
User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1)

Daniel R. Reynolds1, David J. Gardner2,
Alan C. Hindmarsh2, Carol S. Woodward2

and Jean M. Sexton1,

1Department of Mathematics
Southern Methodist University

2Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

March 30, 2015

LLNL-SM-668082

CONTENTS

1 Introduction 3

2 Mathematical Considerations 5
2.1 Additive Runge-Kutta methods . 6
2.2 Nonlinear solver methods . 6
2.3 Linear solver methods . 8
2.4 Iteration Error Control . 10
2.5 Preconditioning . 11
2.6 Implicit predictors . 12
2.7 Time step adaptivity . 14
2.8 Explicit stability . 17
2.9 Mass matrix solver . 18
2.10 Rootfinding . 19

3 Code Organization 21
3.1 ARKode organization . 21

4 Using ARKode for C and C++ Applications 27
4.1 Access to library and header files . 27
4.2 Data Types . 28
4.3 Header Files . 28
4.4 A skeleton of the user’s main program . 30
4.5 User-callable functions . 32
4.6 User-supplied functions . 102
4.7 Preconditioner modules . 115

5 FARKODE, an Interface Module for FORTRAN Applications 125
5.1 Important note on portability . 125
5.2 Fortran Data Types . 125

6 Vector Data Structures 167
6.1 The NVECTOR_SERIAL Module . 167
6.2 The NVECTOR_PARALLEL Module . 169
6.3 The NVECTOR_OPENMP Module . 171
6.4 The NVECTOR_PTHREADS Module . 173
6.5 NVECTOR functions required by ARKode . 175
6.6 Description of the NVECTOR Modules . 176
6.7 Description of the NVECTOR operations . 178

7 Linear Solvers in ARKode 183
7.1 The DLS modules: DENSE and BAND . 184

i

7.2 The SLS modules . 191
7.3 The SPILS modules: SPGMR, SPFGMR, SPBCG, SPTFQMR and PCG 196
7.4 Providing Alternate Linear Solver Modules . 198

8 ARKode Installation Procedure 205
8.1 CMake-based installation . 206
8.2 Installed libraries and exported header files . 214

9 Appendix: ARKode Constants 219
9.1 ARKode input constants . 219
9.2 ARKode output constants . 219

10 Appendix: Butcher tables 225
10.1 Explicit Butcher tables . 226
10.2 Implicit Butcher tables . 233
10.3 Additive Butcher tables . 241

Bibliography 243

Index 245

ii

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

This is the documentation for ARKode, an adaptive step time integration package for stiff, nonstiff and multi-rate
systems of ordinary differential equations (ODEs). The ARKode solver is a component of the SUNDIALS suite of
nonlinear and differential/algebraic equation solvers. It is designed to have a similar user experience to the CVODE
solver, including user modes to allow adaptive integration to specified output times, return after each internal step
and root-finding capabilities, and for calculations in serial and using either shared-memory parallelism (via OpenMP
or Pthreads) or distributed-memory parallelism (via MPI). The default integration and solver options should apply to
most users, though complete control over all internal parameters and time adaptivity algorithms is enabled through
optional interface routines.

ARKode is written in C, with C++ and Fortran interfaces.

Due to its similarities in both function and design with the CVODE package, a significant portion of this documentation
has been directly adapted from the CVODE documentation [HS2012].

ARKode is developed by Southern Methodist University, with support by the US Department of Energy through the
FASTMath SciDAC Institute, under subcontract B598130 from Lawrence Livermore National Laboratory.

CONTENTS 1

https://computation.llnl.gov/casc/sundials/main.html
https://computation.llnl.gov/casc/sundials/description/description.html#descr_cvode
http://www.smu.edu
http://www.doe.gov
http://www.fastmath-scidac.org/
http://www.llnl.gov

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The ARKode solver library provides an adaptive-step time integration package for stiff, nonstiff and multi-rate systems
of ordinary differential equations (ODEs) given in explicit form

Mẏ = fE(t, y) + fI(t, y), y(t0) = y0, (1.1)

where t is the independent variable, y is the set of dependent variables (in RN), M is a user-specified, nonsingular op-
erator from RN to RN (possibly time dependent, but independent of y), and the right-hand side function is partitioned
into two components:

• fE(t, y) contains the “slow” time scale components to be integrated explicitly, and

• fI(t, y) contains the “fast” time scale components to be integrated implicitly.

Either of these operators may be disabled, allowing for fully explicit, fully implicit, or combination implicit-explicit
(IMEX) time integration.

The methods used in ARKode are adaptive-step additive Runge Kutta methods. Such methods are defined through
combining two complementary Runge-Kutta methods: one explicit (ERK) and the other diagonally implicit (DIRK).
Through appropriately partitioning the ODE system into explicit and implicit components (1.1), such methods have
the potential to enable accurate and efficient time integration of multi-rate systems of ordinary differential equations.
A key feature allowing for high efficiency of these methods is that only the components in fI(t, y) must be solved
implicitly, allowing for splittings tuned for use with optimal implicit solvers.

This framework allows for significant freedom over the constitutive methods used for each component, and ARKode
is packaged with a wide array of built-in methods for use. These built-in Butcher tables include adaptive explicit
methods of orders 2-6, adaptive implicit methods of orders 2-5, and adaptive IMEX methods of orders 3-5.

For problems that include nonzero implicit term fI(t, y), the resulting implicit system (assumed nonlinear, unless spec-
ified otherwise) is solved approximately at each integration step, using a Newton method, modified Newton method, an
Inexact Newton method, or an accelerated fixed-point solver. For implicit problems using a Newton-based solver and
the serial or threaded NVECTOR modules in SUNDIALS, ARKode provides both direct (dense, band and sparse) and
preconditioned Krylov iterative (GMRES, BiCGStab, TFQMR, FGMRES, PCG) linear solvers. When used with the
parallel NVECTOR module or a user-provided vector data structure, only the Krylov solvers are available, although a
user may supply their own linear solver for any data structures if desired.

The guide is separated into sections focused on the major aspects of the ARKode library. In the next section we
provide a thorough presentation of the underlying mathematics that relate these algorithms together. We follow this
with overview of how the source code for ARKode is organized. The largest section follows, providing a full account of
the ARKode user interface, including a description of all user-accessible functions and outlines for ARKode usage for
serial and parallel applications. Since ARKode is written in C, we first present the C and C++ interface, followed with
a separate section on using ARKode within Fortran applications. The following three sections discuss shared features
between ARKode and the rest of the SUNDIALS library: vector data structures, linear solvers, and the installation
procedure. The final sections catalog the full set of ARKode constants, that are used for both input specifications and
return codes, and the full set of Butcher tables that are packaged with ARKode.

3

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

4 Chapter 1. Introduction

CHAPTER

TWO

MATHEMATICAL CONSIDERATIONS

ARKode solves ODE initial value problems (IVPs) in RN . These problems should be posed in explicit form, as

Mẏ = fE(t, y) + fI(t, y), y(t0) = y0. (2.1)

Here, t is the independent variable (e.g. time), and the dependent variables are given by y ∈ RN , where we use the
notation ẏ to denote dy

dt .

M is a user-specified nonsingular operator from RN → RN . This operator may depend on t but is currently assumed to
be independent of y. For standard systems of ordinary differential equations and for problems arising from the spatial
semi-discretization of partial differential equations using finite difference or finite volume methods, M is typically the
identity matrix, I . For PDEs using a finite-element spatial semi-discretization M is typically a well-conditioned mass
matrix.

The two right-hand side functions may be described as:

• fE(t, y) contains the “slow” time scale components of the system. This will be integrated using explicit methods.

• fI(t, y) contains the “fast” time scale components of the system. This will be integrated using implicit methods.

ARKode may be used to solve stiff, nonstiff and multi-rate problems. Roughly speaking, stiffness is characterized
by the presence of at least one rapidly damped mode, whose time constant is small compared to the time scale of
the solution itself. In the implicit/explicit (ImEx) splitting above, these stiff components should be included in the
right-hand side function fI(t, y).

In the sub-sections that follow, we elaborate on the numerical methods that comprise the ARKode solvers. We first
discuss the general formulation of additive Runge-Kutta methods, including the resulting implicit systems that must
be solved at each stage. We then discuss the solver strategies that ARKode uses in solving these systems: nonlinear
solvers, linear solvers and preconditioners. We then describe our approaches for error control within the iterative
nonlinear and linear solvers, including discussion on our choice of norms used within ARKode for measuring errors
within various components of the solver. We then discuss specific enhancements available in ARKode, including an
array of prediction algorithms for the solution at each stage, adaptive error controllers, mass-matrix handling, and
rootfinding capabilities.

5

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

2.1 Additive Runge-Kutta methods

The methods used in ARKode are variable-step, embedded, additive Runge-Kutta methods (ARK), based on formulas
of the form

Mzi = Myn−1 + hn

i−1∑
j=0

AEi,jfE(tn,j , zj) + hn

i∑
j=0

AIi,jfI(tn,j , zj), i = 1, . . . , s,

Myn = Myn−1 + hn

s∑
i=0

bi (fE(tn,i, zi) + fI(tn,i, zi)) ,

Mỹn = Myn−1 + hn

s∑
i=0

b̃i (fE(tn,i, zi) + fI(tn,i, zi)) .

(2.2)

Here the yn are computed approximations to y(tn), ỹn are lower-order embedded solutions (used in error estimation),
and hn ≡ tn − tn−1 is the step size. The internal stage times are abbreviated using the notation tn,j = tn−1 + cjhn.
The ARK method is primarily defined through the coefficients AE ∈ Rs×s, AI ∈ Rs×s, b ∈ Rs and c ∈ Rs, that
correspond with the explicit and implicit Butcher tables. We note that ARKode enforces the constraint that these tables
must share b and c between the explicit and implicit methods in an ARK pair.

The user of ARKode must choose appropriately between one of three classes of methods: multi-rate, nonstiff and stiff.
All of ARKode’s available Butcher tables encoding the coefficients c, AE , AI , b and b̃ are further described in the
Appendix: Butcher tables.

For multi-rate problems, a user should provide both of the functions fE and fI that define the IVP system. For such
problems, ARKode currently implements the ARK methods proposed in [KC2003], allowing for methods having order
q = {3, 4, 5}. The tables for these methods are given in the section Additive Butcher tables.

For nonstiff problems, a user may specify that fI = 0, i.e. the equation (2.1) reduces to the non-split IVP

Mẏ = fE(t, y), y(t0) = y0. (2.3)

In this scenario, the Butcher table AI = 0 in (2.2), and the ARK methods reduce to classical explicit Runge-Kutta
methods (ERK). For these classes of methods, ARKode allows orders of accuracy q = {2, 3, 4, 5, 6}, with embeddings
of orders p = {1, 2, 3, 4, 5}. These default to the Heun-Euler-2-1-2, Bogacki-Shampine-4-2-3, Zonneveld-5-3-4, Cash-
Karp-6-4-5 and Verner-8-5-6 methods, respectively.

Finally, for stiff problems the user may specify that fE = 0, so the equation (2.1) reduces to the non-split IVP

Mẏ = fI(t, y), y(t0) = y0. (2.4)

Similarly to ERK methods, in this scenario the Butcher table AE = 0 in (2.2), and the ARK methods reduce to
classical diagonally-implicit Runge-Kutta methods (DIRK). For these classes of methods, ARKode allows orders of
accuracy q = {2, 3, 4, 5}, with embeddings of orders p = {1, 2, 3, 4}. These default to the SDIRK-2-1-2, ARK-4-2-3
(implicit), SDIRK-5-3-4 and ARK-8-4-5 (implicit) methods, respectively.

2.2 Nonlinear solver methods

For both the DIRK and ARK methods corresponding to (2.1) and (2.4), an implicit system

G(zi) ≡Mzi − hnAIi,ifI(tn,i, zi)− ai = 0 (2.5)

must be solved for each stage zi, i = 1, . . . , s, where we have the data

ai ≡Myn−1 + hn

i−1∑
j=0

[
AEi,jfE(tn,j , zj) +AIi,jfI(tn,j , zj)

]

6 Chapter 2. Mathematical Considerations

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

for the ARK methods, or

ai ≡Myn−1 + hn

i−1∑
j=0

AIi,jfI(tn,j , zj)

for the DIRK methods. Here, if fI(t, y) depends nonlinearly on y then (2.5) corresponds to a nonlinear system of
equations; if fI(t, y) depends linearly on y then this is a linear system of equations.

For systems of either type, ARKode allows a choice of solution strategy. The default solver choice is a variant of
Newton’s method,

z
(m+1)
i = z

(m)
i + δ(m+1), (2.6)

where m is the Newton iteration index, and the Newton update δ(m+1) in turn requires the solution of the linear
Newton system

A
(
z

(m)
i

)
δ(m+1) = −G

(
z

(m)
i

)
, (2.7)

in which

A ≈M − γJ, J =
∂fI
∂y

, and γ = hnA
I
i,i. (2.8)

As an alternate to Newton’s method, ARKode may solve for each stage zi, i = 1, . . . , s using an Anderson-accelerated
fixed point iteration

z
(m+1)
i = g(z(m)

i), m = 0, 1, . . . (2.9)

Unlike with Newton’s method, this method does not require the solution of a linear system at each iteration, instead
opting for solution of a low-dimensional least-squares solution to construct the nonlinear update. For details on how
this iteration is performed, we refer the reader to the reference [WN2011].

Finally, if the user specifies that fI(t, y) depends linearly on y (via a call to ARKodeSetLinear(), or the LIN-
EAR argument to FARKSETIIN()), and if the Newton-based nonlinear solver is chosen, then the problem (2.5) will
be solved using only a single Newton iteration. In this case, an additional argument to the respective function de-
notes whether this Jacobian is time-dependent or not, indicating whether the Jacobian or preconditioner needs to be
recomputed at each step.

The optimal solver (Newton vs fixed-point) is highly problem-dependent. Since fixed-point solvers do not require
the solution of any linear systems, each iteration may be significantly less costly than their Newton counterparts.
However, this can come at the cost of slower convergence (or even divergence) in comparison with Newton-like
methods. However, these fixed-point solvers do allow for user specification of the Anderson-accelerated subspace
size, mk. While the required amount of solver memory grows proportionately to mkN , larger values of mk may
result in faster convergence. In our experience, this improvement may be significant even for “small” values, e.g.
1 ≤ mk ≤ 5, and that convergence may not improve (or even deteriorate) for larger values of mk.

While ARKode uses a Newton-based iteration as its default solver due to its increased robustness on very stiff prob-
lems, it is highly recommended that users also consider the fixed-point solver for their when attempting a new problem.

For either the Newton or fixed-point solvers, it is well-known that both the efficiency and robustness of the algorithm
intimately depends on the choice of a good initial guess. In ARKode, the initial guess for either nonlinear solution
method is a predicted value z(0)

i that is computed explicitly from the previously-computed data (e.g. yn−2, yn−1, and
zj where j < i). Additional information on the specific predictor algorithms implemented in ARKode is provided in
the following section, Implicit predictors.

2.2. Nonlinear solver methods 7

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

2.3 Linear solver methods

When a Newton-based method is chosen for solving each nonlinear system, a linear system of equations must be
solved at each nonlinear iteration. For this solve ARKode provides several choices, including the option of a user-
supplied linear solver module. The linear solver modules distributed with ARKode are organized into two families:
a direct family comprising direct linear solvers for dense, banded or sparse matrices, and a spils family comprising
scaled, preconditioned, iterative (Krylov) linear solvers. The methods offered through these modules are as follows:

• dense direct solvers, using either an internal SUNDIALS implementation or a BLAS/LAPACK implementation
(serial version only),

• band direct solvers, using either an internal SUNDIALS implementation or a BLAS/LAPACK implementation
(serial version only),

• sparse direct solvers, using either the KLU sparse matrix library [KLU], or the PThreads-enabled SuperLU_MT
sparse matrix library [SuperLUMT] (serial or threaded vector modules only),

• SPGMR, a scaled, preconditioned GMRES (Generalized Minimal Residual) solver without restarts,

• SPBCG, a scaled, preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable) solver,

• SPTFQMR, a scaled, preconditioned TFQMR (Transpose-free Quasi-Minimal Residual) solver,

• SPFGMR, a scaled, preconditioned Flexible GMRES (Generalized Minimal Residual) solver without restarts,
or

• PCG, a preconditioned conjugate gradient solver for symmetric linear systems.

For large stiff systems where direct methods are infeasible, the combination of an implicit integrator and a precon-
ditioned Krylov method (SPGMR, SPBCG, SPTFQMR, SPFGMR or PCG) can yield a powerful tool because it
combines established methods for stiff integration, nonlinear solver iteration, and Krylov (linear) iteration with a
problem-specific treatment of the dominant sources of stiffness, in the form of a user-supplied preconditioner matrix
[BH1989]. We note that the direct linear solvers provided by SUNDIALS (dense, band and sparse), as well as the
direct linear solvers accessible through LAPACK, can only be used with the serial and threaded vector representations.

In the case that a direct linear solver is used (dense or band), ARKode utilizes either a Newton or a modified Newton
iteration. The difference between these is that in a modified Newton method, the matrix A is held fixed for multiple
Newton iterations. More precisely, each Newton iteration is computed from the modified equation

Ã
(
z

(m)
i

)
δ(m+1) = −G

(
z

(m)
i

)
, (2.10)

in which

Ã ≈M − γ̃J̃ , J̃ =
∂fI
∂y

(ỹ), and γ̃ = h̃AIi,i. (2.11)

Here, the solution ỹ and step size h̃ upon which the modified Jacobian rely, are merely values of the solution and step
size from a previous iteration. In other words, the matrix Ã is only computed rarely, and reused for repeated stage
solves. The frequency at which Ã is recomputed, and hence the choice between normal and modified Newton itera-
tions, is determined by the input parameter msbp to the input function ARKodeSetMaxStepsBetweenLSet() or
with the LSETUP_MSBP argument to FARKSETIIN().

When using the direct and band solvers for the linear systems (2.10), the Jacobian may be supplied by a user routine
or approximated by finite-differences. In the case of differencing, we use the standard approximation

Ji,j(t, y) =
fI,i(t, y + σjej)− fI,i(t, y)

σj
,

where ej is the jth unit vector, and the increments σj are given by

σj = max
{√

U |yj |,
σ0

wj

}
.

8 Chapter 2. Mathematical Considerations

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Here U is the unit roundoff, σ0 is a dimensionless value, and wj is the error weight defined in (2.13). In the dense case,
this approach requiresN evaluations of fI , one for each column of J . In the band case, the columns of J are computed
in groups, using the Curtis-Powell-Reid algorithm, with the number of fI evaluations equal to the bandwidth.

In the case that an iterative linear solver is chosen, ARKode utilizes a Newton method variant called an Inexact Newton
iteration. Here, the matrix A is not itself constructed since the algorithms only require the product of this matrix with
a given vector. Additionally, each Newton system (2.7) is not solved completely, since these linear solvers are iterative
(hence the “inexact” in the name). Resultingly. for these linear solvers A is applied in a matrix-free manner,

Av = Mv − γJv.

The matrix-vector products Jv are obtained by either calling an optional user-supplied routine, or through directional
differencing using the formula

Jv =
fI(t, y + σv)− fI(t, y)

σ
,

where the increment σ = 1/‖v‖ to ensure that ‖σv‖ = 1.

As with the modified Newton method that reused A between solves, ARKode’s inexact Newton iteration may also
recompute the preconditioner matrix P infrequently to balance the high costs of matrix construction and factorization
against the reduced convergence rate that may result from a stale preconditioner.

Alternately, for some preconditioning algorithms that do not rely on costly matrix construction and factorization
operations (e.g. when using an iterative multigrid method as preconditioner), a user may specify that A and/or P
should be recomputed at every Newton iteration, since the increased rate of convergence may more than account
for the additional cost of Jacobian/preconditioner construction. To indicate this, a user need only supply a negative
value for the msbp argument to ARKodeSetMaxStepsBetweenLSet(), or the LSETUP_MSBP argument to
FARKSETIIN().

