

BUILD SHARED LIBS - Build shared libraries
Default: OFF

BUILD STATIC LIBS - Build static libraries
Default: ON

CMAKE BUILD TYPE - Choose the type of build, options are: None (CMAKE C FLAGS used) Debug
Release RelWithDebInfo MinSizeRel
Default:

CMAKE C COMPILER - C compiler
Default: /usr/bin/cc

CMAKE C FLAGS - Flags for C compiler
Default:

CMAKE C FLAGS DEBUG - Flags used by the compiler during debug builds
Default: -g

CMAKE C FLAGS MINSIZEREL - Flags used by the compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE C FLAGS RELEASE - Flags used by the compiler during release builds
Default: -O3 -DNDEBUG

CMAKE Fortran COMPILER - Fortran compiler
Default: /usr/bin/gfortran
Note: Fortran support (and all related options) are triggered only if either Fortran-C support is
enabled (FCMIX ENABLE is ON) or Blas/Lapack support is enabled (LAPACK ENABLE is ON).

CMAKE Fortran FLAGS - Flags for Fortran compiler
Default:

CMAKE Fortran FLAGS DEBUG - Flags used by the compiler during debug builds
Default:

CMAKE Fortran FLAGS MINSIZEREL - Flags used by the compiler during release minsize builds
Default:

CMAKE Fortran FLAGS RELEASE - Flags used by the compiler during release builds
Default:

CMAKE INSTALL PREFIX - Install path prefix, prepended onto install directories
Default: /usr/local
Note: The user must have write access to the location specified through this option. Exported
sundials header files and libraries will be installed under subdirectories include and lib of
CMAKE INSTALL PREFIX, respectively.

EXAMPLES ENABLE - Build the sundials examples
Default: ON
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EXAMPLES INSTALL - Install example files
Default: ON
Note: This option is triggered only if building example programs is enabled (EXAMPLES ENABLE

ON). If the user requires installation of example programs then the sources and sample output
files for all sundials modules that are currently enabled will be exported to the directory
specified by EXAMPLES INSTALL PATH. A CMake configuration script will also be automatically
generated and exported to the same directory. Additionally, if the configuration is done under
a Unix-like system, makefiles for the compilation of the example programs (using the installed
sundials libraries) will be automatically generated and exported to the directory specified by
EXAMPLES INSTALL PATH.

EXAMPLES INSTALL PATH - Output directory for installing example files
Default: /usr/local/examples
Note: The actual default value for this option will an examples subdirectory created under
CMAKE INSTALL PREFIX.

FCMIX ENABLE - Enable Fortran-C support
Default: OFF

KLU ENABLE - Enable KLU support
Default: OFF

LAPACK ENABLE - Enable Lapack support
Default: OFF
Note: Setting this option to ON will trigger the two additional options see below.

LAPACK LIBRARIES - Lapack (and Blas) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so
Note: CMake will search for these libraries in your LD LIBRARY PATH prior to searching default
system paths.

MPI ENABLE - Enable MPI support
Default: OFF
Note: Setting this option to ON will trigger several additional options related to MPI.

MPI MPICC - mpicc program
Default:

MPI RUN COMMAND - Specify run command for MPI
Default: mpirun
Note: This can either be set to mpirun for OpenMPI or srun if jobs are managed by SLURM -
Simple Linux Utility for Resource Management as exists on LLNL’s high performance computing
clusters.

MPI MPIF77 - mpif77 program
Default:
Note: This option is triggered only if using MPI compiler scripts (MPI USE MPISCRIPTS is ON)
and Fortran-C support is enabled (FCMIx ENABLE is ON).

OPENMP ENABLE - Enable OpenMP support
Default: OFF
Turn on support for the OpenMP based nvector.

PTHREAD ENABLE - Enable Pthreads support
Default: OFF
Turn on support for the Pthreads based nvector.

SUNDIALS PRECISION - Precision used in sundials, options are: double, single or extended
Default: double
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SUPERLUMT ENABLE - Enable SUPERLU MT support
Default: OFF

USE GENERIC MATH - Use generic (stdc) math libraries
Default: ON

A.1.3 Configuration examples

The following examples will help demonstrate usage of the CMake configure options.
To configure sundials using the default C and Fortran compilers, and default mpicc and mpif77

parallel compilers, enable compilation of examples, and install libraries, headers, and example sources
under subdirectories of /home/myname/sundials/, use:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DMPI_ENABLE=ON \

> -DFCMIX_ENABLE=ON \

> /home/myname/sundials/srcdir

%

% make install

%

To disable installation of the examples, use:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DMPI_ENABLE=ON \

> -DFCMIX_ENABLE=ON \

> -DEXAMPLES_INSTALL=OFF \

> /home/myname/sundials/srcdir

%

% make install

%

A.1.4 Working with external Libraries

The sundials Suite contains many options to enable implementation flexibility when developing
solutions. The following are some notes addressing specific configurations when using the supported
third party libraries.