However, in cases where recomputation of the Newton matrix Ã or preconditioner matrix P is lagged, ARKode will
force recomputation of these structures only in the following circumstances:

• when starting the problem,

• when more than 20 steps have been taken since the last update (this value may be changed via the msbp argument
to ARKodeSetMaxStepsBetweenLSet(), or the LSETUP_MSBP argument to FARKSETIIN()),

• when the value γ̄ of γ at the last update satisfies |γ/γ̄ − 1| > 0.2 (this tolerance may be changed via the dgmax
argument to ARKodeSetDeltaGammaMax()) or the LSETUP_DGMAX argument to FARKSETRIN(),

• when a non-fatal convergence failure just occurred,

• when an error test failure just occurred, or

• if the problem is linearly implicit and γ has changed by a factor larger than 100 times machine epsilon.

When an update is forced due to a convergence failure, an update of Ã or P may or may not involve a reevaluation of
J (in Ã) or of Jacobian data (in P), depending on whether errors in the Jacobian were the likely cause of the failure.
More generally, the decision is made to reevaluate J (or instruct the user to reevaluate Jacobian data in P) when:

• starting the problem,

• more than 50 steps have been taken since the last evaluation,

• a convergence failure occurred with an outdated matrix, and the value γ̄ of γ at the last update satisfies
|γ/γ̄ − 1| > 0.2,

• a convergence failure occurred that forced a step size reduction, or

• if the problem is linearly implicit and γ has changed by a factor larger than 100 times machine epsilon.

As will be further discussed in the section Preconditioning, in the case of a Krylov method, preconditioning may be
applied on the left, right, or on both sides of A, with user-supplied routines for the preconditioner setup and solve
operations.

2.3. Linear solver methods 9

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

2.4 Iteration Error Control

2.4.1 Choice of norm

In the process of controlling errors at various levels (time integration, nonlinear solution, linear solution), ARKode
uses a weighted root-mean-square norm, denoted ‖ · ‖WRMS, for all error-like quantities,

‖v‖WRMS =

(
1
N

N∑
i=1

(vi wi)
2

)1/2

. (2.12)

The power of this choice of norm arises in the specification of the weighting vector w, that combines the units of the
problem with the user-supplied measure of “acceptable” error. To this end, ARKode constructs and error weight vector
using the most-recent step solution and the relative and absolute tolerances input by the user, namely

wi =
1

RTOL · |yi|+ATOLi
. (2.13)

Since 1/wi represents a tolerance in the component yi, a vector whose WRMS norm is 1 is regarded as “small.” For
brevity, we will typically drop the subscript WRMS on norms in the remainder of this section.

Additionally, for problems involving a non-identity mass matrix, M 6= I , the units of equation (2.1) may differ from
the units of the solution y. In this case, ARKode may also construct a residual weight vector,

wi =
1

RTOL · |Myi|+ATOL′i
, (2.14)

where the user may specify a separate absolute residual tolerance value or array, ATOL′i. The choice of weighting
vector used in any given norm is determined by the quantity being measured: values having solution units use (2.13),
whereas values having equation units use (2.14). Obviously, for problems with M = I , the weighting vectors are
identical.

2.4.2 Nonlinear iteration error control

The stopping test for all of ARKode’s nonlinear solvers is related to the subsequent local error test, with the goal of
keeping the nonlinear iteration errors from interfering with local error control. Denoting the final computed value of
each stage solution as z(m)

i , and the true stage solution solving (2.5) as zi, we want to ensure that the iteration error
zi − z(m)

i is “small” (recall that a norm less than 1 is already considered “small”).

To this end, we first estimate the linear convergence rate Ri of the nonlinear iteration. We initialize Ri = 1, and reset
it to this value whenever Ã or P are updated. After computing a nonlinear correction δ(m) = z

(m)
i −z(m−1)

i , ifm > 1
we update Ri as

Ri ← max{0.3Ri,
∥∥∥δ(m)

∥∥∥ / ∥∥∥δ(m−1)
∥∥∥}.

where the factor 0.3 is user-modifiable as the crdown input to the the function ARKodeSetNonlinCRDown() or
the NONLIN_CRDOWN argument to FARKSETRIN().

Denoting the true time step solution as yn, and the computed time step solution (computed using the stage solutions
z

(m)
i) as ỹn, we use the estimate

‖yn − ỹn‖ ≈ max
i

∥∥∥z(m+1)
i − z(m)

i

∥∥∥ ≈ max
i
Ri

∥∥∥z(m)
i − z(m−1)

i

∥∥∥ = max
i
Ri

∥∥∥δ(m)
∥∥∥ .

Therefore our convergence (stopping) test for the nonlinear iteration for each stage is

Ri

∥∥∥δ(m)
∥∥∥ < ε,

10 Chapter 2. Mathematical Considerations

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

where the factor ε has default value 0.1, and is user-modifiable as the nlscoef input to the the function
ARKodeSetNonlinConvCoef() or the NLCONV_COEF input to the function FARKSETRIN(). We allow
at most 3 nonlinear iterations (modifiable through ARKodeSetMaxNonlinIters(), or as the MAX_NSTEPS
argument to FARKSETIIN()). We also declare the nonlinear iteration to be divergent if any of the ra-
tios ‖δ(m)‖/‖δ(m−1)‖ > 2.3 with m > 1 (the value 2.3 may be modified as the rdiv input to
ARKodeSetNonlinRDiv() or the NONLIN_RDIV input to FARKSETRIN()). If convergence fails in the
fixed point iteration, or in the Newton iteration with J or A current, we must then reduce the step size
by a factor of 0.25 (modifiable via the etacf input to the ARKodeSetMaxCFailGrowth() function or the
ADAPT_ETACF input to FARKSETRIN()). The integration is halted after 10 convergence failures (modifiable via
the ARKodeSetMaxConvFails() function or the MAX_CONVFAIL argument to FARKSETIIN()).

2.4.3 Linear iteration error control

When a Krylov method is used to solve the linear systems (2.7), its errors must also be controlled. To this end,
we approximate the linear iteration error in the solution vector δ(m) using the preconditioned residual vector, e.g.
r = PAδ(m) + PG for the case of left preconditioning (the role of the preconditioner is further elaborated on in the
next section). In an attempt to ensure that the linear iteration errors do not interfere with the nonlinear solution error
and local time integration error controls, we require that the norm of the preconditioned linear residual satisfies

‖r‖ ≤ 0.05ε. (2.15)

Here ε is the same value as that used above for the nonlinear error control. The value 0.05 may be modified by the
user through the ARKSpilsSetEpsLin() function. Fortran users may adjust this value using the DELT argument
to the functions FARKSPGMR(), FARKSPBCG(), FARKSPTFQMR(), FARKSPFGMR() or FARKPCG(). We note
that for linearly implicit problems the same tolerance (2.15) is used for the single Newton iteration.

2.5 Preconditioning

When using an inexact Newton method to solve the nonlinear system (2.5), ARKode makes repeated use of a linear
solver to solve linear systems of the form Ax = b, where x is a correction vector and b is a residual vector. If this
linear system solve is done with one of the scaled preconditioned iterative linear solvers, the efficiency of such solvers
may benefit tremendously from preconditioning. A system Ax = b can be preconditioned as one of:

(P−1A)x = P−1b [left preconditioning],

(AP−1)Px = b [right preconditioning],

(P−1
L AP

−1
R)PRx = P−1

L b [left and right preconditioning].

The Krylov method is then applied to a system with the matrix P−1A,AP−1, or P−1
L AP

−1
R , instead ofA. In order to

improve the convergence of the Krylov iteration, the preconditioner matrix P , or the product PLPR in the third case,
should in some sense approximate the system matrixA. Yet at the same time, in order to be cost-effective the matrix P
(or matrices PL and PR) should be reasonably efficient to evaluate and solve. Finding an optimal point in this tradeoff
between rapid convergence and low cost can be quite challenging. Good choices are often problem-dependent (for
example, see [BH1989] for an extensive study of preconditioners for reaction-transport systems).

The ARKode solver allows for preconditioning either side, or on both sides, although for non-symmetric matrices A
we know of few situations where preconditioning on both sides is superior to preconditioning on one side only (with
the product P = PLPR). Moreover, for a given preconditioner matrix, the merits of left vs. right preconditioning are
unclear in general, and the user should experiment with both choices. Performance will differ between these choices
because the inverse of the left preconditioner is included in the linear system residual whose norm is being tested in
the Krylov algorithm. As a rule, however, if the preconditioner is the product of two matrices, we recommend that
preconditioning be done either on the left only or the right only, rather than using one factor on each side. An exception
to this rule is the PCG solver, that itself assumes a symmetric matrix A, since the PCG algorithm in fact applies the
single preconditioner matrix P in both left/right fashion as P−1/2AP−1/2.

2.5. Preconditioning 11

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Typical preconditioners used with ARKode are based on approximations to the system Jacobian, J = ∂fI/∂y. Since
the Newton iteration matrix involved isA = M−γJ , any approximation J̄ to J yields a matrix that is of potential use
as a preconditioner, namely P = M − γJ̄ . Because the Krylov iteration occurs within a Newton iteration and further
also within a time integration, and since each of these iterations has its own test for convergence, the preconditioner
may use a very crude approximation, as long as it captures the dominant numerical feature(s) of the system. We
have found that the combination of a preconditioner with the Newton-Krylov iteration, using even a relatively poor
approximation to the Jacobian, can be surprisingly superior to using the same matrix without Krylov acceleration (i.e.,
a modified Newton iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.6 Implicit predictors

For problems with implicit components, ARKode will employ a prediction algorithm for constructing the initial
guesses for each Runge-Kutta stage, z(0)

i . As is well-known with nonlinear solvers, the selection of a good initial
guess can have dramatic effects on both the speed and robustness of the nonlinear solve, enabling the difference be-
tween rapid quadratic convergence versus divergence of the iteration. To this end, ARKode implements a variety of
prediction algorithms that may be selected by the user. In each case, the stage guesses z(0)

i are constructed explicitly
using readily-available information, including the previous step solutions yn−1 and yn−2, as well as any previous stage
solutions zj , j < i. In all cases, prediction is performed by constructing an interpolating polynomial through exist-
ing data, which is then evaluated at the subsequent stage times to provide an inexpensive but (hopefully) reasonable
prediction of the subsequent solution value. Specifically, for all of the Runge-Kutta methods implemented in ARKode
(and the vast majority in general), each stage solution satisfies

zi ≈ y(tn,i),

so by constructing an interpolating polynomial pq(t) through a set of existing data, the initial guess at stage solutions
may be approximated as

z
(0)
i = pq(tn,i).

Denoting [a, b] as the interval containing the data used to construct pq(t), and assuming forward integration from
a → b, it is typically the case that tn,j > b. The dangers of using a polynomial interpolant to extrapolate values
outside the interpolation interval are well-known, with higher-order polynomials and predictions further outside the
interval resulting in the greatest potential inaccuracies.

Each prediction algorithm therefore constructs a different type of interpolant pq(t), as described below.

2.6.1 Trivial predictor

The so-called “trivial predictor” is given by the formula

p0(τ) = yn−1.

While this piecewise-constant interpolant is clearly not a highly accurate candidate for problems with time-varying
solutions, it is often the most robust approach for either highly stiff problems, or problems with implicit constraints
whose violation may cause illegal solution values (e.g. a negative density or temperature).

2.6.2 Maximum order predictor

At the opposite end of the spectrum, ARKode can construct an interpolant pq(t) of polynomial order up to q = 3.
Here, the function pq(t) is identical to the one used for interpolation of output solution values between time steps, i.e.
for “dense output” of y(t) for tn−1 < t < tn. The order of this polynomial, q, may be specified by the user with the
function ARKodeSetDenseOrder() or with the DENSE_ORDER argument to FARKSETIIN().

12 Chapter 2. Mathematical Considerations

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

The interpolants generated are either of Lagrange or Hermite form, and use the data {yn−2, fn−2, yn−1, fn−1}, where
we use fk to denote M−1 (fE(tk, yk) + fI(tk, yk)). Defining a scaled and shifted “time” variable τ for the interval
[tn−2, tn−1] as

τ(t) = (t− tn)/hn−1,

we may denote the predicted stage times in the subsequent time interval [tn−1, tn] as

τi = ci
hn
hn−1

.

We then construct the interpolants p(t) as follows:

• q = 0: constant interpolant

p0(τ) =
yn−2 + yn−1

2
.

• q = 1: linear Lagrange interpolant

p1(τ) = −τ yn−2 + (1 + τ) yn−1.

• q = 2: quadratic Hermite interpolant

p2(τ) = τ2 yn−2 + (1− τ2) yn−1 + h(τ + τ2) fn−1.

• q = 3: cubic Hermite interpolant

p3(τ) = (3τ2 + 2τ3) yn−2 + (1− 3τ2 − 2τ3) yn−1 + h(τ2 + τ3) fn−2 + h(τ + 2τ2 + τ3) fn−1.

These higher-order predictors may be useful when using lower-order methods in which hn is not too large. We further
note that although interpolants of order > 3 are possible, these are not implemented due to their increased computing
and storage costs, along with their diminishing returns due to increased extrapolation error.

2.6.3 Variable order predictor

This predictor attempts to use higher-order interpolations pq(t) for predicting earlier stages in the subsequent time
interval, and lower-order interpolants for later stages. It uses the same formulas as described above, but chooses q
adaptively based on the stage index i, under the (rather tenuous) assumption that the stage times are increasing, i.e.
cj < ck for j < k:

q = max{qmax − i, 1}.

2.6.4 Cutoff order predictor

This predictor follows a similar idea as the previous algorithm, but monitors the actual stage times to determine the
polynomial interpolant to use for prediction:

q =

{
qmax, if τ < 1

2 ,

1, otherwise.

2.6. Implicit predictors 13

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

2.6.5 Bootstrap predictor

This predictor does not use any information from within the preceding step, instead using information only within the
current step [tn−1, tn] (including yn−1 and fn−1). Instead, this approach uses the right-hand side from a previously
computed stage solution in the same step, f(tn−1 + cjh, zj) to construct a quadratic Hermite interpolant for the
prediction. If we define the constants h̃ = cjh and τ = cih, the predictor is given by

z
(0)
i = yn−1 +

(
τ − τ2

2h̃

)
f(tn−1, yn−1) +

τ2

2h̃
f(tn−1 + cjh, zj).

For stages in which cj = 0 for all previous stages j = 0, . . . , i − 1, and for the first stage of any time step (i = 0),
this method reduces to using the trivial predictor z(0)

i = yn−1. For stages having multiple precdding nonzero cj , we
choose the stage having largest cj value, to minimize the amount of extrapolation induced through the prediction.

2.7 Time step adaptivity

A critical component of ARKode, making it an IVP “solver” rather than just an integrator, is its adaptive control of
local truncation error. At every step, we estimate the local error, and ensure that it satisfies tolerance conditions. If
this local error test fails, then the step is recomputed with a reduced step size. To this end, every Runge-Kutta method
packaged within ARKode admit an embedded solution ỹn, as shown in equation (2.2). Generally, these embedded
solutions attain a lower order of accuracy than the computed solution yn. Denoting these orders of accuracy as p and
q, where p corresponds to the embedding and q corresponds to the method, for the majority of embedded methods
p = q − 1. These values of p and q correspond to the global order of accuracy for the method and embedding, hence
each admit local errors satisfying [HW1993]

‖yn − y(tn)‖ = Chq+1
n +O(hq+2

n),

‖ỹn − y(tn)‖ = Dhp+1
n +O(hp+2

n),
(2.16)

where C and D are constants independent of h, and where we have assumed exact initial conditions for the step,
yn−1 = y(tn−1). Combining these estimates, we have

‖yn − ỹn‖ = ‖yn − y(tn)− ỹn + y(tn)‖ ≤ ‖yn − y(tn)‖+ ‖ỹn − y(tn)‖ ≤ Dhp+1
n +O(hp+2

n).

We therefore use this difference norm as an estimate for the local truncation error at the step n,

Tn = β (yn − ỹn) = βhnM
−1

s∑
i=0

(
bi − b̃i

)
(fE(tn−1 + cihn, zi) + fI(tn−1 + cihn, zi)) . (2.17)

Here, β > 0 is an error bias to help account for the error constant D; the default value of this is β = 1.5, and
may be modified by the user through the function ARKodeSetErrorBias() or through the input ADAPT_BIAS to
FARKSETRIN().

With this LTE estimate, the local error test is simply ‖Tn‖ < 1, where we remind that this norm includes the user-
specified relative and absolute tolerances. If this error test passes, the step is considered successful, and the estimate
is subsequently used to estimate the next step size, as will be described below in the section Asymptotic error control.
If the error test fails, the step is rejected and a new step size h′ is then computed using the error control algorithms de-
scribed in Asymptotic error control. A new attempt at the step is made, and the error test is repeated. If it fails multiple
times (as specified through the small_nef input to ARKodeSetSmallNumEFails() or the ADAPT_SMALL_NEF
argument to FARKSETIIN(), which defaults to 2), then h′/h is limited above to 0.3 (this is modifiable via the
etamxf argument to ARKodeSetMaxEFailGrowth() or the ADAPT_ETAMXF argument to FARKSETRIN()),
and limited below to 0.1 after an additional step failure. After seven error test failures (modifiable via the function
ARKodeSetMaxErrTestFails() or the MAX_ERRFAIL argument to FARKSETIIN()), ARKode returns to the
user with a give-up message.

14 Chapter 2. Mathematical Considerations

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

We define the step size ratio between a prospective step h′ and a completed step h as η, i.e.

η = h′/h.

This is bounded above by ηmax to ensure that step size adjustments are not overly aggressive. This value is modified
according to the step and history,

ηmax =


etamx1, on the first step (default is 10000),
growth, on general steps (default is 20),
1, if the previous step had an error test failure.

Here, the values of etamx1 and growth may be modified by the user in the functions
ARKodeSetMaxFirstGrowth() and ARKodeSetMaxGrowth(), respectively, or through the inputs
ADAPT_ETAMX1 and ADAPT_GROWTH to the function FARKSETRIN().

A flowchart detailing how the time steps are modified at each iteration to ensure solver convergence and successful
steps is given in the figure below. Here, all norms correspond to the WRMS norm, and the error adaptivity function
arkAdapt is supplied by one of the error control algorithms discussed in the subsections below.

For some problems it may be preferrable to avoid small step size adjustments. This can be especially true for prob-
lems that construct and factor the Newton Jacobian matrix A from equation (2.8) for either a direct solve, or as a
preconditioner for an iterative solve, where this construction is computationally expensive, and where Newton conver-
gence can be seriously hindered through use of a somewhat incorrect A. In these scenarios, the step is not changed
when η ∈ [ηL, ηU]. The default values for these parameters are ηL = 1 and ηU = 1.5, though these are modifiable
through the function ARKodeSetFixedStepBounds() or through the input ADAPT_BOUNDS to the function
FARKSETRIN().

The user may supply external bounds on the step sizes within ARKode, through defining the values hmin and hmax
with the functions ARKodeSetMinStep() and ARKodeSetMaxStep(), or through the inputs MIN_STEP and
MAX_STEP to the function FARKSETRIN(), respectively. These default to hmin = 0 and hmax =∞.

Normally, ARKode takes steps until a user-defined output value t = tout is overtaken, and then it computes y(tout)
by interpolation (using the same dense output routines described in the section Maximum order predictor). How-
ever, a “one step” mode option is available, where control returns to the calling program after each step. There
are also options to force ARKode not to integrate past a given stopping point t = tstop, through the function
ARKodeSetStopTime() or through the input STOP_TIME to FARKSETRIN().

2.7. Time step adaptivity 15

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

2.7.1 Asymptotic error control

As mentioned above, ARKode adapts the step size in order to attain local errors within desired tolerances of the
true solution. These adaptivity algorithms estimate the prospective step size h′ based on the asymptotic local error
estimates (2.16). We define the values εn, εn−1 and εn−2 as

εk ≡ ‖Tk‖ = β‖yn − ỹn‖,

corresponding to the local error estimates for three consecutive steps, tn−3 → tn−2 → tn−1 → tn. These local
error history values are all initialized to 1.0 upon program initialization, to accomodate the few initial time steps of a
calculation where some of these error estimates are undefined. With these estimates, ARKode implements a variety of
error control algorithms, as specified in the subsections below.

PID controller

This is the default time adaptivity controller used by ARKode. It derives from those found in [KC2003], [S1998],
[S2003] and [S2006]. It uses all three of the local error estimates εn, εn−1 and εn−2 in determination of a prospective
step size,

h′ = hn ε
−k1/p
n ε

k2/p
n−1 ε

−k3/p
n−2 ,

where the constants k1, k2 and k3 default to 0.58, 0.21 and 0.1, respectively, though each may be
changed via a call to the C/C++ function ARKodeSetAdaptivityMethod(), or to the Fortran function
FARKSETADAPTIVITYMETHOD(). In this estimate, a floor of ε > 10−10 is enforced to avoid division-by-zero
errors.

PI controller

Like with the previous method, the PI controller derives from those found in [KC2003], [S1998], [S2003] and [S2006],
but it differs in that it only uses the two most recent step sizes in its adaptivity algorithm,

h′ = hn ε
−k1/p
n ε

k2/p
n−1 .

Here, the default values of k1 and k2 default to 0.8 and 0.31, respectively, though they may be changed via a call to
ARKodeSetAdaptivityMethod() or FARKSETADAPTIVITYMETHOD(). As with the previous controller, at
initialization k1 = k2 = 1.0 and the floor of 10−10 is enforced on the local error estimates.

I controller

The so-called I controller is the standard time adaptivity control algorithm in use by most available ODE solvers. It
bases the prospective time step estimate entirely off of the current local error estimate,

h′ = hn ε
−k1/p
n .

By default, k1 = 1, but that may be overridden by the user with the function ARKodeSetAdaptivityMethod()
or the function FARKSETADAPTIVITYMETHOD().

Explicit Gustafsson controller

This step adaptivity algorithm was proposed in [G1991], and is primarily useful in combination with explicit Runge-
Kutta methods. Using the notation of our earlier controllers, it has the form

h′ =

{
h1 ε

−1/p
1 , on the first step,

hn ε
−k1/p
n (εn/εn−1)k2/p , on subsequent steps.

(2.18)

The default values of k1 and k2 are 0.367 and 0.268, respectively, which may be changed bhy calling either
ARKodeSetAdaptivityMethod() or FARKSETADAPTIVITYMETHOD().

16 Chapter 2. Mathematical Considerations

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Implicit Gustafsson controller

A version of the above controller suitable for implicit Runge-Kutta methods was introduced in [G1994], and has the
form

h′ =

{
h1ε
−1/p
1 , on the first step,

hn (hn/hn−1) ε−k1/pn (εn/εn−1)−k2/p , on subsequent steps.
(2.19)

The algorithm parameters default to k1 = 0.98 and k2 = 0.95, but may be modified by the user with
ARKodeSetAdaptivityMethod() or FARKSETADAPTIVITYMETHOD().

ImEx Gustafsson controller

An ImEx version of these two preceding controllers is available in ARKode. This approach computes the estimates h′1
arising from equation (2.18) and the estimate h′2 arising from equation (2.19), and selects

h′ =
h

|h|
min {|h′1|, |h′2|} .

Here, equation (2.18) uses k1 and k2 with default values of 0.367 and 0.268, while equation (2.19) sets both param-
eters to the input k3 that defaults to 0.95. All three of these parameters may be modified with the C/C++ function
ARKodeSetAdaptivityMethod() or the Fortran function FARKSETADAPTIVITYMETHOD().

User-supplied controller

Finally, ARKode allows the user to define their own time step adaptivity function,

h′ = H(y, t, hn, hn−1, hn−2, εn, εn−1, εn−2, q, p),

via a call to the C/C++ routine ARKodeSetAdaptivityFn() or the Fortran routine FARKADAPTSET().

2.8 Explicit stability

For problems that involve a nonzero explicit component, fE(t, y) 6= 0, explicit and ImEx Runge-Kutta methods
may benefit from addition user-supplied information regarding the explicit stability region. All ARKode adaptivity
methods utilize estimates of the local error. It is often the case that such local error control will be sufficient for method
stability, since unstable steps will typically exceed the error control tolerances. However, for problems in which
fE(t, y) includes even moderately stiff components, and especially for higher-order integration methods, it may occur
that a significant number of attempted steps will exceed the error tolerances. While these steps will automatically be
recomputed, such trial-and-error may be costlier than desired. In these scenarios, a stability-based time step controller
may also be useful.

Since the explicit stability region for any method depends on the problem under consideration, as it results from the
eigenvalues of the linearized operator ∂fE

∂y , information on the maximum stable step size is not computed internally
within ARKode. However, for many problems such information is readily available. For example, in an advection-
diffusion calculation, fI may contain the stiff diffusive components and fE may contain the comparably nonstiff
advection terms. In this scenario, an explicitly stable step hexp would be predicted as one satisfying the Courant-
Friedrichs-Lewy (CFL) stability condition,

|hexp| <
∆x
|λ|

where ∆x is the spatial mesh size and λ is the fastest advective wave speed.

2.8. Explicit stability 17

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

In these scenarios, a user may supply a routine to predict this maximum explicitly stable step size, |hexp|, by calling
the C/C++ function ARKodeSetStabilityFn() or the Fortran function FARKEXPSTABSET(). If a value for
|hexp| is supplied, it is compared against the value resulting from the local error controller, |hacc|, and the step used by
ARKode will satisfy

h′ =
h

|h|
min{c |hexp|, |hacc|}.

Here the explicit stability step factor (often called the “CFL factor”) c > 0 may be modified through the function
ARKodeSetCFLFraction() or through the input ADAPT_CFL to the function FARKSETRIN(), and has a de-
fault value of 1/2.

2.8.1 Fixed time stepping

While ARKode is designed for time step adaptivity, it may additionally be called in “fixed-step” mode, typically
used for debugging purposes or for verification against hand-coded Runge-Kutta methods. In this mode, all time step
adaptivity is disabled:

• temporal error control is disabled,

• nonlinear or linear solver non-convergence results in an error (instead of a step size adjustment),

• no check against an explicit stability condition is performed.

Additional information on this mode is provided in the section Optional input functions.

2.9 Mass matrix solver

Within the algorithms described above, there are three locations where a linear solve of the form

Mx = b

is required: (a) in constructing the time-evolved solution yn, (b) in estimating the local temporal truncation error, and
(c) in constructing predictors for the implicit solver iteration (see section Maximum order predictor). Specifically, to
construct the time-evolved solution yn from equation (2.2) we must solve

Myn = Myn−1 + hn

s∑
i=0

bi (fE(tn,i, zi) + fI(tn,i, zi)) ,

⇔

M(yn − yn−1) = hn

s∑
i=0

bi (fE(tn,i, zi) + fI(tn,i, zi)) ,

⇔

Mν = hn

s∑
i=0

bi (fE(tn,i, zi) + fI(tn,i, zi)) ,

for the update ν = yn − yn−1. Similarly, in computing the local temporal error estimate Tn from equation (2.17) we
must solve systems of the form

M Tn = h

s∑
i=0

(
bi − b̃i

)
(fE(tn,i, zi) + fI(tn,i, zi)) .

18 Chapter 2. Mathematical Considerations

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Lastly, in constructing dense output and implicit predictors of order 2 or higher (as in the section Maximum order
predictor above), we must compute the derivative information fk from the equation

Mfk = fE(tk, yk) + fI(tk, yk).

Of course, for problems in which M = I these solves are not required; however for problems with non-identity M ,
ARKode may use either an iterative linear solver or a dense linear solver, in the same manner as described in the
section Linear solver methods for solving the linear Newton systems. We note that at present, the matrix M may
depend on time t but must be independent of the solution y, since we assume that each of the above systems are linear.

At present, for DIRK and ARK problems using a dense or band solver for the Newton nonlinear iterations, the
type of linear solver (dense or band) for the Newton systems Aδ = −G must match the type of linear solver
used for these mass-matrix systems, since M is included inside A. When direct methods (dense and band) are
employed, the user must supply a routine to compute M in either dense or band form to match the structure of
A, using either the routine ARKDlsDenseMassFn() or ARKDlsBandMassFn(). When iterative methods are
used, a routine must be supplied to perform the mass-matrix-vector product, Mv, through a call to the routine
ARKSpilsMassTimesVecFn(). As with iterative solvers for the Newton systems, preconditioning may be ap-
plied to aid in solution of the mass matrix systems Mx = b.

We further note that non-identity mass matrices, M 6= I , are only supported by the C and C++ ARKode interfaces,
although Fortran support is planned for the near future.

2.10 Rootfinding

The ARKode solver has been augmented to include a rootfinding feature. This means that, while integrating the IVP
(2.1), ARKode can also find the roots of a set of user-defined functions gi(t, y) that depend on t and the solution vector
y = y(t). The number of these root functions is arbitrary, and if more than one gi is found to have a root in any given
interval, the various root locations are found and reported in the order that they occur on the t axis, in the direction of
integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in sign of gi(t, y(t)),
denoted gi(t) for short. If a user root function has a root of even multiplicity (no sign change), it will probably be
missed by ARKode. If such a root is desired, the user should reformulate the root function so that it changes sign at
the desired root.

The basic scheme used is to check for sign changes of any gi(t) over each time step taken, and then (when a sign
change is found) to home in on the root (or roots) with a modified secant method [HS1980]. In addition, each time g
is computed, ARKode checks to see if gi(t) = 0 exactly, and if so it reports this as a root. However, if an exact zero
of any gi is found at a point t, ARKode computes g(t+ δ) for a small increment δ, slightly further in the direction of
integration, and if any gi(t + δ) = 0 also, ARKode stops and reports an error. This way, each time ARKode takes a
time step, it is guaranteed that the values of all gi are nonzero at some past value of t, beyond which a search for roots
is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has been done, ARKode
has an interval (tlo, thi] in which roots of the gi(t) are to be sought, such that thi is further ahead in the direction of
integration, and all gi(tlo) 6= 0. The endpoint thi is either tn, the end of the time step last taken, or the next requested
output time tout if this comes sooner. The endpoint tlo is either tn−1, or the last output time tout (if this occurred within
the last step), or the last root location (if a root was just located within this step), possibly adjusted slightly toward
tn if an exact zero was found. The algorithm checks g(thi) for zeros, and it checks for sign changes in (tlo, thi). If
no sign changes are found, then either a root is reported (if some gi(thi) = 0) or we proceed to the next time interval
(starting at thi). If one or more sign changes were found, then a loop is entered to locate the root to within a rather
tight tolerance, given by

τ = 100U (|tn|+ |h|) (where U = unit roundoff).

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have its root occur
first is the one with the largest value of |gi(thi)| / |gi(thi)− gi(tlo)|, corresponding to the closest to tlo of the secant

2.10. Rootfinding 19

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

method values. At each pass through the loop, a new value tmid is set, strictly within the search interval, and the
values of gi(tmid) are checked. Then either tlo or thi is reset to tmid according to which subinterval is found to have the
sign change. If there is none in (tlo, tmid) but some gi(tmid) = 0, then that root is reported. The loop continues until
|thi − tlo| < τ , and then the reported root location is thi. In the loop to locate the root of gi(t), the formula for tmid is

tmid = thi −
gi(thi)(thi − tlo)
gi(thi)− αgi(tlo)

,

where α is a weight parameter. On the first two passes through the loop, α is set to 1, making tmid the secant method
value. Thereafter, α is reset according to the side of the subinterval (low vs high, i.e. toward tlo vs toward thi) in which
the sign change was found in the previous two passes. If the two sides were opposite, α is set to 1. If the two sides
were the same, α is halved (if on the low side) or doubled (if on the high side). The value of tmid is closer to tlo when
α < 1 and closer to thi when α > 1. If the above value of tmid is within τ/2 of tlo or thi, it is adjusted inward, such
that its fractional distance from the endpoint (relative to the interval size) is between 0.1 and 0.5 (with 0.5 being the
midpoint), and the actual distance from the endpoint is at least τ/2.

Finally, we note that when running in parallel, the ARKode rootfinding module assumes that the entire set of root
defining functions gi(t, y) is replicated on every MPI task. Since in these cases the vector y is distributed across tasks,
it is the user’s responsibility to perform any necessary inter-task communication to ensure that gi(t, y) is identical on
each task.

20 Chapter 2. Mathematical Considerations

CHAPTER

THREE

CODE ORGANIZATION

The family of solvers referred to as SUNDIALS consists of the solvers CVODE and ARKode (for ODE systems),
KINSOL (for nonlinear algebraic systems), and IDA (for differential-algebraic systems). In addition, SUNDIALS also
includes variants of CVODE and IDA with sensitivity analysis capabilities (using either forward or adjoint methods),
called CVODES and IDAS, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized as a family, with a
directory structure that exploits that sharing (see the following Figures SUNDIALS organization and SUNDIALS tree).
The following is a list of the solver packages presently available, and the basic functionality of each:

• CVODE, a linear multistep solver for stiff and nonstiff ODE systems ẏ = f(t, y) based on Adams and BDF
methods;

• CVODES, a linear multistep solver for stiff and nonstiff ODEs with sensitivity analysis capabilities;

• ARKode, a solver for ODE systems Mẏ = fE(t, y) + fI(t, y) based on additive Runge-Kutta methods;

• IDA, a linear multistep solver for differential-algebraic systems F (t, y, ẏ) = 0 based on BDF methods;

• IDAS, a linear multistep solver for differential-algebraic systems with sensitivity analysis capabilities;

• KINSOL, a solver for nonlinear algebraic systems F (u) = 0.

3.1 ARKode organization

The ARKode package is written in the ANSI C language. The following summarizes the basic structure of the package,
although knowledge of this structure is not necessary for its use.

The overall organization of the ARKode package is shown in Figure ARKode organization. The central integration
module, implemented in the files arkode.h, arkode_impl.h and arkode.c, deals with the evaluation of inte-
gration stages, the nonlinear solver (if fI(t, y) 6= 0), estimation of the local truncation error, selection of step size, and
interpolation to user output points, among other issues. ARKode currently supports modified Newton, inexact Newton,
and accelerated fixed-point solvers for these implicit problems. However, when using the Newton-based iterations,
or when using a non-identity mass matrix M 6= I , ARKode has flexibility in the choice of method used to solve the
linear sub-systems that arise. Therefore, for any user problem invoking the Newton solvers, or any user problem with
M 6= I , one (or more) of the linear system solver modules should be specified by the user, which is then invoked as
needed during the integration process.

For solving these linear systems, ARKode presently includes the following linear algebra modules, organized into two
families. The direct family of linear solvers provides methods for the direct solution of linear systems with dense,
banded or sparse matrices and includes:

• ARKDENSE: LU factorization and backsolving with dense matrices (using either an internal implementation
or BLAS/LAPACK);

21

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Fig. 3.1: SUNDIALS organization: High-level diagram of the SUNDIALS structure (the Lapack linear solver modules
are implicitly included under “DENSE” and “BAND”).

∗ PCG is only available in ARKode.
∗∗ SPFGMR is only available in ARKode and KINSOL.

Fig. 3.2: SUNDIALS tree: Directory structure of the source tree.

22 Chapter 3. Code Organization

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Fig. 3.3: ARKode organization: Overall structure of the ARKode package. Modules specific to ARKode are dis-
tinguished by round boxes, while generic solver and auxiliary modules are in rectangular boxes. Note that the direct
linear solvers using Lapack implementations are not explicitly represented. Also note that all ARK* linear solver
modules may additionally be used on mass matrix systems.

3.1. ARKode organization 23

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARKBAND: LU factorization and backsolving with banded matrices (using either an internal implementation
or BLAS/LAPACK).

• ARKKLU: LU factorization and backsolving with compressed-sparse-column (CSC) matrices using the KLU
linear solver library [KLU].

• ARKSUPERLUMT: LU factorization and backsolving with compressed-sparse-column (CSC) matrices using
the threaded SuperLU_MT linear solver library [SuperLUMT].

The spils family of linear solvers provides scaled preconditioned linear solvers and includes:

• ARKSPGMR: scaled preconditioned GMRES method;

• ARKSPBCG: scaled preconditioned Bi-CGStab method;

• ARKSPTFQMR: scaled preconditioned TFQMR method;

• ARKSPFGMR: scaled preconditioned flexible GMRES method;

• ARKPCG: preconditioned conjugate gradient method;

The set of linear solver modules distributed with ARKode is intended to be expanded in the future as new algorithms
are developed, and may additionally be expanded through user-supplied linear solver modules, further described in the
section Providing Alternate Linear Solver Modules.

In the case of the dense direct methods (ARKDENSE and ARKBAND), ARKode includes an algorithm to approximate
the Jacobian using difference quotients, but the user also has the option of supplying the Jacobian (or an approximation
to it) directly. When using the sparse direct linear solvers (ARKKLU and ARKSUPERLUMT), the user must supply a
routine for the Jacobian (or an approximation), since difference quotient approximations do not leverage the inherent
sparsity of the problem. In the case of the Krylov iterative methods (ARKSPGMR, ARKSPBCG, ARKSPTFQMR,
ARKSPFGMR and ARKPCG), ARKode includes an algorithm to approximate the product between the Jacobian
matrix and a vector, also using difference quotients. Again, the user has the option of supplying a routine for this
operation. For the Krylov methods, preconditioning must be supplied by the user, in two phases: setup (preprocessing
of Jacobian data) and solve. While there is no default choice of preconditioner analagous to the difference-quotient
approximation in the direct case, the references [BH1989] and [B1992], together with the example and demonstration
programs included with ARKode and CVODE, offer considerable assistance in building simple preconditioners.

Each ARKode linear solver module consists of four routines, devoted to

1. memory allocation and initialization,

2. setup of the matrix data involved,

3. solution of the system, and

4. freeing of memory.

The setup and solution phases are separate because the evaluation of Jacobians and preconditioners is done only
periodically during the integration process, and only as required to achieve convergence. The call list within the
central ARKode module to each of the four associated functions is fixed, thus allowing the central module to be
completely independent of the linear system method.

These modules are also decomposed in another way. With the exception of the modules interfacing to the LAPACK,
KLU and SuperLU_MT linear solvers, each of the modules ARKDENSE, ARKBAND, ARKSPGMR, ARKSPBCG,
ARKSPTFQMR, ARKSPFGMR and ARKPCG is a set of interface routines built on top of a generic solver module,
named DENSE, BAND, SPGMR, SPBCG, SPTFQMR, SPFGMR and PCG, respectively. The interfaces deal with the
use of these methods in the ARKode context, whereas the generic solvers are independent of the context where they
are used. This separation allows for any generic solver to be replaced by an improved version, with no necessity to
revise the ARKode package structure.

ARKode also provides two rudimentary preconditioner modules, for use with any of the Krylov iterative linear
solvers. The first, ARKBANDPRE is intended to be used with the serial or threaded vector data structures (NVEC-
TOR_SERIAL, NVECTOR_OPENMP and NVECTOR_PTHREADS), and provides a banded difference-quotient ap-

24 Chapter 3. Code Organization

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

proximation to the Jacobian as the preconditioner, with corresponding setup and solve routines. The second precondi-
tioner module, ARKBBDPRE, is intended to work with the parallel vector data structure, NVECTOR_PARALLEL,
and generates a preconditioner that is a block-diagonal matrix with each block being a band matrix owned by a single
processor.

All state information used by ARKode to solve a given problem is saved in a single opaque memory structure, and a
pointer to that structure is returned to the user. There is no global data in the ARKode package, and so in this respect
it is reentrant. State information specific to the linear solver is saved in a separate data structure, a pointer to which
resides in the ARKode memory structure.

3.1. ARKode organization 25

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

26 Chapter 3. Code Organization

CHAPTER

FOUR

USING ARKODE FOR C AND C++ APPLICATIONS

This chapter is concerned with the use of ARKode for the solution of initial value problems (IVPs) in a C or C++
language setting. The following sections treat the header files and the layout of the user’s main program, and provide
descriptions of the ARKode user-callable functions and user-supplied functions.

The example programs described in the companion document [R2013] may be helpful. Those codes may be used as
templates for new codes and are included in the ARKode package examples subdirectory.