Building with LAPACK and BLAS

To enable LAPACK and BLAS libraries, set the LAPACK ENABLE option to ON. If the directory contain-
ing the LAPACK and BLAS libraries is in the LD LIBRARY PATH environment variable, CMake will
set the LAPACK LIBRARIES variable accordingly, otherwise CMake will attemp to find the LAPACK
and BLAS libraries in standard system locations. To explicitly tell CMake what libraries to use, the
LAPACK LIBRARIES varible can be set to the desired libraries. Example:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DLAPACK_LIBRARIES=/mypath/lib/liblapack.so;/mypath/lib/libblas.so \

> /home/myname/sundials/srcdir

%

% make install

%
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Building with KLU

The KLU libraries are part of SuiteSparse, a suite of sparse matrix software, available from the Texas
A&M University website: http://faculty.cse.tamu.edu/davis/suitesparse.html. sundials has
been tested with SuiteSparse version 4.2.1. To enable KLU, set KLU ENABLE to ON, set KLU INCLUDE DIR

to the include path of the KLU installation and set KLU LIBRARY DIR to the lib path of the KLU
installation. The CMake configure will result in populating the following variables: AMD LIBRARY,
AMD LIBRARY DIR, BTF LIBRARY, BTF LIBRARY DIR, COLAMD LIBRARY, COLAMD LIBRARY DIR, and
KLU LIBRARY

Building with SuperLU MT

The SuperLU MT libraries are available for download from the Lawrence Berkeley National Labo-
ratory website: http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/#superlu mt. sundials has been
tested with SuperLU MT version 2.4. To enable SuperLU MT, set SUPERLUMT ENABLE to ON, set
SUPERLUMT INCLUDE DIR to the SRC path of the SuperLU MT installation, and set the variable
SUPERLUMT LIBRARY DIR to the lib path of the SuperLU MT installation. At the same time, the
variable SUPERLUMT THREAD TYPE must be set to either Pthread or OpenMP.
Do not mix thread types when building sundials solvers. If threading is enabled for sundials by
having either OPENMP ENABLE or PTHREAD ENABLE set to ON then SuperLU MT should be set to use
the same threading type.!

A.2 Building and Running Examples

Each of the sundials solvers is distributed with a set of examples demonstrating basic usage. To
build and install the examples, set both EXAMPLES ENABLE and EXAMPLES INSTALL to ON. Specify the
installation path for the examples with the variable EXAMPLES INSTALL PATH. CMake will generate
CMakeLists.txt configuration files (and Makefile files if on Linux/Unix) that reference the installed
sundials headers and libraries.
Either the CMakeLists.txt file or the traditional Makefile may be used to build the examples as
well as serve as a template for creating user developed solutions. To use the supplied Makefile simply
run make to compile and generate the executables. To use CMake, from within the installed example
directory, run cmake (or ccmake to use the GUI) followed by make to compile the example code.
Note that if CMake is used, it will overwrite the traditional Makefile with a new CMake generated
Makefile. The resulting output from running the examples can be compared with example output
bundled in the sundials distribution.
NOTE: There will potentially be differences in the output due to machine architecture, compiler
versions, use of third party libraries etc.!

A.3 Configuring, building, and installing on Windows

CMake can also be used to build sundials on Windows. To build sundials for use with Visual
Studio the following steps should be performed:

1. Unzip the downloaded tar file(s) into a directory, this will be the srcdir

2. Create a separate builddir

3. Open a Visual Studio Command Prompt and cd to builddir

4. Run cmake-gui ../srcdir

(a) Hit Configure

(b) Check/Uncheck solvers to be built

(c) Change CMAKE INSTALL PREFIX to instdir
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(d) Set other options as desired

(e) Hit Generate

5. Back in the VS Command Window:

(a) Run msbuild ALL BUILD.vcxproj

(b) Run msbuild INSTALL.vcxproj

The resulting libraries will be in the instdir. The sundials project can also now be opened in Visual
Studio. Double click on the ALL BUILD.vcxproj file to open the project. Build the whole solution to
create the sundials libraries. To use the sundials libraries in your own projects, you must set the
include directories for your project, add the sundials libraries to your project solution, and set the
sundials libraries as dependencies for your project.