Users with applications written in Fortran should see the chapter FARKODE, an Interface Module for FORTRAN
Applications, that describes the Fortran/C interface module, and may look to the Fortran example programs also
described in the companion document [R2013]. These codes are also located in the ARKode package examples
directory.

The user should be aware that not all linear solver and preconditioning modules are compatible with all NVEC-
TOR implementations. For example, NVECTOR_PARALLEL is not compatible with the direct dense or direct band
linear solvers since these linear solver modules need to form the complete system Jacobian on a single processor.
Specifically, the following ARKode modules can only be used with NVECTOR_SERIAL, NVECTOR_OPENMP
or NVECTOR_PTHREADS: ARKDENSE, ARKBAND (using either the internal or the LAPACK implementation),
ARKKLU, ARKSUPERLUMT and ARKBANDPRE. Also, the preconditioner module ARKBBDPRE can only be
used with NVECTOR_PARALLEL.

ARKode uses various constants for both input and output. These are defined as needed in this chapter, but for conve-
nience the full list is provided separately in the section Appendix: ARKode Constants.

The relevant information on using ARKode’s C and C++ interfaces is detailed in the following sub-sections:

4.1 Access to library and header files

At this point, it is assumed that the installation of ARKode, following the procedure described in the section ARKode
Installation Procedure, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by ARKode. The relevant library files
are

• libdir/libsundials_arkode.lib,

• libdir/libsundials_nvec*.lib (one or two files),

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant header files
are located in the subdirectories

• incdir/include/arkode

• incdir/include/sundials

27

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• incdir/include/nvector

The directories libdir and incdir are the installation library and include directories, respectively. For a default in-
stallation, these are instdir/lib and instdir/include, respectively, where instdir is the directory where
SUNDIALS was installed (see the section ARKode Installation Procedure for further details).

4.2 Data Types

The sundials_types.h file contains the definition of the variable type realtype, which is used by the SUN-
DIALS solvers for all floating-point data. The type “realtype” can be set to float, double, or long double,
depending on how SUNDIALS was installed (with the default being double). The user can change the precision
of the SUNDIALS solvers’ floating-point arithmetic at the configuration stage (see the section Configuration options
(Unix/Linux)).

Additionally, based on the current precision, sundials_types.h defines the values BIG_REAL to be the largest
value representable as a realtype, SMALL_REAL to be the smallest positive value representable as a realtype,
and UNIT_ROUNDOFF to be the smallest realtype number, ε, such that 1.0 + ε 6= 1.0.

Within SUNDIALS, real constants may be set to have the appropriate precision by way of a macro called RCONST.
It is this macro that needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant
with no suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a float,
whereas using the suffix “L” makes it a long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a long double
constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if realtype is double, to
1.0F if realtype is float, or to 1.0L if realtype is long double. SUNDIALS uses the RCONST macro
internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONSTmacro to handle floating-point constants is precision-
independent, except for any calls to precision-specific standard math library functions. Users can, however, use the
types double, float, or long double in their code (assuming that this usage is consistent with the size of
realtype values that are passed to and from SUNDIALS). Thus, a previously existing piece of ANSI C code
can use SUNDIALS without modifying the code to use realtype, so long as the SUNDIALS libraries have been
compiled using the same precision (for details see the section ARKode Installation Procedure).

SUNDIALS also defines a type “booleantype”, that can have values TRUE and FALSE, which is used for logic argu-
ments within the library.

4.3 Header Files

The calling program must include several header files so that various macros and data types can be used. The header
file that is always required is:

• arkode.h, the main header file for ARKode, which defines the several types and various constants, and in-
cludes function prototypes.

Note that arkode.h includes sundials_types.h directly, which defines the types realtype and
booleantype and the constants FALSE and TRUE, so a user program does not need to include
sundials_types.h directly.

28 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

The calling program must also include an NVECTOR implementation header file (see the section Vector Data Struc-
tures for details). For the four NVECTOR implementations that are included in the ARKode package, the correspond-
ing header files are:

• nvector_serial.h, which defines the serial implementation NVECTOR_SERIAL;

• nvector_openmp.h, which defines the OpenMP implementation NVECTOR_OPENMP;

• nvector_pthreads.h, which defines the Pthreads implementation NVECTOR_PTHREADS;

• nvector_parallel.h, which defines the parallel (MPI) implementation, NVECTOR_PARALLEL.

Note that all of these files in turn include the header file sundials_nvector.h which defines the abstract
N_Vector data type.

If the user includes a non-trivial implicit component to their ODE system, then each time step will require a nonlinear
solver for the resulting systems of equations. ARKode allows an accelerated fixed point iteration and Newton-based
iterations for this solver; if a Newton method is used then a linear solver module header file may also be required.
Similarly, if the ODE system

My′ = fI(t, y) + fE(t, y)

involves a non-identity mass matrix M 6= I , then each time step will require a linear solver for systems of the form
Mx = b. The header files corresponding to the various linear solvers built into ARKode, and that can be used with
either the Newton solver or for mass-matrix solves, are:

• arkode_dense.h, which is used with the dense direct linear solver;

• arkode_band.h, which is used with the band direct linear solver;

• arkode_lapack.h, which is used with LAPACK implementations of dense or band direct linear solvers;

• arkode_klu.h, which is used to interface with the KLU sparse matrix solver library;

• arkode_superlumt.h, which is used to interface with the SuperLU_MT threaded sparse matrix solver
library;

• arkode_spgmr.h, which is used with the scaled, preconditioned GMRES Krylov linear solver SPGMR;

• arkode_spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab Krylov linear solver SPBCG;

• arkode_sptfqmr.h, which is used with the scaled, preconditioned TFQMR Krylov solver SPTFQMR.

• arkode_spfgmr.h, which is used with the scaled, preconditioned Flexible GMRES Krylov linear solver
SPFGMR;

• arkode_pcg.h, which is used with the preconditioned conjugate gradient linear solver PCG;

The header files for the dense and banded linear solvers (both internal and LAPACK) include the file
arkode_direct.h, which defines common functions. This in turn includes a file (sundials_direct.h) which
defines the matrix type for these direct linear solvers (DlsMat), as well as various functions and macros for acting on
and accessing entries of such matrices.

The header files for the sparse linear solvers include the file arkode_sparse.h, which defines common functions.
This in turn includes a file (sundials_sparse.h) which defines the matrix type for these sparse linear solvers
(SlsMat), as well as various functions and macros for acting on and manipulating such matrices.

The header files for the Krylov iterative solvers each include arkode_spils.h which defines common functions
and which in turn includes a header file (sundials_iterative.h) which enumerates the preconditioning type
and the choices for the Gram-Schmidt orthogonalization process (for the SPGMR and SPFGMR solvers).

Other headers may be needed, according to the choice of preconditioner, etc. For example, if preconditioning for an
iterative linear solver were performed using a block-diagonal matrix, the header sundials_dense.h may need to
be included for access to the underlying generic dense linear solver to be used for preconditioning.

4.3. Header Files 29

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an IVP. Some
steps are independent of the NVECTOR implementation used. Where this is not the case, usage specifications are
given for the four implementations provided with ARKode: steps marked [S] correspond to NVECTOR_SERIAL,
steps marked [O] correspond to NVECTOR_OPENMP, steps marked [T] correspond to NVECTOR_PTHREADS,
and steps marked [P] correspond to NVECTOR_PARALLEL. Some steps may be marked with multiple codes, e.g.
[S, O, T]. Steps not marked apply to all NVECTOR implementations.

1. [P] Initialize MPI

Call MPI_Init to initialize MPI if used by the user’s program.

2. Set problem dimensions

[S, O, T] Set N, the problem size N .

[O, T] Set num_threads, the number of threads to use within the parallelized vector functions.

[P] Set Nlocal, the local vector length (the sub-vector length for this process); N, the global vector length (the
problem size N , equaling the sum of all the values of Nlocal on the active set of processes).

Note: The variables N and Nlocal should be of type long int. The variable num_threads should be of
type int.

3. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by the particular NVECTOR im-
plementation. If a realtype array ydata containing the initial values of y already exists, then make the
call:

[S] y0 = N_VMake_Serial(N, ydata);

[O] y0 = N_VMake_OpenMP(N, num_threads, ydata);

[T] y0 = N_VMake_Pthreads(N, num_threads, ydata);

[P] y0 = N_VMake_Parallel(comm, Nlocal, N, ydata);

Otherwise, make the call:

[S] y0 = N_VNew_Serial(N);

[O] y0 = N_VNew_OpenMP(N, num_threads);

[T] y0 = N_VNew_Pthreads(N, num_threads);

[P] y0 = N_VNew_Parallel(comm, Nlocal, N);

and load initial values into the array accessed by:

[S] NV_DATA_S(y0)

[O] NV_DATA_OMP(y0)

[T] NV_DATA_PT(y0)

[P] NV_DATA_P(y0)

Here comm is the MPI communicator containing the set of active processes to be used (may be the MPI default,
MPI_COMM_WORLD).

4. Create ARKode object

30 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Call arkode_mem = ARKodeCreate() to create the ARKode memory block. ARKodeCreate() re-
turns a pointer to the ARKode memory structure. See the section ARKode initialization and deallocation func-
tions for details.

5. Initialize ARKode solver

Call ARKodeInit() to provide required problem specifications, allocate internal memory for ARKode, and
initialize ARKode. ARKodeInit() returns a flag, the value of which indicates either success or an illegal
argument value. See the section ARKode initialization and deallocation functions for details.

6. Specify integration tolerances

Call ARKodeSStolerances() or ARKodeSVtolerances() to specify either a scalar relative tolerance
and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances, respectively.
Alternatively, call ARKodeWFtolerances() to specify a function which sets directly the weights used in
evaluating WRMS vector norms. See the section ARKode tolerance specification functions for details.

7. Set optional inputs

Call ARKodeSet* functions to change any optional inputs that control the behavior of ARKode from their
default values. See the section Optional input functions for details.

8. Attach linear solver module

If an implicit solve is required and a Newton-based iteration is chosen for the solver, initialize the linear solver
module with one of the following calls (for details see the section Linear solver specification functions):

[S, O, T] ier = ARKDense(...);

[S, O, T] ier = ARKBand(...);

[S, O, T] ier = ARKLapackDense(...);

[S, O, T] ier = ARKLapackBand(...);

[S, O, T] ier = ARKKLU(...);

[S, O, T] ier = ARKSuperLUMT(...);

ier = ARKSpgmr(...);

ier = ARKSpbcg(...);

ier = ARKSptfqmr(...);

ier = ARKSpfgmr(...);

ier = ARKPcg(...);

9. Set linear solver optional inputs

Call ARK*Set* functions from the selected linear solver module to change optional inputs specific to that linear
solver. See the section Optional input functions for details.

10. Attach mass matrix linear solver module

If a non-identity mass matrix solve is required, initialize the linear mass matrix solver module with one of the
following calls (for details see the section Linear solver specification functions):

[S, O, T] ier = ARKMassDense(...);

[S, O, T] ier = ARKMassBand(...);

[S, O, T] ier = ARKMassLapackDense(...);

[S, O, T] ier = ARKMassLapackBand(...);

[S, O, T] ier = ARKMassKLU(...);

4.4. A skeleton of the user’s main program 31

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

[S, O, T] ier = ARKMassSuperLUMT(...);

ier = ARKMassSpgmr(...);

ier = ARKMassSpbcg(...);

ier = ARKMassSptfqmr(...);

ier = ARKMassSpfgmr(...);

ier = ARKMassPcg(...);

11. Set mass matrix linear solver optional inputs

Call ARK*Set* functions from the selected mass matrix linear solver module to change optional inputs specific
to that linear solver. See the section Optional input functions for details.

12. Specify rootfinding problem

Optionally, call ARKodeRootInit() to initialize a rootfinding problem to be solved during the integration of
the ODE system. See the section Rootfinding initialization function for general details, and the section Optional
input functions for relevant optional input calls.

13. Advance solution in time

For each point at which output is desired, call

ier = ARKode(arkode_mem, tout, yout, &tret, itask)

Here, ARKode() requires that itask specify the return mode. The vector yout (which can be the same as
the vector y0 above) will contain y(tout). See the section ARKode solver function for details.

14. Get optional outputs

Call ARK*Get* functions to obtain optional output. See the section Optional output functions for details.

15. Free solver memory

Call ARKodeFree(&arkode_mem) to free the memory allocated for ARKode.

16. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y by calling the destructor function
defined by the NVECTOR implementation:

[S] N_VDestroy_Serial(y);

[O] N_VDestroy_OpenMP(y);

[T] N_VDestroy_Pthreads(y);

[P] N_VDestroy_Parallel(y);

17. [P] Finalize MPI

Call MPI_Finalize to terminate MPI.

4.5 User-callable functions

This section describes the ARKode functions that are called by the user to setup and then solve an IVP. Some of
these are required. However, starting with the section Optional input functions, the functions listed involve optional
inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of ARKode. In any case, refer to
the preceding section, A skeleton of the user’s main program, for the correct order of these calls.

32 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

On an error, each user-callable function returns a negative value and sends an error message to the error handler routine,
which prints the message on stderr by default. However, the user can set a file as error output or can provide her
own error handler function (see the section Optional input functions for details).

4.5.1 ARKode initialization and deallocation functions

void* ARKodeCreate()
This function creates an internal memory block for a problem to be solved by ARKode.

Arguments: None

Return value: If successful, a pointer to initialized problem memory of type void*, to be passed to
ARKodeInit(). If unsuccessful, a NULL pointer will be returned, and an error message will be printed
to stderr.

int ARKodeInit(void* arkode_mem, ARKRhsFn fe, ARKRhsFn fi, realtype t0, realtype y0)
This function allocates and initializes memory for a problem to to be solved by ARKode.

Arguments:

• arkode_mem – pointer to the ARKode memory block (that was returned by ARKodeCreate())

• fe – the name of the C function (of type ARKRhsFn()) defining the explicit portion of the right-hand
side function in ẏ = fE(t, y) + fI(t, y)

• fi – the name of the C function (of type ARKRhsFn()) defining the implicit portion of the right-hand
side function in ẏ = fE(t, y) + fI(t, y)

• t0 – the initial value of t

• y0 – the initial condition vector y(t0)

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

• ARK_MEM_FAIL if a memory allocation failed

• ARK_ILL_INPUT if an argument has an illegal value.

void ARKodeFree(void* arkode_mem)
This function frees the problem memory arkode_mem created by ARKodeCreate() and allocated by
ARKodeInit().

Arguments:

• arkode_mem – pointer to the ARKode memory block.

Return value: None

4.5.2 ARKode tolerance specification functions

These functions specify the integration tolerances. One of them should be called before the first call to ARKode();
otherwise default values of reltol = 1e-4 and abstol = 1e-9 will be used, which may be entirely incorrect
for a specific problem.

The integration tolerances reltol and abstol define a vector of error weights, ewt. In the case of
ARKodeSStolerances(), this vector has components

4.5. User-callable functions 33

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol);

whereas in the case of ARKodeSVtolerances() the vector components are given by

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol[i]);

This vector is used in all error and convergence tests, which use a weighted RMS norm on all error-like vectors v:

‖v‖WRMS =

(
1
N

N∑
i=1

(vi ewti)2

)1/2

,

where N is the problem dimension.

Alternatively, the user may supply a custom function to supply the ewt vector, through a call to
ARKodeWFtolerances().

int ARKodeSStolerances(void* arkode_mem, realtype reltol, realtype abstol)
This function specifies scalar relative and absolute tolerances.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• reltol – scalar relative tolerance

• abstol – scalar absolute tolerance

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

• ARK_NO_MALLOC if the ARKode memory was not allocated by ARKodeInit()

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKodeSVtolerances(void* arkode_mem, realtype reltol, N_Vector abstol)
This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different absolute
tolerance for each vector component).

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• reltol – scalar relative tolerance

• abstol – vector containing the absolute tolerances for each solution component

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

• ARK_NO_MALLOC if the ARKode memory was not allocated by ARKodeInit()

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKodeWFtolerances(void* arkode_mem, ARKEwtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

34 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• efun – the name of the function (of type ARKEwtFn()) that implements the error weight vector
computation.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

• ARK_NO_MALLOC if the ARKode memory was not allocated by ARKodeInit()

Moreover, for problems involving a non-identity mass matrixM 6= I , the units of the solution vector y may differ from
the units of the IVP, posed for the vector My. When this occurs, iterative solvers for the Newton linear systems and
the mass matrix linear systems may require a different set of tolerances. Since the relative tolerance is dimensionless,
but the absolute tolerance encodes a measure of what is “small” in the units of the respective quantity, a user may
optionally define absolute tolerances in the equation units. In this case, ARKode defines a vector of residual weights,
rwt for measuring convergence of these iterative solvers. In the case of ARKodeResStolerance(), this vector
has components

rwt[i] = 1.0/(reltol*abs(My[i]) + rabstol);

whereas in the case of ARKodeResVtolerance() the vector components are given by

rwt[i] = 1.0/(reltol*abs(My[i]) + rabstol[i]);

This residual weight vector is used in all iterative solver convergence tests, which similarly use a weighted RMS norm
on all residual-like vectors v:

‖v‖WRMS =

(
1
N

N∑
i=1

(vi rwti)2

)1/2

,

where N is the problem dimension.

As with the error weight vector, the user may supply a custom function to supply the rwt vector, through a call to
ARKodeResFtolerance(). Further information on all three of these functions is provided below.

int ARKodeResStolerance(void* arkode_mem, realtype abstol)
This function specifies a scalar absolute residual tolerance.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• rabstol – scalar absolute residual tolerance

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

• ARK_NO_MALLOC if the ARKode memory was not allocated by ARKodeInit()

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKodeResVtolerance(void* arkode_mem, N_Vector rabstol)
This function specifies a vector of absolute residual tolerances.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• rabstol – vector containing the absolute residual tolerances for each solution component

Return value:

4.5. User-callable functions 35

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

• ARK_NO_MALLOC if the ARKode memory was not allocated by ARKodeInit()

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKodeResFtolerance(void* arkode_mem, ARKRwtFn rfun)
This function specifies a user-supplied function rfun to compute the residual weight vector rwt.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• rfun – the name of the function (of type ARKRwtFn()) that implements the residual weight vector
computation.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

• ARK_NO_MALLOC if the ARKode memory was not allocated by ARKodeInit()

General advice on the choice of tolerances

For many users, the appropriate choices for tolerance values in reltol, abstol and rabstol are a concern. The
following pieces of advice are relevant.

1. The scalar relative tolerance reltol is to be set to control relative errors. So a value of 10−4 means that errors
are controlled to .01%. We do not recommend using reltol larger than 10−3. On the other hand, reltol
should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally around
10−15 for double-precision).

2. The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector y may be so small that pure relative error control is meaningless. For example,
if yi starts at some nonzero value, but in time decays to zero, then pure relative error control on yi makes no
sense (and is overly costly) after yi is below some noise level. Then abstol (if scalar) or abstol[i] (if a
vector) needs to be set to that noise level. If the different components have different noise levels, then abstol
should be a vector. For example, see the example problem ark_robertson.c, and the discussion of it in
the ARKode Examples Documentation [R2013]. In that problem, the three components vary betwen 0 and 1,
and have different noise levels; hence the atols vector therein. It is impossible to give any general advice on
abstol values, because the appropriate noise levels are completely problem-dependent. The user or modeler
hopefully has some idea as to what those noise levels are.

3. The residual absolute tolerances rabstol (whether scalar or vector) follow a similar explanation as for
abstol, except that these should be set to the noise level of the equation components, i.e. the noise level
of My. For problems in which M = I , it is recommended that rabstol be left unset, which will default to
the already-supplied abstol values.

4. Finally, it is important to pick all the tolerance values conservately, because they control the error committed
on each individual step. The final (global) errors are an accumulation of those per-step errors, where that
accumulation factor is problem-dependent. A general rule of thumb is to reduce the tolerances by a factor of 10
from the actual desired limits on errors. I.e. if you want .01% relative accuracy (globally), a good choice for
reltol is 10−5. But in any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

36 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Advice on controlling unphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (unphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated, but in other cases any value that violates a
constraint may cause a simulation to halt. For both of these scenarios the following pieces of advice are relevant.

1. The best way to control the size of unwanted negative computed values is with tighter absolute tolerances. Again
this requires some knowledge of the noise level of these components, which may or may not be different for
different components. Some experimentation may be needed.

2. If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the context
of the output medium. Then the internal values carried by the solver are unaffected. Remember that a small
negative value in y returned by ARKode, with magnitude comparable to abstol or less, is equivalent to zero
as far as the computation is concerned.

3. The user’s right-hand side routines fE and fI should never change a negative value in the solution vector y to a
non-negative value in attempt to “fix” this problem, since this can lead to numerical instability. If the fE or fI
routines cannot tolerate a zero or negative value (e.g. because there is a square root or log), then the offending
value should be changed to zero or a tiny positive number in a temporary variable (not in the input y vector) for
the purposes of computing fE(t, y) or fI(t, y).

4. Positivity and non-negativity constraints on components can be enforced by use of the recoverable error return
feature in the user-supplied right-hand side functions, fE and fI . When a recoverable error is encountered,
ARKode will retry the step with a smaller step size, which typically alleviates the problem. However, because
this option involves some additional overhead cost, it should only be exercised if the use of absolute tolerances
to control the computed values is unsuccessful.

4.5.3 Linear solver specification functions

As previously explained, the modified Newton iteration used in solving implicit systems within ARKode requires the
solution of linear systems of the form

A
(
z

(m)
i

)
δ(m+1) = −G

(
z

(m)
i

)
where

A ≈M − γJ, J =
∂fI
∂y

.

There are nine ARKode linear solvers currently available for this task: ARKDENSE, ARKBAND, ARKKLU, ARK-
SUPERLUMT, ARKSPGMR, ARKSPBCG, ARKSPTFQMR, ARKSPFGMR and ARKPCG.

The first two linear solvers are direct solvers based on Gaussian elimination, and derive their names from the type of
storage used for the approximate Jacobian J ; ARKDENSE and ARKBAND work with dense and banded approxima-
tions to J , respectively. The SUNDIALS suite includes both internal implementations of these two linear solvers and
interfaces to LAPACK implementations. Together, these linear solvers are referred to as ARKDLS (which stands for
ARKode Direct Linear Solvers).

The second two linear solvers are sparse direct solvers based on Gaussian elimination, and require user-supplied rou-
tines to construct J (and possibly M) in compressed-sparse-column format. The SUNDIALS suite does not include
internal implementations of these solver libraries, instead requiring compilation of SUNDIALS to link with exist-
ing installations of these libraries (if either is missing, SUNDIALS will install without the corresponding interface
routines). Together, these linear solvers are referred to as ARKSLS (which stands for ARKode Sparse Linear Solvers).

4.5. User-callable functions 37

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

The last five ARKode linear solvers, ARKSPGMR, ARKSPBCG, ARKSPTFQMR, ARKSPFGMR and ARKPCG,
are Krylov iterative solvers, which use scaled preconditioned GMRES, scaled preconditioned Bi-CGStab, scaled pre-
conditioned TFQMR, scaled preconditioned flexible GMRES, and preconditioned conjugate gradient, respectively.
Together, they are referred to as ARKSPILS (which stands for ARKode Scaled Preconditioned Iterative Linear Solvers).

With any of the Krylov methods, preconditioning can be done on the left only, on the right only, on both the left and
the right, or not at all (except for ARKPCG that applies a single preconditioner in a symmetric manner). For the
specification of a preconditioner, see the iterative linear solver portions of the sections Optional input functions and
User-supplied functions.

If preconditioning is done, user-supplied functions should be used to define left and right preconditioner matrices P1

and P2 (either of which could be the identity matrix), such that the product P1P2 approximates the Newton matrix
A = M − γJ .

To specify a ARKode linear solver, after the call to ARKodeCreate() but before any calls to ARKode(), the user’s
program must call one of the functions ARKDense()/ARKLapackDense(), ARKBand()/ARKLapackBand(),
ARKKLU(), ARKSuperLUMT(), ARKSpgmr(), ARKSpbcg(), ARKSptfqmr(), ARKSpfgmr() or
ARKPcg() as documented below. The first argument passed to these functions is the ARKode memory pointer
returned by ARKodeCreate(). A call to one of the above solver specification functions links the main ARKode
integrator to a linear solver and allows the user to specify parameters which are specific to that solver, such as the
half-bandwidths in the ARKBand() case. The use of each of the linear solvers involves certain constants and possi-
bly some macros, that are likely to be needed in the user code. These are available in the corresponding header file
associated with the linear solver, as specified below.

In each case the linear solver module used by ARKode is actually built on top of a generic linear system solver, which
may be of interest in itself. These generic solvers, denoted DENSE, BAND, KLU, SUPERLUMT, SPGMR, SPBCG,
SPTFQMR, SPFGMR and PCG, are described separately in the section Linear Solvers in ARKode.

int ARKDense(void* arkode_mem, long int N)
This function links the main ARKode integrator with the ARKDENSE linear solver. It’s use requires inclusion
of the header file arkode_dense.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• N – the number of components in the ODE system.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_MEM_FAIL if there was a memory allocation failure

• ARKDLS_ILL_INPUT if a required vector operation is missing

Notes: The ARKDENSE linear solver is not compatible with all implementations of the NVECTOR module.
Of the four NVector modules provided with SUNDIALS, only the serial and threaded modules (The NVEC-
TOR_SERIAL Module, The NVECTOR_OPENMP Module and The NVECTOR_PTHREADS Module) are com-
patible.

int ARKLapackDense(void* arkode_mem, int N)
This function links the main ARKode integrator with the ARKLAPACK linear solver module. It’s use requires
inclusion of the header file arkode_lapack.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• N – the number of components in the ODE system.

38 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_MEM_FAIL if there was a memory allocation failure

• ARKDLS_ILL_INPUT if a required vector operation is missing

Notes: Here N is restricted to be of type int, because of the corresponding type restriction in the LAPACK
solvers.

int ARKBand(void* arkode_mem, long int N, long int mupper, long int mlower)
This function links the main ARKode integrator with the ARKBAND linear solver. It’s use requires inclusion
of the header file arkode_band.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• N – the number of components in the ODE system

• mupper – the upper bandwidth of the band Jacobian approximation

• mlower – is the lower bandwidth of the band Jacobian approximation.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_MEM_FAIL if there was a memory allocation failure

• ARKDLS_ILL_INPUT if a required vector operation is missing

Notes: The ARKBAND linear solver is not compatible with all implementations of the NVECTOR module.
Of the four NVector modules provided with SUNDIALS, only the serial and threaded modules (The NVEC-
TOR_SERIAL Module, The NVECTOR_OPENMP Module and The NVECTOR_PTHREADS Module) are com-
patible.

The half-bandwidths are to be set such that the nonzero locations (i, j) in the banded (approximate) Jacobian
satisfy -mlower ≤ j − i ≤ mupper.

int ARKLapackBand(void* arkode_mem, int N, int mupper, int mlower)
This function links the main ARKode integrator with the ARKLAPACK linear solver using banded Jacobians.
It’s use requires inclusion of the header file arkode_lapack.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• N – the number of components in the ODE system

• mupper – the upper bandwidth of the band Jacobian approximation

• mlower – is the lower bandwidth of the band Jacobian approximation.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_MEM_FAIL if there was a memory allocation failure

• ARKDLS_ILL_INPUT if a required vector operation is missing

4.5. User-callable functions 39

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Notes: Here, each of N, mupper and mlower are restricted to be of type int, because of the corresponding type
restriction in the LAPACK solvers.

int ARKKLU(void* arkode_mem, int N, int NNZ)
This function links the main ARKode integrator with the ARKKLU linear solver. It’s use requires inclusion
of the header file arkode_klu.h, as well as a user-supplied sparse Jacobian construction routine, specified
through a call to ARKSlsSetSparseJacFn().

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• N – the number of components in the ODE system.

• NNZ – the maximum number of nonzero entries in the system Jacobian.

Return value:

• ARKSLS_SUCCESS if successful

• ARKSLS_MEM_NULL if the ARKode memory was NULL

• ARKSLS_MEM_FAIL if there was a memory allocation failure

• ARKSLS_ILL_INPUT if a required vector operation is missing

Notes: The ARKKLU linear solver is not compatible with all implementations of the NVECTOR module.
Of the four NVector modules provided with SUNDIALS, only the serial and threaded modules (The NVEC-
TOR_SERIAL Module, The NVECTOR_OPENMP Module and The NVECTOR_PTHREADS Module) are com-
patible.

int ARKSuperLUMT(void* arkode_mem, int num_threads, int N, int NNZ)
This function links the main ARKode integrator with the ARKSUPERLUMT linear solver. It’s use requires
inclusion of the header file arkode_superlumt.h, as well as a user-supplied sparse Jacobian construction
routine, specified through a call to ARKSlsSetSparseJacFn().

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• num_threads – the number of threads to use when factoring/solving the ODE system.

• N – the number of components in the ODE system.

• NNZ – the maximum number of nonzero entries in the system Jacobian.

Return value:

• ARKSLS_SUCCESS if successful

• ARKSLS_MEM_NULL if the ARKode memory was NULL

• ARKSLS_MEM_FAIL if there was a memory allocation failure

• ARKSLS_ILL_INPUT if a required vector operation is missing

Notes: The ARKSUPERLUMT linear solver is not compatible with all implementations of the NVECTOR
module. Of the four NVector modules provided with SUNDIALS, only the serial and threaded modules (The
NVECTOR_SERIAL Module, The NVECTOR_OPENMP Module and The NVECTOR_PTHREADS Module) are
compatible.

int ARKSpgmr(void* arkode_mem, int pretype, int maxl)
This function links the main ARKode integrator with the ARKSPGMR linear solver. It’s use requires inclusion
of the header file arkode_spgmr.h.

Arguments:

40 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• arkode_mem – pointer to the ARKode memory block.

• pretype – the type of user preconditioning to be done. This must be one of the four
enumeration constants PREC_NONE, PREC_LEFT, PREC_RIGHT, or PREC_BOTH defined in
sundials_iterative.h (already included by arkode_spgmr.h). These correspond to no
preconditioning, left preconditioning only, right preconditioning only, and both left and right precon-
ditioning, respectively.

• maxl – the maximum Krylov dimension. This is an optional input to the ARKSPGMR solver. Pass 0
to use the default value of 5.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_MEM_FAIL if there was a memory allocation failure

• ARKSPILS_ILL_INPUT if a required vector operation is missing

Notes: The ARKSPGMR solver uses a scaled preconditioned GMRES iterative method to solve the linear
systems.

int ARKSpbcg(void* arkode_mem, int pretype, int maxl)
This function links the main ARKode integrator with the ARKSPBCG linear solver. It’s use requires inclusion
of the header file arkode_spbcgs.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• pretype – the type of user preconditioning to be done. This must be one of the four
enumeration constants PREC_NONE, PREC_LEFT, PREC_RIGHT, or PREC_BOTH defined in
sundials_iterative.h (already included by arkode_spbcgs.h). These correspond to no
preconditioning, left preconditioning only, right preconditioning only, and both left and right precon-
ditioning, respectively.

• maxl – the maximum Krylov dimension. This is an optional input to the ARKSPBCG solver. Pass 0
to use the default value of 5.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_MEM_FAIL if there was a memory allocation failure

• ARKSPILS_ILL_INPUT if a required vector operation is missing

Notes: The ARKSPBCG solver uses a scaled preconditioned Bi-CGStab iterative method to solve the linear
systems.

int ARKSptfqmr(void* arkode_mem, int pretype, int maxl)
This function links the main ARKode integrator with the ARKSPTFQMR linear solver. It’s use requires inclu-
sion of the header file arkode_sptfqmr.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• pretype – the type of user preconditioning to be done. This must be one of the four
enumeration constants PREC_NONE, PREC_LEFT, PREC_RIGHT, or PREC_BOTH defined in
sundials_iterative.h (already included by arkode_sptfqmr.h). These correspond to

4.5. User-callable functions 41

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

no preconditioning, left preconditioning only, right preconditioning only, and both left and right pre-
conditioning, respectively.

• maxl – the maximum Krylov dimension. This is an optional input to the ARKSPTFMR solver. Pass
0 to use the default value of 5.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_MEM_FAIL if there was a memory allocation failure

• ARKSPILS_ILL_INPUT if a required vector operation is missing

Notes: The ARKSPTFQMR solver uses a scaled preconditioned TFQMR iterative method to solve the linear
systems.

int ARKSpfgmr(void* arkode_mem, int pretype, int maxl)
This function links the main ARKode integrator with the ARKSPFGMR linear solver. It’s use requires inclusion
of the header file arkode_spfgmr.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• pretype – the type of user preconditioning to be done. This must be one of the four
enumeration constants PREC_NONE, PREC_LEFT, PREC_RIGHT, or PREC_BOTH defined in
sundials_iterative.h (already included by arkode_spfgmr.h). These correspond to no
preconditioning, left preconditioning only, right preconditioning only, and both left and right precon-
ditioning, respectively.

• maxl – the maximum Krylov dimension. This is an optional input to the ARKSPFGMR solver. Pass
0 to use the default value of 5.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_MEM_FAIL if there was a memory allocation failure

• ARKSPILS_ILL_INPUT if a required vector operation is missing

Notes: The ARKSPFGMR solver uses a scaled preconditioned flexible GMRES iterative method to solve the
linear systems.

int ARKPcg(void* arkode_mem, int pretype, int maxl)
This function links the main ARKode integrator with the ARKPCG linear solver. It’s use requires inclusion of
the header file arkode_pcg.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• pretype – flag denoting whether to use preconditioning. If set to any of the enumeration constants
PREC_LEFT, PREC_RIGHT, or PREC_BOTH, defined in sundials_iterative.h (already in-
cluded by arkode_pcg.h), preconditioning will be enabled. Due to the symmetric form of PCG,
there is no choice between left and right preconditioning.

• maxl – the maximum Krylov dimension. This is an optional input to the ARKPCG solver. Pass 0 to
use the default value of 5.

Return value:

42 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_MEM_FAIL if there was a memory allocation failure

• ARKSPILS_ILL_INPUT if a required vector operation is missing

Notes: The ARKPCG solver uses a preconditioned conjugate gradient iterative method to solve the linear
systems.

4.5.4 Mass matrix solver specification functions

As discussed in section Mass matrix solver, if the ODE system involves a non-identity mass matrix M 6= I , then
ARKode must solve linear systems of the form

Mx = b.

The same solvers listed above in the section Linear solver specification functions may be used for this purpose:
DENSE, BAND, KLU, SUPERLUMT, SPGMR, SPBCG, SPTFQMR, SPFGMR and PCG. With any of the iterative
solvers (SPGMR, SPBCG, SPTFQMR, SPFGMR and PCG), preconditioning can be applied. For the specification
of a preconditioner, see the iterative linear solver portions of the sections Optional input functions and User-supplied
functions. If preconditioning is to be performed, user-supplied functions should be used to define left and right precon-
ditioner matrices P1 and P2 (either of which could be the identity matrix), such that the product P1P2 approximates
the mass matrix M .

To specify a mass matrix solver, after the call to ARKodeCreate() but before any calls to ARKode(),
the user’s program must call one of the functions ARKMassDense()/ARKMassLapackDense(),
ARKMassBand()/ARKMassLapackBand(), ARKMassKLU(), ARKMassSuperLUMT(),
ARKMassSpgmr(), ARKMassSpbcg(), ARKMassSptfqmr(), ARKMassSpfgmr() or ARKMassPcg()
as documented below. The first argument passed to these functions is the ARKode memory pointer returned by
ARKodeCreate(). A call to one of these solver specification functions links the mass matrix solve with the
specified solver module, and allows the user to specify parameters which are specific to the desired solver. The use of
each of the linear solvers involves certain constants and possibly some macros, that are likely to be needed in the user
code. These are available in the corresponding header file associated with the linear solver, as specified below.

As with the Newton system solvers, the mass matrix linear system solvers listed below are all built on top of generic
SUNDIALS solver modules.

int ARKMassDense(void* arkode_mem, long int N, ARKDlsDenseMassFn dmass)
This function links the mass matrix solve with the ARKDENSE linear solver module, and specifies the dense
mass matrix function. It’s use requires inclusion of the header file arkode_dense.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• N – the number of components in the ODE system.

• dmass – name of user-supplied dense mass matrix function.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_MEM_FAIL if there was a memory allocation failure

• ARKDLS_ILL_INPUT if a required vector operation is missing

4.5. User-callable functions 43

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Notes: The ARKDENSE linear solver is not compatible with all implementations of the NVECTOR module.
Of the four NVector modules provided with SUNDIALS, only the serial and threaded modules (The NVEC-
TOR_SERIAL Module, The NVECTOR_OPENMP Module and The NVECTOR_PTHREADS Module) are com-
patible.

int ARKMassLapackDense(void* arkode_mem, int N, ARKDlsDenseMassFn dmass)
This function links the mass matrix solve with the ARKLAPACK linear solver module. It’s use requires inclu-
sion of the header file arkode_lapack.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• N – the number of components in the ODE system.

• dmass – name of user-supplied dense mass matrix function.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_MEM_FAIL if there was a memory allocation failure

• ARKDLS_ILL_INPUT if a required vector operation is missing

Notes: Here N is restricted to be of type int, because of the corresponding type restriction in the LAPACK
solvers.

int ARKMassBand(void* arkode_mem, long int N, long int mupper, long int mlower, ARKDlsBand-
MassFn bmass)

This function links the mass matrix solve with the ARKBAND linear solver module. It’s use requires inclusion
of the header file arkode_band.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• N – the number of components in the ODE system.

• mupper – the upper bandwidth of the band mass matrix.

• mlower – is the lower bandwidth of the band mass matrix.

• bmass – name of user-supplied band mass matrix function.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_MEM_FAIL if there was a memory allocation failure

• ARKDLS_ILL_INPUT if a required vector operation is missing

Notes: The ARKBAND linear solver may not be compatible with the particular implementation of the NVEC-
TOR module. Of the four NVector modules provided with SUNDIALS, only the serial and threaded modules
(The NVECTOR_SERIAL Module, The NVECTOR_OPENMP Module and The NVECTOR_PTHREADS Mod-
ule) are compatible. The half-bandwidths are to be set such that the nonzero locations (i, j) in the banded mass
matrix satisfy -mlower ≤ j − i ≤ mupper.

At present, it is required that the band mass matrix have identical band structure to the Jacobian matrix. While
this is typical of finite-element problems, if this is not true for a specific problem it can be handled by manually
zero-padding the mass matrix.

44 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

int ARKMassLapackBand(void* arkode_mem, int N, int mupper, int mlower, ARKDlsBandMassFn bmass)
This function links the mass matrix solve with the ARKLAPACK linear solver module. It’s use requires inclu-
sion of the header file arkode_lapack.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• N – the number of components in the ODE system.

• mupper – the upper bandwidth of the band mass matrix.

• mlower – is the lower bandwidth of the band mass matrix.

• bmass – name of user-supplied band mass matrix function.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_MEM_FAIL if there was a memory allocation failure

• ARKDLS_ILL_INPUT if a required vector operation is missing

Notes: Here, each of N, mupper and mlower are restricted to be of type int, because of the corresponding type
restriction in the LAPACK solvers.

At present, it is required that the band mass matrix have identical band structure to the Jacobian matrix. While
this is typical of finite-element problems, if this is not true for a specific problem it can be handled by manually
zero-padding the mass matrix.

int ARKMassKLU(void* arkode_mem, int N, int NNZ, ARKSlsSparseMassFn smass)
This function links the mass matrix solve with the ARKKLU linear solver module, and specifies the sparse mass
matrix function. It’s use requires inclusion of the header file arkode_klu.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• N – the number of components in the ODE system.

• NNZ – the maximum number of nonzeros in the mass matrix.

• smass – name of user-supplied sparse mass matrix function.