A.4 Installed libraries and exported header files

Using the CMake sundials build system, the command

% make install

will install the libraries under libdir and the public header files under includedir. The values for these
directories are instdir/lib and instdir/include, respectively. The location can be changed by setting
the CMake variable CMAKE INSTALL PREFIX. Although all installed libraries reside under libdir/lib,
the public header files are further organized into subdirectories under includedir/include.

The installed libraries and exported header files are listed for reference in Tables A.1 and A.2.
The file extension .lib is typically .so for shared libraries and .a for static libraries. Note that, in the
Tables, names are relative to libdir for libraries and to includedir for header files.

A typical user program need not explicitly include any of the shared sundials header files from
under the includedir/include/sundials directory since they are explicitly included by the appropriate
solver header files (e.g., cvode dense.h includes sundials dense.h). However, it is both legal and
safe to do so, and would be useful, for example, if the functions declared in sundials dense.h are to
be used in building a preconditioner.
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Table A.1: sundials libraries and header files

shared Libraries n/a
Header files sundials/sundials config.h sundials/sundials types.h

sundials/sundials math.h
sundials/sundials nvector.h sundials/sundials fnvector.h
sundials/sundials direct.h sundials/sundials lapack.h
sundials/sundials dense.h sundials/sundials band.h
sundials/sundials sparse.h
sundials/sundials iterative.h sundials/sundials spgmr.h
sundials/sundials spbcgs.h sundials/sundials sptfqmr.h
sundials/sundials pcg.h sundials/sundials spfgmr.h

nvector serial Libraries libsundials nvecserial.lib libsundials fnvecserial.a
Header files nvector/nvector serial.h

nvector parallel Libraries libsundials nvecparallel.lib libsundials fnvecparallel.a
Header files nvector/nvector parallel.h

nvector openmp Libraries libsundials nvecopenmp.lib libsundials fnvecopenmp.a
Header files nvector/nvector openmp.h

nvector pthreads Libraries libsundials nvecpthreads.lib libsundials fnvecpthreads.a
Header files nvector/nvector pthreads.h

cvode Libraries libsundials cvode.lib libsundials fcvode.a
Header files cvode/cvode.h cvode/cvode impl.h

cvode/cvode direct.h cvode/cvode lapack.h
cvode/cvode dense.h cvode/cvode band.h
cvode/cvode diag.h
cvode/cvode sparse.h cvode/cvode klu.h
cvode/cvode superlumt.h
cvode/cvode spils.h cvode/cvode spgmr.h
cvode/cvode sptfqmr.h cvode/cvode spbcgs.h
cvode/cvode bandpre.h cvode/cvode bbdpre.h

cvodes Libraries libsundials cvodes.lib
Header files cvodes/cvodes.h cvodes/cvodes impl.h

cvodes/cvodes direct.h cvodes/cvodes lapack.h
cvodes/cvodes dense.h cvodes/cvodes band.h
cvodes/cvodes diag.h
cvodes/cvodes sparse.h cvodes/cvodes klu.h
cvodes/cvodes superlumt.h
cvodes/cvodes spils.h cvodes/cvodes spgmr.h
cvodes/cvodes sptfqmr.h cvodes/cvodes spbcgs.h
cvodes/cvodes bandpre.h cvodes/cvodes bbdpre.h

arkode Libraries libsundials arkode.lib libsundials farkode.a
Header files arkode/arkode.h arkode/arkode impl.h

arkode/arkode direct.h arkode/arkode lapack.h
arkode/arkode dense.h arkode/arkode band.h
arkode/arkode sparse.h arkode/arkode klu.h
arkode/arkode superlumt.h
arkode/arkode spils.h arkode/arkode spgmr.h
arkode/arkode sptfqmr.h arkode/arkode spbcgs.h
arkode/arkode pcg.h arkode/arkode spfgmr.h
arkode/arkode bandpre.h arkode/arkode bbdpre.h
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Table A.2: sundials libraries and header files (cont.)