Return value:

• ARKSLS_SUCCESS if successful

• ARKSLS_MEM_NULL if the ARKode memory was NULL

• ARKSLS_MEM_FAIL if there was a memory allocation failure

• ARKSLS_ILL_INPUT if a required vector operation is missing

Notes: The ARKKLU linear solver is not compatible with all implementations of the NVECTOR module.
Of the four NVector modules provided with SUNDIALS, only the serial and threaded modules (The NVEC-
TOR_SERIAL Module, The NVECTOR_OPENMP Module and The NVECTOR_PTHREADS Module) are com-
patible.

int ARKMassSuperLUMT(void* arkode_mem, int num_threads, int N, int NNZ, ARKSlsSparse-
MassFn smass)

This function links the mass matrix solve with the ARKSUPERLUMT linear solver module. It’s use requires
inclusion of the header file arkode_superlumt.h.

Arguments:

4.5. User-callable functions 45

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• arkode_mem – pointer to the ARKode memory block.

• num_threads – the number of threads to use when factoring/solving the ODE system.

• N – the number of components in the ODE system.

• NNZ – the maximum number of nonzeros in the mass matrix.

• smass – name of user-supplied sparse mass matrix function.

Return value:

• ARKSLS_SUCCESS if successful

• ARKSLS_MEM_NULL if the ARKode memory was NULL

• ARKSLS_MEM_FAIL if there was a memory allocation failure

• ARKSLS_ILL_INPUT if a required vector operation is missing

Notes: The ARKSUPERLUMT linear solver is not compatible with all implementations of the NVECTOR
module. Of the four NVector modules provided with SUNDIALS, only the serial and threaded modules (The
NVECTOR_SERIAL Module, The NVECTOR_OPENMP Module and The NVECTOR_PTHREADS Module) are
compatible.

int ARKMassSpgmr(void* arkode_mem, int pretype, int maxl, ARKSpilsMassTimesVecFn mtimes,
void* mtimes_data)

This function links the mass matrix solve with the ARKSPGMR linear solver module. It’s use requires inclusion
of the header file arkode_spgmr.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• pretype – the type of user preconditioning to be done. This must be one of the four
enumeration constants PREC_NONE, PREC_LEFT, PREC_RIGHT, or PREC_BOTH defined in
sundials_iterative.h (already included by arkode_spgmr.h). These correspond to no
preconditioning, left preconditioning only, right preconditioning only, and both left and right precon-
ditioning, respectively.

• maxl – the maximum Krylov dimension. This is an optional input to the ARKSPGMR solver. Pass 0
to use the default value of 5.

• mtimes – user-defined mass-matrix-vector product function.

• mtimes_data – user-supplied data structure to be passed to mtimes when performing the mass matrix
vector product.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_MEM_FAIL if there was a memory allocation failure

• ARKSPILS_ILL_INPUT if a required vector operation is missing

Notes: The ARKSPGMR solver uses a scaled preconditioned GMRES iterative method to solve the linear
systems.

int ARKMassSpbcg(void* arkode_mem, int pretype, int maxl, ARKSpilsMassTimesVecFn mtimes,
void* mtimes_data)

This function links the mass matrix solve with the ARKSPBCG linear solver module. It’s use requires inclusion
of the header file arkode_spbcgs.h.

Arguments:

46 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• arkode_mem – pointer to the ARKode memory block.

• pretype – the type of user preconditioning to be done. This must be one of the four
enumeration constants PREC_NONE, PREC_LEFT, PREC_RIGHT, or PREC_BOTH defined in
sundials_iterative.h (already included by arkode_spbcgs.h). These correspond to no
preconditioning, left preconditioning only, right preconditioning only, and both left and right precon-
ditioning, respectively.

• maxl – the maximum Krylov dimension. This is an optional input to the ARKSPBCG solver. Pass 0
to use the default value of 5.

• mtimes – user-defined mass-matrix-vector product function.

• mtimes_data – user-supplied data structure to be passed to mtimes when performing the mass matrix
vector product.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_MEM_FAIL if there was a memory allocation failure

• ARKSPILS_ILL_INPUT if a required vector operation is missing

Notes: The ARKSPBCG solver uses a scaled preconditioned Bi-CGStab iterative method to solve the linear
systems.

int ARKMassSptfqmr(void* arkode_mem, int pretype, int maxl, ARKSpilsMassTimesVecFn mtimes,
void* mtimes_data)

This function links the mass matrix solve with the ARKSPTFQMR linear solver. It’s use requires inclusion of
the header file arkode_sptfqmr.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• pretype – the type of user preconditioning to be done. This must be one of the four
enumeration constants PREC_NONE, PREC_LEFT, PREC_RIGHT, or PREC_BOTH defined in
sundials_iterative.h (already included by arkode_sptfqmr.h). These correspond to
no preconditioning, left preconditioning only, right preconditioning only, and both left and right pre-
conditioning, respectively.

• maxl – the maximum Krylov dimension. This is an optional input to the ARKSPTFMR solver. Pass
0 to use the default value of 5.

• mtimes – user-defined mass-matrix-vector product function.

• mtimes_data – user-supplied data structure to be passed to mtimes when performing the mass matrix
vector product.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_MEM_FAIL if there was a memory allocation failure

• ARKSPILS_ILL_INPUT if a required vector operation is missing

Notes: The ARKSPTFQMR solver uses a scaled preconditioned TFQMR iterative method to solve the linear
systems.

4.5. User-callable functions 47

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

int ARKMassSpfgmr(void* arkode_mem, int pretype, int maxl, ARKSpilsMassTimesVecFn mtimes,
void* mtimes_data)

This function links the mass matrix solve with the ARKSPFGMR linear solver. It’s use requires inclusion of the
header file arkode_spfgmr.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• pretype – the type of user preconditioning to be done. This must be one of the four
enumeration constants PREC_NONE, PREC_LEFT, PREC_RIGHT, or PREC_BOTH defined in
sundials_iterative.h (already included by arkode_spfgmr.h). These correspond to no
preconditioning, left preconditioning only, right preconditioning only, and both left and right precon-
ditioning, respectively.

• maxl – the maximum Krylov dimension. This is an optional input to the ARKSPFGMR solver. Pass
0 to use the default value of 5.

• mtimes – user-defined mass-matrix-vector product function.

• mtimes_data – user-supplied data structure to be passed to mtimes when performing the mass matrix
vector product.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_MEM_FAIL if there was a memory allocation failure

• ARKSPILS_ILL_INPUT if a required vector operation is missing

Notes: The ARKSPFGMR solver uses a scaled preconditioned flexible GMRES iterative method to solve the
linear systems.

int ARKMassPcg(void* arkode_mem, int pretype, int maxl, ARKSpilsMassTimesVecFn mtimes,
void* mtimes_data)

This function links the mass matrix solve with the ARKPCG linear solver. It’s use requires inclusion of the
header file arkode_pcg.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• pretype – flag denoting whether to use preconditioning. If set to any of the enumeration constants
PREC_LEFT, PREC_RIGHT, or PREC_BOTH, defined in sundials_iterative.h (already in-
cluded by arkode_pcg.h), preconditioning will be enabled. Due to the symmetric form of PCG,
there is no choice between left and right preconditioning.

• maxl – the maximum Krylov dimension. This is an optional input to the ARKPCG solver. Pass 0 to
use the default value of 5.

• mtimes – user-defined mass-matrix-vector product function.

• mtimes_data – user-supplied data structure to be passed to mtimes when performing the mass matrix
vector product.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_MEM_FAIL if there was a memory allocation failure

48 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARKSPILS_ILL_INPUT if a required vector operation is missing

Notes: The ARKPCG solver uses a preconditioned conjugate gradient iterative method to solve the linear
systems.

4.5.5 Rootfinding initialization function

As described in the section Rootfinding, while solving the IVP ARKode has the capability to find the roots of a set
of user-defined functions. To activate the root-finding algorithm, call the following function. This is normally called
only once, prior to the first call to ARKode(), but if the rootfinding problem is to be changed during the solution,
ARKodeRootInit() can also be called prior to a continuation call to ARKode().

int ARKodeRootInit(void* arkode_mem, int nrtfn, ARKRootFn g)
Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
ARKodeCreate(), and before ARKode().

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nrtfn – number of functions gi, an integer ≥ 0.

• g – name of user-supplied function, of type ARKRootFn(), defining the functions gi whose roots
are sought.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

• ARK_MEM_FAIL if there was a memory allocation failure

• ARK_ILL_INPUT if nrtfn is greater than zero but g = NULL.

Notes: To disable the rootfinding feature after it has already been initialized, or to free memory associated with
ARKode’s rootfinding module, call ARKodeRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to ARKodeReInit(), where the new IVP has no rootfinding
problem but the prior one did, then call ARKodeRootInit with nrtfn = 0.

4.5.6 ARKode solver function

This is the central step in the solution process – the call to perform the integration of the IVP. One of the input
arguments (itask) specifies one of two modes as to where ARKode is to return a solution. These modes are modified
if the user has set a stop time (with a call to the optional input function ARKodeSetStopTime()) or has requested
rootfinding.

int ARKode(void* arkode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)
Integrates the ODE over an interval in t.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• tout – the next time at which a computed solution is desired

• yout – the computed solution vector

• tret – the time corresponding to yout (output)

4.5. User-callable functions 49

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• itask – a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has reached or just passed
the user-specified tout parameter. The solver then interpolates in order to return an approximate value
of y(tout). This interpolation may be slightly less accurate than the full time step solutions produced
by the solver, since the interpolation uses a cubic Hermite polynomial even when the RK method is
of higher order.

To ensure that this returned value has full method accuracy, issue a call to ARKodeSetStopTime()
before the call to ARKode to specify a fixed stop time to end the time step and return to the user. Once
the integrator returns at a tstop time, any future testing for tstop is disabled (and can be reenabled only
though a new call to ARKodeSetStopTime()).

The ARK_ONE_STEP option tells the solver to take just one internal step and then return the solution
at the point reached by that step.

Return value:

• ARK_SUCCESS if successful

• ARK_ROOT_RETURN if ARKode succeeded, and found one or more roots. If nrtfn is greater than 1,
call ARKodeGetRootInfo() to see which gi were found to have a root at (*tret).

• ARK_TSTOP_RETURN if ARKode succeeded and returned at tstop.

• ARK_MEM_NULL if the arkode_mem argument was NULL.

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if one of the inputs to ARKode is illegal, or some other input to the solver was
either illegal or missing. Details will be provided in the error message. Typical causes of this failure:

1. The tolerances have not been set.

2. A component of the error weight vector became zero during internal time-stepping.

3. The linear solver initialization function (called by the user after calling ARKodeCreate())
failed to set the linear solver-specific lsolve field in arkode_mem.

4. A root of one of the root functions was found both at a point t and also very near t.

• ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

• ARK_TOO_MUCH_ACC if the solver could not satisfy the accuracy demanded by the user for some
internal step.

• ARK_ERR_FAILURE if error test failures occurred either too many times (ark_maxnef) during one
internal time step or occurred with |h| = hmin.

• ARK_CONV_FAILURE if either convergence test failures occurred too many times (ark_maxncf)
during one internal time step or occurred with |h| = hmin.

• ARK_LINIT_FAIL if the linear solver’s initialization function failed.

• ARK_LSETUP_FAIL if the linear solver’s setup routine failed in an unrecoverable manner.

• ARK_LSOLVE_FAIL if the linear solver’s solve routine failed in an unrecoverable manner.

• ARK_MASSINIT_FAIL if the mass matrix solver’s initialization function failed.

• ARK_MASSSETUP_FAIL if the mass matrix solver’s setup routine failed.

• ARK_MASSSOLVE_FAIL if the mass matrix solver’s solve routine failed.

50 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Notes: The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
ARKodeInit().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale of
the independent variable. All failure return values are negative and so testing the return argument for negative
values will trap all ARKode failures.

On any error return in which one or more internal steps were taken by ARKode, the returned values of tret and
yout correspond to the farthest point reached in the integration. On all other error returns, tret and yout are left
unchanged from those provided to the routine.

4.5.7 Optional input functions

There are numerous optional input parameters that control the behavior of the ARKode solver, each of which may be
modified from its default value through calling an appropriate input function. The following tables list all optional
input functions, grouped by which aspect of ARKode they control. Detailed information on the calling syntax and
arguments for each function are then provided following each table.

The optional inputs are grouped into the following categories:

• General solver options (Optional inputs for ARKode),

• IVP method solver options (Optional inputs for IVP method selection),

• Step adaptivity solver options (Optional inputs for time step adaptivity),

• Implicit stage solver options (Optional inputs for implicit stage solves),

• Direct linear solver options (Dense/band direct linear solvers optional input functions),

• Sparse linear solver options (Sparse direct linear solvers optional input functions),

• Iterative linear solver options (Iterative linear solvers optional input functions).

For the most casual use of ARKode, relying on the default set of solver parameters, the reader can skip to the following
section, User-supplied functions.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
We also note that all error return values are negative, so a test on the return arguments for negative values will catch
all errors.

4.5. User-callable functions 51

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Optional inputs for ARKode

Optional input Function name Default
Return all solver parameters to their defaults ARKodeSetDefaults() internal
Set dense output order ARKodeSetDenseOrder() 3
Supply a pointer to a diagnostics output file ARKodeSetDiagnostics() NULL
Supply a pointer to an error output file ARKodeSetErrFile() stderr
Supply a custom error handler function ARKodeSetErrHandlerFn() internal fn
Supply an initial step size to attempt ARKodeSetInitStep() estimated
Disable time step adaptivity (fixed-step mode) ARKodeSetFixedStep() disabled
Maximum no. of warnings for tn + h = tn ARKodeSetMaxHnilWarns() 10
Maximum no. of internal steps before tout ARKodeSetMaxNumSteps() 500
Maximum no. of error test failures ARKodeSetMaxErrTestFails() 7
Maximum absolute step size ARKodeSetMaxStep() ∞
Minimum absolute step size ARKodeSetMinStep() 0.0
Set ‘optimal’ adaptivity params for a method ARKodeSetOptimalParams() internal
Set a value for tstop ARKodeSetStopTime() ∞
Supply a pointer for user data ARKodeSetUserData() NULL

int ARKodeSetDefaults(void* arkode_mem)
Resets all optional input parameters to ARKode’s original default values.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Does not change problem-defining function pointers fe and fi or the user_data pointer.

Also leaves alone any data structures or options related to root-finding (those can be reset using
ARKodeRootInit()).

int ARKodeSetDenseOrder(void* arkode_mem, int dord)
Specifies the order of accuracy for the polynomial interpolant used for dense output (i.e. interpolation of solution
output values and implicit method predictors).

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• dord – requested polynomial order of accuracy

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Allowed values are between 0 and min(q,3), where q is the order of the overall integration method.

int ARKodeSetDiagnostics(void* arkode_mem, FILE* diagfp)
Specifies the file pointer for a diagnostics file where all ARKode step adaptivity and solver information is
written.

52 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• diagfp – pointer to the diagnostics output file

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to
a unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer, all
diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from all
processes would be identical.

int ARKodeSetErrFile(void* arkode_mem, FILE* errfp)
Specifies a pointer to the file where all ARKode warning and error messages will be written if the default internal
error handling function is used.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• errfp – pointer to the output file.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value for errfp is stderr.

Passing a NULL value disables all future error message output (except for the case wherein the ARKode memory
pointer is NULL. This use of the function is strongly discouraged.

If used, this routine should be called before any other optional input functions, in order to take effect for subse-
quent error messages.

int ARKodeSetErrHandlerFn(void* arkode_mem, ARKErrHandlerFn ehfun, void* eh_data)
Specifies the optional user-defined function to be used in handling error messages.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• ehfun – name of user-supplied error handler function.

• eh_data – pointer to user data passed to ehfun every time it is called

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Error messages indicating that the ARKode solver memory is NULL will always be directed to stderr.

4.5. User-callable functions 53

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

int ARKodeSetInitStep(void* arkode_mem, realtype hin)
Specifies the initial time step size ARKode should use after initialization or reinitialization.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• hin – value of the initial step to be attempted (≥ 0)

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass 0.0 to use the default value.

By default, ARKode estimates the initial step size to be the solution h of the equation
∥∥∥h2ÿ

2

∥∥∥ = 1, where ÿ is an
estimated value of the second derivative of the solution at t0.

int ARKodeSetFixedStep(void* arkode_mem, realtype hfixed)
Disabled time step adaptivity within ARKode, and specifies the fixed time step size to use for all internal steps.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• hfixed – value of the fixed step size to use

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass 0.0 to return ARKode to the default (adaptive-step) mode.

Use of this function is not recommended, since we may give no assurance of the validity of the computed
solutions. It is primarily provided for code-to-code verification testing purposes.

When using ARKodeSetFixedStep(), any values provided to the functions
ARKodeSetInitStep(), ARKodeSetAdaptivityFn(), ARKodeSetMaxErrTestFails(),
ARKodeSetAdaptivityMethod(), ARKodeSetCFLFraction(), ARKodeSetErrorBias(),
ARKodeSetFixedStepBounds(), ARKodeSetMaxCFailGrowth(),
ARKodeSetMaxEFailGrowth(), ARKodeSetMaxFirstGrowth(), ARKodeSetMaxGrowth(),
ARKodeSetSafetyFactor(), ARKodeSetSmallNumEFails() and ARKodeSetStabilityFn()
will be ignored, since temporal adaptivity is disabled.

If both ARKodeSetFixedStep() and ARKodeSetStopTime() are used, then the fixed step size will
be used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to ARKodeSetFixedStep() must be made prior to calling
ARKode() to resume integration.

It is not recommended that ARKodeSetFixedStep() be used in concert with ARKodeSetMaxStep() or
ARKodeSetMinStep(), since at best those routines will provide no useful information to the solver, and at
worst they may interfere with the desired fixed step size.

int ARKodeSetMaxHnilWarns(void* arkode_mem, int mxhnil)
Specifies the maximum number of messages issued by the solver to warn that t + h = t on the next internal
step, before ARKode will instead return with an error.

Arguments:

54 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• arkode_mem – pointer to the ARKode memory block.

• mxhnil – maximum allowed number of warning messages (>0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.

int ARKodeSetMaxNumSteps(void* arkode_mem, long int mxsteps)
Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before ARKode will return with an error.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• mxsteps – maximum allowed number of internal steps.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Passing mxsteps = 0 results in ARKode using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

int ARKodeSetMaxErrTestFails(void* arkode_mem, int maxnef)
Specifies the maximum number of error test failures permitted in attempting one step, before ARKode will
return with an error.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• maxnef – maximum allowed number of error test failures (> 0)

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 7; set maxnef ≤ 0 to specify this default.

int ARKodeSetMaxStep(void* arkode_mem, realtype hmax)
Specifies the upper bound on the magnitude of the time step size.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• hmax – maximum absolute value of the time step size (≥ 0)

Return value:

• ARK_SUCCESS if successful

4.5. User-callable functions 55

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass hmax ≤ 0.0 to set the default value of∞.

int ARKodeSetMinStep(void* arkode_mem, realtype hmin)
Specifies the lower bound on the magnitude of the time step size.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• hmin – minimum absolute value of the time step size (≥ 0)

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass hmin ≤ 0.0 to set the default value of 0.

int ARKodeSetOptimalParams(void* arkode_mem)
Sets all adaptivity and solver parameters to our ‘best guess’ values, for a given integration method (ERK, DIRK,
ARK) and a given method order.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Should only be called after the method order and integration method have been set. These values
resulted from repeated testing of ARKode’s solvers on a variety of training problems. However, all problems
are different, so these values may not be optimal for all users.

int ARKodeSetStopTime(void* arkode_mem, realtype tstop)
Specifies the value of the independent variable t past which the solution is not to proceed.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• tstop – stopping time for the integrator.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default is that no stop time is imposed.

int ARKodeSetUserData(void* arkode_mem, void* user_data)
Specifies the user data block user_data and attaches it to the main ARKode memory block.

Arguments:

56 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• arkode_mem – pointer to the ARKode memory block.

• user_data – pointer to the user data.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument;
otherwise NULL is passed.

If user_data is needed in user preconditioner functions, the call to this function must be made before the call to
specify the linear solver.

Optional inputs for IVP method selection

Optional input Function name Default
Set integrator method order ARKodeSetOrder() 4
Specify implicit/explicit problem ARKodeSetImEx() TRUE
Specify explicit problem ARKodeSetExplicit() FALSE
Specify implicit problem ARKodeSetImplicit() FALSE
Set additive RK tables ARKodeSetARKTables() internal
Set explicit RK table ARKodeSetERKTable() internal
Set implicit RK table ARKodeSetIRKTable() internal
Specify additive RK table numbers ARKodeSetARKTableNum() internal
Specify explicit RK table number ARKodeSetERKTableNum() internal
Specify implicit RK table number ARKodeSetIRKTableNum() internal

int ARKodeSetOrder(void* arkode_mem, int ord)
Specifies the order of accuracy for the integration method.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• ord – requested order of accuracy.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: For explicit methods, the allowed values are 2 ≤ ord ≤ 6. For implicit methods, the allowed values are
2 ≤ ord ≤ 5, and for IMEX methods the allowed values are 3 ≤ ord ≤ 5. Any illegal input will result in the
default value of 4.

z Since ord affects the memory requirements for the internal ARKode memory block, it cannot be increased be-
tween calls to ARKode() unless ARKodeReInit() is called.

int ARKodeSetImEx(void* arkode_mem)
Specifies that both the implicit and explicit portions of problem are enabled, and to use an additive Runge Kutta
method.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

4.5. User-callable functions 57

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This is automatically deduced when neither of the function pointers fe or fi passed to ARKodeInit()
are NULL, but may be set directly by the user if desired.

int ARKodeSetExplicit(void* arkode_mem)
Specifies that the implicit portion of problem is disabled, and to use an explicit RK method.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This is automatically deduced when the function pointer fi passed to ARKodeInit() is NULL, but may
be set directly by the user if desired.

int ARKodeSetImplicit(void* arkode_mem)
Specifies that the explicit portion of problem is disabled, and to use a diagonally implicit RK method.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This is automatically deduced when the function pointer fe passed to ARKodeInit() is NULL, but
may be set directly by the user if desired.

int ARKodeSetARKTables(void* arkode_mem, int s, int q, int p, realtype* c, realtype* Ai, realtype* Ae,
realtype* b, realtype* bembed)

Specifies a customized Butcher table pair for the additive RK method.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• s – number of stages in the RK method.

• q – global order of accuracy for the RK method.

• p – global order of accuracy for the embedded RK method.

• c – array (of length s) of stage times for the RK method.

• Ai – array of coefficients defining the implicit RK stages. This should be stored as a 1D array of size
s*s, in row-major order.

• Ae – array of coefficients defining the explicit RK stages. This should be stored as a 1D array of size
s*s, in row-major order.

58 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• b – array of coefficients (of length s) defining the time step solution.

• bembed – array of coefficients (of length s) defining the embedded solution.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This automatically calls ARKodeSetImEx().

No error checking is performed to ensure that either p or q correctly describe the coefficients that were input.

Error checking is performed on both Ai and Ae to ensure that they specify DIRK and ERK methods, respectively.

Both RK methods must share the same c, b and bembed coefficients.

The embedding bembed is required.

int ARKodeSetERKTable(void* arkode_mem, int s, int q, int p, realtype* c, realtype* A, realtype* b, real-
type* bembed)

Specifies a customized Butcher table for the explicit portion of the system.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• s – number of stages in the RK method.

• q – global order of accuracy for the RK method.

• p – global order of accuracy for the embedded RK method.

• c – array (of length s) of stage times for the RK method.

• A – array of coefficients defining the RK stages. This should be stored as a 1D array of size s*s, in
row-major order.

• b – array of coefficients (of length s) defining the time step solution.

• bembed – array of coefficients (of length s) defining the embedded solution.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This automatically calls ARKodeSetExplicit().

No error checking is performed to ensure that either p or q correctly describe the coefficients that were input.

Error checking is performed to ensure that A is strictly lower-triangular (i.e. that it specifies an ERK method).

The embedding bembed is required.

int ARKodeSetIRKTable(void* arkode_mem, int s, int q, int p, realtype* c, realtype* A, realtype* b, real-
type* bembed)

Specifies a customized Butcher table for the implicit portion of the system.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• s – number of stages in the RK method.

4.5. User-callable functions 59

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• q – global order of accuracy for the RK method.

• p – global order of accuracy for the embedded RK method.

• c – array (of length s) of stage times for the RK method.

• A – array of coefficients defining the RK stages. This should be stored as a 1D array of size s*s, in
row-major order.

• b – array of coefficients (of length s) defining the time step solution.

• bembed – array of coefficients (of length s) defining the embedded solution.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This automatically calls ARKodeSetImplicit().

No error checking is performed to ensure that either p or q correctly describe the coefficients that were input.

Error checking is performed to ensure that A is lower-triangular with a nonzero value on at least one of the
diagonal entries (i.e. that it specifies a DIRK method).

The embedding bembed is required.

int ARKodeSetARKTableNum(void* arkode_mem, int itable, int etable)
Indicates to use specific built-in Butcher tables for the ImEx system.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• itable – index of the DIRK Butcher table.

• etable – index of the ERK Butcher table.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Both itable and etable should match an existing implicit/explicit pair, listed in the section Additive
Butcher tables. Error-checking is performed to ensure that the tables exist. Subsequent error-checking is auto-
matically performed to ensure that the tables’ stage times and solution coefficients match.

This automatically calls ARKodeSetImEx().

int ARKodeSetERKTableNum(void* arkode_mem, int etable)
Indicates to use a specific built-in Butcher table for explicit integration of the problem.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• etable – index of the Butcher table.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

60 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARK_ILL_INPUT if an argument has an illegal value

Notes: etable should match an existing explicit method from the section Explicit Butcher tables. Error-checking
is performed to ensure that the table exists, and is not implicit.

This automatically calls ARKodeSetExplicit().

int ARKodeSetIRKTableNum(void* arkode_mem, int itable)
Indicates to use a specific built-in Butcher table for implicit integration of the problem.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• itable – index of the Butcher table.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: itable should match an existing implicit method from the section Implicit Butcher tables. Error-checking
is performed to ensure that the table exists, and is not explicit.

This automatically calls ARKodeSetImplicit().

Optional inputs for time step adaptivity

The mathematical explanation of ARKode’s time step adaptivity algorithm, including how each of the parameters
below is used within the code, is provided in the section Time step adaptivity.

Optional input Function name Default
Set a custom time step adaptivity function ARKodeSetAdaptivityFn() internal
Choose an existing time step adaptivity method ARKodeSetAdaptivityMethod() 0
Explicit stability safety factor ARKodeSetCFLFraction() 0.5
Time step error bias factor ARKodeSetErrorBias() 1.5
Bounds determining no change in step size ARKodeSetFixedStepBounds() 1.0 1.5
Maximum step growth factor on convergence fail ARKodeSetMaxCFailGrowth() 0.25
Maximum step growth factor on error test fail ARKodeSetMaxEFailGrowth() 0.3
Maximum first step growth factor ARKodeSetMaxFirstGrowth() 10000.0
Maximum general step growth factor ARKodeSetMaxGrowth() 20.0
Time step safety factor ARKodeSetSafetyFactor() 0.96
Error fails before MaxEFailGrowth takes effect ARKodeSetSmallNumEFails() 2
Explicit stability function ARKodeSetStabilityFn() internal

int ARKodeSetAdaptivityFn(void* arkode_mem, ARKAdaptFn hfun, void* h_data)
Sets a user-supplied time-step adaptivity function.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• hfun – name of user-supplied adaptivity function.

• h_data – pointer to user data passed to hfun every time it is called.

Return value:

• ARK_SUCCESS if successful

4.5. User-callable functions 61

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This function should focus on accuracy-based time step estimation; for stability based time steps the
function ARKodeSetStabilityFn() should be used instead.

int ARKodeSetAdaptivityMethod(void* arkode_mem, int imethod, int idefault, int pq, real-
type* adapt_params)

Specifies the method (and associated parameters) used for time step adaptivity.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• imethod – accuracy-based adaptivity method choice (0 ≤ imethod ≤ 5): 0 is PID, 1 is PI, 2 is I, 3 is
explicit Gustafsson, 4 is implicit Gustafsson, and 5 is the ImEx Gustafsson.

• idefault – flag denoting whether to use default adaptivity parameters (1), or that they will be supplied
in the adapt_params argument (0).

• pq – flag denoting whether to use the embedding order of accuracy p (0) or the method order of
accuracy q (1) within the adaptivity algorithm. p is the ARKode default.

• adapt_params[0] – k1 parameter within accuracy-based adaptivity algorithms.

• adapt_params[1] – k2 parameter within accuracy-based adaptivity algorithms.

• adapt_params[2] – k3 parameter within accuracy-based adaptivity algorithms.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: If custom parameters are supplied, they will be checked for validity against published stability intervals.
If other parameter values are desired, it is recommended to instead provide a custom function through a call to
ARKodeSetAdaptivityFn().

int ARKodeSetCFLFraction(void* arkode_mem, realtype cfl_frac)
Specifies the fraction of the estimated explicitly stable step to use.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• cfl_frac – maximum allowed fraction of explicitly stable step (default is 0.5).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ARKodeSetErrorBias(void* arkode_mem, realtype bias)
Specifies the bias to be applied to the error estimates within accuracy-based adaptivity strategies.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• bias – bias applied to error in accuracy-based time step estimation (default is 1.5).

62 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value below 1.0 will imply a reset to the default value.

int ARKodeSetFixedStepBounds(void* arkode_mem, realtype lb, realtype ub)
Specifies the step growth interval in which the step size will remain unchanged.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• lb – lower bound on window to leave step size fixed (default is 1.0).

• ub – upper bound on window to leave step size fixed (default is 1.5).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any interval not containing 1.0 will imply a reset to the default values.

int ARKodeSetMaxCFailGrowth(void* arkode_mem, realtype etacf)
Specifies the maximum step size growth factor upon a convergence failure on a stage solve within a step.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• etacf – time step reduction factor on a nonlinear solver convergence failure (default is 0.25).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value outside the interval (0, 1] will imply a reset to the default value.

int ARKodeSetMaxEFailGrowth(void* arkode_mem, realtype etamxf)
Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the
solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• etamxf – time step reduction factor on multiple error fails (default is 0.3).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value outside the interval (0, 1] will imply a reset to the default value.

4.5. User-callable functions 63

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

int ARKodeSetMaxFirstGrowth(void* arkode_mem, realtype etamx1)
Specifies the maximum allowed step size change following the very first integration step.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• etamx1 – maximum allowed growth factor after the first time step (default is 10000.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value ≤ 1.0 will imply a reset to the default value.

int ARKodeSetMaxGrowth(void* arkode_mem, realtype mx_growth)
Specifies the maximum growth of the step size between consecutive steps in the integration process.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• growth – maximum allowed growth factor between consecutive time steps (default is 20.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value ≤ 1.0 will imply a reset to the default value.

int ARKodeSetSafetyFactor(void* arkode_mem, realtype safety)
Specifies the safety factor to be applied to the accuracy-based estimated step.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• safety – safety factor applied to accuracy-based time step (default is 0.96).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ARKodeSetSmallNumEFails(void* arkode_mem, int small_nef)
Specifies the threshold for “multiple” successive error failures before the etamxf parameter from
ARKodeSetMaxEFailGrowth() is applied.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• small_nef – bound to determine ‘multiple’ for etamxf (default is 2).

Return value:

• ARK_SUCCESS if successful

64 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ARKodeSetStabilityFn(void* arkode_mem, ARKExpStabFn EStab, void* estab_data)
Sets the problem-dependent function to estimate a stable time step size for the explicit portion of the ODE
system.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• EStab – name of user-supplied stability function.

• estab_data – pointer to user data passed to EStab every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This function should return an estimate of the absolute value of the maximum stable time step for the
explicit portion of the ODE system. It is not required, since accuracy-based adaptivity may be sufficient for
retaining stability, but this can be quite useful for problems where the explicit right-hand side function fE(t, y)
may contain stiff terms.

Optional inputs for implicit stage solves

The mathematical explanation for ARKode’s nonlinear solver strategies, including how each of the parameters below
is used within the code, is provided in the section Nonlinear solver methods.

Optional input Function name Default
Specify use of the fixed-point stage solver ARKodeSetFixedPoint() FALSE
Specify use of the Newton stage solver ARKodeSetNewton() TRUE
Specify linearly implicit fI ARKodeSetLinear() FALSE
Specify nonlinearly implicit fI ARKodeSetNonlinear() TRUE
Implicit predictor method ARKodeSetPredictorMethod() 3
Maximum number of nonlinear iterations ARKodeSetMaxNonlinIters() 3
Coefficient in the nonlinear convergence test ARKodeSetNonlinConvCoef() 0.1
Nonlinear convergence rate constant ARKodeSetNonlinCRDown() 0.3
Nonlinear residual divergence ratio ARKodeSetNonlinRDiv() 2.3
Max change in step signaling new J ARKodeSetDeltaGammaMax() 0.2
Max steps between calls to new J ARKodeSetMaxStepsBetweenLSet() 20
Maximum number of convergence failures ARKodeSetMaxConvFails() 10

int ARKodeSetFixedPoint(void* arkode_mem, long int fp_m)
Specifies that the implicit portion of the problem should be solved using the accelerated fixed-point solver
instead of the modified Newton iteration, and provides the maximum dimension of the acceleration subspace.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• fp_m – number of vectors to store within the Anderson acceleration subspace.

Return value:

4.5. User-callable functions 65

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Since the accelerated fixed-point solver has a slower rate of convergence than the Newton iteration
(but each iteration is typically much more efficient), it is recommended that the maximum nonlinear correction
iterations be increased through a call to ARKodeSetMaxNonlinIters().

int ARKodeSetNewton(void* arkode_mem)
Specifies that the implicit portion of the problem should be solved using the modified Newton solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This is the default behavior of ARKode, so the function is primarily useful to undo a previous call to
ARKodeSetFixedPoint().

int ARKodeSetLinear(void* arkode_mem, int timedepend)
Specifies that the implicit portion of the problem is linear.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• timedepend – flag denoting whether the Jacobian of fI(t, y) is time-dependent (1) or not (0). Alter-
nately, when using an iterative linear solver this flag denotes time dependence of the preconditioner.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Tightens the linear solver tolerances and takes only a single Newton iteration. Calls
ARKodeSetDeltaGammaMax() to enforce Jacobian recomputation when the step size ratio changes by
more than 100 times the unit roundoff (since nonlinear convergence is not tested). Only applicable when used
in combination with the modified Newton iteration (not the fixed-point solver).

int ARKodeSetNonlinear(void* arkode_mem)
Specifies that the implicit portion of the problem is nonlinear.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

66 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Notes: This is the default behavior of ARKode, so the function is primarily useful to undo a previous call to
ARKodeSetLinear(). Calls ARKodeSetDeltaGammaMax() to reset the step size ratio threshold to the
default value.

int ARKodeSetPredictorMethod(void* arkode_mem, int method)
Specifies the method to use for predicting implicit solutions.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• method – method choice (0 ≤ method ≤ 4):

– 0 is the trivial predictor,

– 1 is the maximum order (dense output) predictor,

– 2 is the variable order predictor, that decreases the polynomial degree for more distant RK stages,

– 3 is the cutoff order predictor, that uses the maximum order for early RK stages, and a first-order
predictor for distant RK stages,

– 4 is the bootstrap predictor, that uses a second-order predictor based on only information within
the current step.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 3. If method is set to an undefined value, the trivial predictor will be used.

int ARKodeSetMaxNonlinIters(void* arkode_mem, int maxcor)
Specifies the maximum number of nonlinear solver iterations permitted per RK stage within each time step.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• maxcor – maximum allowed solver iterations per stage (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 3; set maxcor ≤ 0 to specify this default.

int ARKodeSetNonlinConvCoef(void* arkode_mem, realtype nlscoef)
Specifies the safety factor used within the nonlinear solver convergence test.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nlscoef – coefficient in nonlinear solver convergence test (> 0.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

4.5. User-callable functions 67

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 0.1; set nlscoef ≤ 0 to specify this default.

int ARKodeSetNonlinCRDown(void* arkode_mem, realtype crdown)
Specifies the constant used in estimating the nonlinear solver convergence rate.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• crdown – nonlinear convergence rate estimation constant (default is 0.3).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ARKodeSetNonlinRDiv(void* arkode_mem, realtype rdiv)
Specifies the nonlinear correction threshold beyond which the iteration will be declared divergent.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• rdiv – tolerance on nonlinear correction size ratio to declare divergence (default is 2.3).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ARKodeSetDeltaGammaMax(void* arkode_mem, realtype dgmax)
Specifies a scaled step size ratio tolerance, beyond which the linear solver setup routine will be signaled.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• dgmax – tolerance on step size ratio change before calling linear solver setup routine (default is 0.2).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ARKodeSetMaxStepsBetweenLSet(void* arkode_mem, int msbp)
Specifies the frequency of calls to the linear solver setup routine. Positive values specify the number of time
steps between setup calls; negative values force recomputation at each Newton step; zero values reset to the
default.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

68 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• msbp – maximum number of time steps between linear solver setup calls, or flag to force recomputa-
tion at each Newton iteration (default is 20).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

int ARKodeSetMaxConvFails(void* arkode_mem, int maxncf)
Specifies the maximum number of nonlinear solver convergence failures permitted during one step, before
ARKode will return with an error.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• maxncf – maximum allowed nonlinear solver convergence failures per step (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 10; set maxncf ≤ 0 to specify this default.

Upon each convergence failure, ARKode will first call the Jacobian setup routine and try again (if a Newton
method is used). If a convergence failure still occurs, the time step size is reduced by the factor etacf (set within
ARKodeSetMaxCFailGrowth()).

Dense/band direct linear solvers optional input functions

The mathematical explanation of ARKode’s dense linear solver methods is provided in the section Linear solver
methods.

Table: Optional inputs for ARKDLS

Optional input Function name Default
Dense Jacobian function ARKDlsSetDenseJacFn() DQ
Dense mass matrix function ARKDlsSetDenseMassFn() none
Band Jacobian function ARKDlsSetBandJacFn() DQ
Band mass matrix function ARKDlsSetBandMassFn() none

The ARKDENSE solver needs a function to compute a dense approximation to the Jacobian matrix J(t, y). This
function must be of type ARKDlsDenseJacFn(). The user can supply a custom dense Jacobian function, or use the
default internal difference quotient approximation that comes with the ARKDENSE solver. To specify a user-supplied
Jacobian function djac, ARKDENSE provides the function ARKDlsSetDenseJacFn(). The ARKDENSE solver
passes the user data pointer to the dense Jacobian function. This allows the user to create an arbitrary structure with
relevant problem data and access it during the execution of the user-supplied Jacobian function, without using global
data in the program. The user data pointer may be specified through ARKodeSetUserData().

Similarly, if the ODE system involves a non-identity mass matrix, M 6= I , the ARKDENSE solver needs a function to
compute a dense approximation to the mass matrix M(t). If the Newton linear systems are solved using ARKDENSE
and the mass matrix systems are not, then the user must supply his/her own dense mass matrix function, dmass, since
there is no default value. This function must be of type ARKDlsDenseMassFn(), and should be set using the
function ARKDlsSetDenseMassFn(). We note that the ARKDENSE solver passes the user data pointer to the
dense mass matrix function. This allows the user to create an arbitrary structure with relevant problem data and access

4.5. User-callable functions 69

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

it during the execution of the user-supplied mass matrix function, without using global data in the program. The
pointer user data may be specified through ARKodeSetUserData().

int ARKDlsSetDenseJacFn(void* arkode_mem, ARKDlsDenseJacFn djac)
Specifies the dense Jacobian approximation routine to be used for a direct dense linear solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• djac – name of user-supplied dense Jacobian approximation function.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_LMEM_NULL if the linear solver memory was NULL

Notes: By default, ARKDENSE uses an internal difference quotient function. If NULL is passed in for djac,
this default is used.

The function type ARKDlsDenseJacFn() is described in the section User-supplied functions.

int ARKDlsSetDenseMassFn(void* arkode_mem, ARKDlsDenseMassFn dmass)
Specifies the dense mass matrix approximation routine to be used for a direct dense linear solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• dmass – name of user-supplied dense mass matrix approximation function.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_MASSMEM_NULL if the mass matrix solver memory was NULL

Notes: This routine must be called after the mass matrix solver has been initialized through a call to one
of ARKMassDense(), ARKMassLapackDense(), ARKMassBand(), ARKMassLapackBand(),
ARKMassSpgmr(), ARKMassSpbcg(), ARKMassSptfqmr(), ARKMassSpfgmr() or
ARKMassPcg().