ida Libraries libsundials ida.lib libsundials fida.a
Header files ida/ida.h ida/ida impl.h

ida/ida direct.h ida/ida lapack.h
ida/ida dense.h ida/ida band.h
ida/ida sparse.h ida/ida klu.h
ida/ida superlumt.h
ida/ida spils.h ida/ida spgmr.h
ida/ida spbcgs.h ida/ida sptfqmr.h
ida/ida bbdpre.h

idas Libraries libsundials idas.lib
Header files idas/idas.h idas/idas impl.h

idas/idas direct.h idas/idas lapack.h
idas/idas dense.h idas/idas band.h
idas/idas sparse.h idas/idas klu.h
idas/idas superlumt.h
idas/idas spils.h idas/idas spgmr.h
idas/idas spbcgs.h idas/idas sptfqmr.h
idas/idas bbdpre.h

kinsol Libraries libsundials kinsol.lib libsundials fkinsol.a
Header files kinsol/kinsol.h kinsol/kinsol impl.h

kinsol/kinsol direct.h kinsol/kinsol lapack.h
kinsol/kinsol dense.h kinsol/kinsol band.h
kinsol/kinsol sparse.h kinsol/kinsol klu.h
kinsol/kinsol superlumt.h
kinsol/kinsol spils.h kinsol/kinsol spgmr.h
kinsol/kinsol spbcgs.h kinsol/kinsol sptfqmr.h
kinsol/kinsol bbdpre.h kinsol/kinsol spfgmr.h





Appendix B

IDA Constants

Below we list all input and output constants used by the main solver and linear solver modules,
together with their numerical values and a short description of their meaning.

B.1 IDA input constants

ida main solver module

IDA NORMAL 1 Solver returns at specified output time.
IDA ONE STEP 2 Solver returns after each successful step.
IDA YA YDP INIT 1 Compute ya and ẏd, given yd.
IDA Y INIT 2 Compute y, given ẏ.

Iterative linear solver module

PREC NONE 0 No preconditioning
PREC LEFT 1 Preconditioning on the left.
MODIFIED GS 1 Use modified Gram-Schmidt procedure.
CLASSICAL GS 2 Use classical Gram-Schmidt procedure.

B.2 IDA output constants

ida main solver module

IDA SUCCESS 0 Successful function return.
IDA TSTOP RETURN 1 IDASolve succeeded by reaching the specified stopping point.
IDA ROOT RETURN 2 IDASolve succeeded and found one or more roots.
IDA WARNING 99 IDASolve succeeded but an unusual situation occurred.
IDA TOO MUCH WORK -1 The solver took mxstep internal steps but could not reach

tout.
IDA TOO MUCH ACC -2 The solver could not satisfy the accuracy demanded by the

user for some internal step.
IDA ERR FAIL -3 Error test failures occurred too many times during one inter-

nal time step or minimum step size was reached.
IDA CONV FAIL -4 Convergence test failures occurred too many times during one

internal time step or minimum step size was reached.
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IDA LINIT FAIL -5 The linear solver’s initialization function failed.
IDA LSETUP FAIL -6 The linear solver’s setup function failed in an unrecoverable

manner.
IDA LSOLVE FAIL -7 The linear solver’s solve function failed in an unrecoverable

manner.
IDA RES FAIL -8 The user-provided residual function failed in an unrecoverable

manner.
IDA REP RES FAIL -9 The user-provided residual function repeatedly returned a re-

coverable error flag, but the solver was unable to recover.
IDA RTFUNC FAIL -10 The rootfinding function failed in an unrecoverable manner.
IDA CONSTR FAIL -11 The inequality constraints were violated and the solver was

unable to recover.
IDA FIRST RES FAIL -12 The user-provided residual function failed recoverably on the

first call.
IDA LINESEARCH FAIL -13 The line search failed.
IDA NO RECOVERY -14 The residual function, linear solver setup function, or linear

solver solve function had a recoverable failure, but IDACalcIC
could not recover.

IDA MEM NULL -20 The ida mem argument was NULL.
IDA MEM FAIL -21 A memory allocation failed.
IDA ILL INPUT -22 One of the function inputs is illegal.
IDA NO MALLOC -23 The ida memory was not allocated by a call to IDAInit.
IDA BAD EWT -24 Zero value of some error weight component.
IDA BAD K -25 The k-th derivative is not available.
IDA BAD T -26 The time t is outside the last step taken.
IDA BAD DKY -27 The vector argument where derivative should be stored is

NULL.

idadls linear solver modules

IDADLS SUCCESS 0 Successful function return.
IDADLS MEM NULL -1 The ida mem argument was NULL.
IDADLS LMEM NULL -2 The idadls linear solver has not been initialized.
IDADLS ILL INPUT -3 The idadls solver is not compatible with the current nvec-

tor module.
IDADLS MEM FAIL -4 A memory allocation request failed.
IDADLS JACFUNC UNRECVR -5 The Jacobian function failed in an unrecoverable manner.
IDADLS JACFUNC RECVR -6 The Jacobian function had a recoverable error.

idasls linear solver module

IDASLS SUCCESS 0 Successful function return.
IDASLS MEM NULL -1 The ida mem argument was NULL.
IDASLS LMEM NULL -2 The idasls linear solver has not been initialized.
IDASLS ILL INPUT -3 The idasls solver is not compatible with the current nvec-

tor module or other input is invalid.
IDASLS MEM FAIL -4 A memory allocation request failed.
IDASLS JAC NOSET -5 The Jacobian evaluation routine was not been set before the

linear solver setup routine was called.
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IDASLS PACKAGE FAIL -6 An external package call return a failure error code.
IDASLS JACFUNC UNRECVR -7 The Jacobian function failed in an unrecoverable manner.
IDASLS JACFUNC RECVR -8 The Jacobian function had a recoverable error.

idaspils linear solver modules

IDASPILS SUCCESS 0 Successful function return.
IDASPILS MEM NULL -1 The ida mem argument was NULL.
IDASPILS LMEM NULL -2 The idaspils linear solver has not been initialized.
IDASPILS ILL INPUT -3 The idaspils solver is not compatible with the current nvec-

tor module.
IDASPILS MEM FAIL -4 A memory allocation request failed.
IDASPILS PMEM NULL -5 The preconditioner module has not been initialized.

spgmr generic linear solver module

SPGMR SUCCESS 0 Converged.
SPGMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPGMR CONV FAIL 2 Failure to converge.
SPGMR QRFACT FAIL 3 A singular matrix was found during the QR factorization.
SPGMR PSOLVE FAIL REC 4 The preconditioner solve function failed recoverably.
SPGMR ATIMES FAIL REC 5 The Jacobian-times-vector function failed recoverably.
SPGMR PSET FAIL REC 6 The preconditioner setup routine failed recoverably.
SPGMR MEM NULL -1 The spgmr memory is NULL
SPGMR ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed unrecoverably.
SPGMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPGMR GS FAIL -4 Failure in the Gram-Schmidt procedure.
SPGMR QRSOL FAIL -5 The matrix R was found to be singular during the QR solve

phase.
SPGMR PSET FAIL UNREC -6 The preconditioner setup routine failed unrecoverably.

spfgmr generic linear solver module (only available in kinsol and arkode)

SPFGMR SUCCESS 0 Converged.
SPFGMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPFGMR CONV FAIL 2 Failure to converge.
SPFGMR QRFACT FAIL 3 A singular matrix was found during the QR factorization.
SPFGMR PSOLVE FAIL REC 4 The preconditioner solve function failed recoverably.
SPFGMR ATIMES FAIL REC 5 The Jacobian-times-vector function failed recoverably.
SPFGMR PSET FAIL REC 6 The preconditioner setup routine failed recoverably.
SPFGMR MEM NULL -1 The spfgmr memory is NULL
SPFGMR ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed unrecoverably.
SPFGMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPFGMR GS FAIL -4 Failure in the Gram-Schmidt procedure.
SPFGMR QRSOL FAIL -5 The matrix R was found to be singular during the QR solve

phase.
SPFGMR PSET FAIL UNREC -6 The preconditioner setup routine failed unrecoverably.
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spbcg generic linear solver module

SPBCG SUCCESS 0 Converged.
SPBCG RES REDUCED 1 No convergence, but the residual norm was reduced.
SPBCG CONV FAIL 2 Failure to converge.
SPBCG PSOLVE FAIL REC 3 The preconditioner solve function failed recoverably.
SPBCG ATIMES FAIL REC 4 The Jacobian-times-vector function failed recoverably.
SPBCG PSET FAIL REC 5 The preconditioner setup routine failed recoverably.
SPBCG MEM NULL -1 The spbcg memory is NULL
SPBCG ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed unrecoverably.
SPBCG PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPBCG PSET FAIL UNREC -4 The preconditioner setup routine failed unrecoverably.

sptfqmr generic linear solver module

SPTFQMR SUCCESS 0 Converged.
SPTFQMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPTFQMR CONV FAIL 2 Failure to converge.
SPTFQMR PSOLVE FAIL REC 3 The preconditioner solve function failed recoverably.
SPTFQMR ATIMES FAIL REC 4 The Jacobian-times-vector function failed recoverably.
SPTFQMR PSET FAIL REC 5 The preconditioner setup routine failed recoverably.
SPTFQMR MEM NULL -1 The sptfqmr memory is NULL
SPTFQMR ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed.
SPTFQMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPTFQMR PSET FAIL UNREC -4 The preconditioner setup routine failed unrecoverably.
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