The function type ARKDlsDenseMassFn() is described in the section User-supplied functions.

Similarly, the ARKBAND solver needs a function to compute a banded approximation to the Jacobian matrix J(t, y).
This function must be of type ARKDlsBandJacFn(). The user can supply a custom banded Jacobian approximation
function, or use the default internal difference quotient approximation that comes with the ARKBAND solver. To
specify a user-supplied Jacobian function, bjac, ARKBAND provides the function ARKDlsSetBandJacFn().
The ARKBAND solver passes the user data pointer to the banded Jacobian approximation function. This allows
the user to create an arbitrary structure with relevant problem data and access it during the execution of the user-
supplied Jacobian function, without using global data in the program. The pointer user data may be specified through
ARKodeSetUserData().

Similarly, if the ODE system involves a non-identity mass matrix, M 6= I , the ARKBAND solver needs a function to
compute a band approximation to the mass matrix M(t). If the Newton linear systems are solved using ARKBAND
and the mass matrix systems are not, then the user must supply his/her own band mass matrix function, bmass, since
there is no default value. This function must be of type ARKDlsBandMassFn(), and should be set using the
function ARKDlsSetBandMassFn(). We note that the ARKBAND solver passes the user data pointer to the band
mass matrix function. This allows the user to create an arbitrary structure with relevant problem data and access it

70 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

during the execution of the user-supplied mass matrix function, without using global data in the program. The pointer
user data may be specified through ARKodeSetUserData().

int ARKDlsSetBandJacFn(void* arkode_mem, ARKDlsBandJacFn bjac)
Specifies the band Jacobian approximation routine to be used for a direct band linear solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• bjac – name of user-supplied banded Jacobian approximation function.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_LMEM_NULL if the linear solver memory was NULL

Notes: By default, ARKBAND uses an internal difference quotient function. If NULL is passed in for bjac, this
default is used.

The function type ARKDlsBandJacFn() is described in the section User-supplied functions.

int ARKDlsSetBandMassFn(void* arkode_mem, ARKDlsBandMassFn bmass)
Specifies the band mass matrix approximation routine to be used for a direct band linear solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• bmass – name of user-supplied banded mass matrix approximation function.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_MASSMEM_NULL if the mass matrix solver memory was NULL

Notes: This routine must be called after the mass matrix solver has been initialized through a call to one
of ARKMassDense(), ARKMassLapackDense(), ARKMassBand(), ARKMassLapackBand(),
ARKMassSpgmr(), ARKMassSpbcg(), ARKMassSptfqmr(), ARKMassSpfgmr() or
ARKMassPcg().

The function type ARKDlsBandMassFn() is described in the section User-supplied functions.

Sparse direct linear solvers optional input functions

The mathematical explanation of ARKode’s sparse linear solver methods is provided in the section Linear solver
methods.

4.5. User-callable functions 71

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Table: Optional inputs for ARKSLS

Optional input Function name Default
Sparse Jacobian function ARKSlsSetSparseJacFn() none
Sparse mass matrix function ARKSlsSetSparseMassFn() none
Sparse matrix ordering algorithm ARKKLUSetOrdering() COLAMD
Sparse mass matrix ordering algorithm ARKMassKLUSetOrdering() COLAMD
Sparse matrix ordering algorithm ARKSuperLUMTSetOrdering() COLAMD
Sparse mass matrix ordering algorithm ARKMassSuperLUMTSetOrdering() COLAMD

The ARKSPARSE solvers need a function to compute a compressed-sparse-column approximation to the Jaco-
bian matrix J(t, y). This function must be of type ARKSlsSparseJacFn(). The user must supply a custom
sparse Jacobian function since a difference-quotient approximation would not leverage the underlying sparse ma-
trix structure of the problem. To specify a user-supplied Jacobian function sjac, ARKSPARSE provides the function
ARKSlsSetSparseJacFn(). The ARKSPARSE solvers pass the user data pointer to the sparse Jacobian function.
This allows the user to create an arbitrary structure with relevant problem data and access it during the execution of
the user-supplied Jacobian function, without using global data in the program. The user data pointer may be specified
through ARKodeSetUserData().

Similarly, if the ODE system involves a non-identity mass matrix, M 6= I , the ARKSPARSE solver needs a function
to compute a compressed-sparsec-column approximation to the mass matrix M(t). If the Newton linear systems are
solved using ARKSPARSE and the mass matrix systems are not, then the user must supply his/her own sparse mass
matrix function, smass, since there is no default value. This function must be of type ARKSlsSparseMassFn(),
and should be set using the function ARKSlsSetSparseMassFn(). We note that the ARKSPARSE solvers pass
the user data pointer to the sparse mass matrix function. This allows the user to create an arbitrary structure with
relevant problem data and access it during the execution of the user-supplied mass matrix function, without using
global data in the program. The pointer user data may be specified through ARKodeSetUserData().

int ARKSlsSetSparseJacFn(void* arkode_mem, ARKSlsSparseJacFn sjac)
Specifies the sparse Jacobian approximation routine to be used for a direct sparse linear solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• sjac – name of user-supplied sparse Jacobian approximation function.

Return value:

• ARKSLS_SUCCESS if successful

• ARKSLS_MEM_NULL if the ARKode memory was NULL

• ARKSLS_LMEM_NULL if the linear solver memory was NULL

Notes: The function type ARKSlsSparseJacFn() is described in the section User-supplied functions.

int ARKSlsSetSparseMassFn(void* arkode_mem, ARKSlsSparseMassFn smass)
Specifies the sparse mass matrix approximation routine to be used for a direct sparse linear solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• smass – name of user-supplied sparse mass matrix approximation function.

Return value:

• ARKSLS_SUCCESS if successful

• ARKSLS_MEM_NULL if the ARKode memory was NULL

• ARKSLS_MASSMEM_NULL if the mass matrix solver memory was NULL

72 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Notes: This routine must be called after the mass matrix solver has been initialized through
a call to one of ARKMassDense(), ARKMassLapackDense(), ARKMassBand(),
ARKMassLapackBand(), ARKMassKLU(), ARKMassSuperLUMT(), ARKMassSpgmr(),
ARKMassSpbcg(), ARKMassSptfqmr(), ARKMassSpfgmr() or ARKMassPcg().

The function type ARKSlsSparseMassFn() is described in the section User-supplied functions.

When using a sparse direct solver, there may be instances when the number of state variables does not change,
but the number of nonzeroes in the Jacobian or mass matrix does change. In this case, for the ARKKLU() and
ARKMassKLU() solvers, we provide the following reinitialization functions. These functions reinitialize the Jaco-
bian or mass matrix memory for the new number of nonzeroes and sets flags for a new factorization (symbolic and
numeric) to be conducted at the next solver setup call. These routines are useful in the cases where the number
of nonzeroes has changed, or where the structure of the linear system has changed, requiring a new symbolic (and
numeric) factorization.

int ARKKLUReInit(void* arkode_mem, int N, int NNZ, int reinit_type)
This function reinitializes memory and flags for a new factorization (symbolic and numeric) to be conducted at
the next solver setup call. This routine is useful in the cases where the number of nonzeros has changed or if the
structure of the linear system has changed which would require a new symbolic (and numeric) refactorization.
It’s use requires inclusion of the header file arkode_klu.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• N – the number of components in the ODE system.

• NNZ – the maximum number of nonzero entries in the system Jacobian.

• reinit_type – flag that governs the level of reinitialization:

– 1 – the Jacobian matrix will be destroyed and a new one will be allocated based on the NNZ value
passed to this call. New symbolic and numeric factorizations will be completed at the next solver
setup.

– 2 – only symbolic and numeric factorizations will be completed. It is assumed that the Jacobian
size has not exceeded the size of NNZ given in the prior call to ARKKLU().

Return value:

• ARKSLS_SUCCESS if successful

• ARKSLS_MEM_NULL if the ARKode memory was NULL

• ARKSLS_LMEM_NULL if the linear solver memory was NULL

• ARKSLS_ILL_INPUT if a required vector operation is missing

• ARKSLS_MEM_FAIL if there was a memory allocation failure

Notes: This routine assumes that no other changes to solver use are necessary

int ARKMassKLUReInit(void* arkode_mem, int N, int NNZ, int reinit_type)
This function reinitializes memory and flags for a new factorization (symbolic and numeric) to be conducted at
the next solver setup call. This routine is useful in the cases where the number of nonzeros has changed or if the
structure of the linear system has changed which would require a new symbolic (and numeric) refactorization.
It’s use requires inclusion of the header file arkode_klu.h.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• N – the number of components in the ODE system.

• NNZ – the maximum number of nonzero entries in the system mass matrix.

4.5. User-callable functions 73

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• reinit_type – flag that governs the level of reinitialization:

– 1 – the mass matrix will be destroyed and a new one will be allocated based on the NNZ value
passed to this call. New symbolic and numeric factorizations will be completed at the next solver
setup.

– 2 – only symbolic and numeric factorizations will be completed. It is assumed that the mass
matrix size has not exceeded the size of NNZ given in the prior call to ARKMassKLU().

Return value:

• ARKSLS_SUCCESS if successful

• ARKSLS_MEM_NULL if the ARKode memory was NULL

• ARKSLS_LMEM_NULL if the linear solver memory was NULL

• ARKSLS_ILL_INPUT if a required vector operation is missing

• ARKSLS_MEM_FAIL if there was a memory allocation failure

Notes: This routine assumes that no other changes to solver use are necessary

The ARKKLU(), ARKMassKLU(), ARKSUPERLUMT() and ARKMassSuperLUMT() solvers can apply reorder-
ing algorithms to minimize fill-in for the resulting sparse LU decomposition internal to the solver. The approximate
minimal degree ordering for nonsymmetric matrices given by the COLAMD algorithm is the default algorithm used
within both solvers, but alternate orderings may be chosen through one of the following two functions.

int ARKKLUSetOrdering(void *arkode_mem, int ordering_choice)
Specifies the ordering algorithm used by ARKKLU for reducing fill in the system solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• ordering_choice – flag denoting algorithm choice:

0 – AMD

1 – COLAMD

2 – natural ordering

Return value:

• ARKSLS_SUCCESS if successful

• ARKSLS_MEM_NULL if the linear solver memory was NULL

• ARKSLS_ILL_INPUT if the supplied value of ordering_choice is illegal

Notes:

• The default ordering choice is COLAMD

int ARKMassKLUSetOrdering(void *arkode_mem, int ordering_choice)
Specifies the ordering algorithm used by ARKKLU for reducing fill in the mass matrix solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• ordering_choice – flag denoting algorithm choice:

0 – AMD

1 – COLAMD

2 – natural ordering

74 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Return value:

• ARKSLS_SUCCESS if successful

• ARKSLS_MEM_NULL if the linear solver memory was NULL

• ARKSLS_ILL_INPUT if the supplied value of ordering_choice is illegal

Notes:

• The default ordering choice is COLAMD

int ARKSuperLUMTSetOrdering(void *arkode_mem, int ordering_choice)
Specifies the ordering algorithm used by ARKSUPERLUMT for reducing fill in the system solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• ordering_choice – flag denoting algorithm choice:

0 – natural ordering

1 – minimal degree ordering on ATA

2 – minimal degree ordering on AT +A

3 – COLAMD

Return value:

• ARKSLS_SUCCESS if successful

• ARKSLS_MEM_NULL if the linear solver memory was NULL

• ARKSLS_ILL_INPUT if the supplied value of ordering_choice is illegal

Notes:

• The default ordering choice is COLAMD

int ARKMassSuperLUMTSetOrdering(void *arkode_mem, int ordering_choice)
Specifies the ordering algorithm used by ARKSUPERLUMT for reducing fill in the mass matrix solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• ordering_choice – flag denoting algorithm choice:

0 – natural ordering

1 – minimal degree ordering on MTM

2 – minimal degree ordering on MT +M

3 – COLAMD

Return value:

• ARKSLS_SUCCESS if successful

• ARKSLS_MEM_NULL if the linear solver memory was NULL

• ARKSLS_ILL_INPUT if the supplied value of ordering_choice is illegal

Notes:

• The default ordering choice is COLAMD

4.5. User-callable functions 75

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Iterative linear solvers optional input functions

As described in the section Linear solver methods, when using one of the ARKSPILS iterative linear
solvers, a user may supply a preconditioning operator to aid in solution of the system. This opera-
tor consists of two user-supplied functions, psetup and psolve, that are supplied to ARKode using either
the function ARKSpilsSetPreconditioner() (for preconditioning the Newton system), or the function
ARKSpilsSetMassPreconditioner() (for preconditioning the mass matrix system). The psetup function
should handle evaluation and preprocessing of any Jacobian or mass-matrix data needed by the user’s preconditioner
solve function, psolve. The user data pointer received through ARKodeSetUserData() (or a pointer to NULL if
user data was not specified) is passed to the psetup and psolve functions. This allows the user to create an arbitrary
structure with relevant problem data and access it during the execution of the user-supplied preconditioner functions
without using global data in the program. If preconditioning is supplied for both the Newton and mass matrix linear
systems, it is expected that the user will supply different psetup and psolve function for each.

Additionally, when solving the Newton linear systems, the ARKSPILS solvers require a jtimes function to compute
an approximation to the product between the Jacobian matrix J(t, y) and a vector v. The user can supply a custom
Jacobian-times-vector approximation function, or use the default internal difference quotient function that comes with
the ARKSPILS solvers. A user-defined Jacobian-vector function must be of type ARKSpilsJacTimesVecFn()
and can be specified through a call to ARKSpilsSetJacTimesVecFn() (see the section User-supplied func-
tions for specification details). As with the preconditioner user-supplied functions, a pointer to the user-defined data
structure, user_data, specified through ARKodeSetUserData() (or a NULL pointer otherwise) is passed to the
Jacobian-times-vector function jtimes each time it is called.

Similarly, if a problem involves a non-identity mass matrix, M 6= I , then the ARKSPILS solvers require a mtimes
function to compute an approximation to the product between the mass matrixM(t) and a vector v. This function must
be user-supplied, since there is no default value. mtimes must be of type ARKSpilsMassTimesVecFn(). and can
be specified through a call to the ARKSpilsSetMassTimesVecFn(). If an ARKSPILS solver is also used for
the mass matrix linear systems, then the mtimes function will already be provided in the call to ARKMassSpgmr(),
ARKMassSpbcg(), ARKMassSptfqmr(), ARKMassPcg() or ARKMassSpfgmr(), so it does not need to be
supplied a second time, unless the user wishes to change between mtimes functions.

Table: Optional inputs for ARKSPILS

Optional input Function name Default
Jv function (jtimes) ARKSpilsSetJacTimesVecFn() DQ
Newton linear and nonlinear tolerance ratio ARKSpilsSetEpsLin() 0.05
Newton Krylov subspace size (a) ARKSpilsSetMaxl() 5
Newton Gram-Schmidt orthogonalization type (b) ARKSpilsSetGSType() classical GS
Newton preconditioning functions ARKSpilsSetPreconditioner() NULL, NULL
Newton preconditioning type ARKSpilsSetPrecType() none
Mv function (mtimes) ARKSpilsSetMassTimesVecFn() none
Mass matrix linear and nonlinear tolerance ratio ARKSpilsSetMassEpsLin() 0.05
Mass matrix Krylov subspace size (a) ARKSpilsSetMassMaxl() 5
Mass matrix Gram-Schmidt orthog. type (b) ARKSpilsSetMassGSType() classical GS
Mass matrix preconditioning functions ARKSpilsSetMassPreconditioner() NULL, NULL
Mass matrix preconditioning type ARKSpilsSetMassPrecType() none

(a) Only for ARKSPBCG, ARMSPTFQMR and ARKPCG

(b) Only for ARKSPGMR and ARKSPFGMR

int ARKSpilsSetJacTimesVecFn(void* arkode_mem, ARKSpilsJacTimesVecFn jtimes)
Specifies the Jacobian-times-vector function.

Arguments:

76 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• arkode_mem – pointer to the ARKode memory block.

• jtimes – user-defined Jacobian-vector product function.

Return value:

• ARKSPILS_SUCCESS if successful.

• ARKSPILS_MEM_NULL if the ARKode memory was NULL.

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL.

• ARKSPILS_ILL_INPUT if an input has an illegal value.

Notes: The default is to use an internal finite difference quotient. If NULL is passed to jtimes, this default
function is used.

The function type ARKSpilsJacTimesVecFn() is described in the section User-supplied functions.

int ARKSpilsSetEpsLin(void* arkode_mem, realtype eplifac)
Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the linear
iteration.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• eplifac – linear convergence safety factor (≥ 0.0).

Return value:

• ARKSPILS_SUCCESS if successful.

• ARKSPILS_MEM_NULL if the ARKode memory was NULL.

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL.

• ARKSPILS_ILL_INPUT if an input has an illegal value.

Notes: Passing a value eplifac of 0.0 indicates to use the default value of 0.05.

int ARKSpilsSetMaxl(void* arkode_mem, int maxl)
Resets the maximum Krylov subspace size, maxl, from the value previously set, when using the Bi-CGStab,
TFQMR or PCG linear solver methods.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• maxl – maximum dimension of the Krylov subspace.

Return value:

• ARKSPILS_SUCCESS if successful.

• ARKSPILS_MEM_NULL if the ARKode memory was NULL.

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL.

• ARKSPILS_ILL_INPUT if an input has an illegal value.

Notes: The maximum subspace dimension is initially set in the call to the linear solver specification function
(see the section Linear solver specification functions). This function call is needed only if maxl is being changed
from its previous value.

An input value maxl ≤ 0, gives the default value, 5.

This option is available only for the ARKSPBCG, ARKSPTFQMR and ARKPCG linear solvers.

4.5. User-callable functions 77

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

int ARKSpilsSetGSType(void* arkode_mem, int gstype)
Specifies the type of Gram-Schmidt orthogonalization to be used with the ARKSPGMR or ARKSPFGMR
linear solvers. This must be one of the two enumeration constants MODIFIED_GS or CLASSICAL_GS defined
in sundials_iterative.h (already included by both arkode_spgmr.h and arkode_spfgmr.h).
These correspond to using modified Gram-Schmidt and classical Gram-Schmidt, respectively.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• gstype – type of Gram-Schmidt orthogonalization.

Return value:

• ARKSPILS_SUCCESS if successful.

• ARKSPILS_MEM_NULL if the ARKode memory was NULL.

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL.

• ARKSPILS_ILL_INPUT if an input has an illegal value.

Notes: The default value is MODIFIED_GS.

This option is available only for the ARKSPGMR and ARKSPFGMR linear solvers.

int ARKSpilsSetPreconditioner(void* arkode_mem, ARKSpilsPrecSetupFn psetup, ARKSpilsPrec-
SolveFn psolve)

Specifies the user-supplied preconditioner setup and solve functions.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• psetup – user defined preconditioner setup function. Pass NULL if no setup is needed.

• psolve – user-defined preconditioner solve function.

Return value:

• ARKSPILS_SUCCESS if successful.

• ARKSPILS_MEM_NULL if the ARKode memory was NULL.

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL.

• ARKSPILS_ILL_INPUT if an input has an illegal value.

Notes: The default is NULL for both arguments (i.e. no preconditioning).

Both of the function types ARKSpilsPrecSetupFn() and ARKSpilsPrecSolveFn() are described in
the section User-supplied functions.

int ARKSpilsSetPrecType(void* arkode_mem, int pretype)
Resets the type of preconditioner, pretype, from the value previously set.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• pretype – the type of preconditioning to use, must be one of PREC_NONE, PREC_LEFT,
PREC_RIGHT or PREC_BOTH.

Return value:

• ARKSPILS_SUCCESS if successful.

• ARKSPILS_MEM_NULL if the ARKode memory was NULL.

78 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL.

• ARKSPILS_ILL_INPUT if an input has an illegal value.

Notes: The preconditioning type is initially set in the call to the linear solver’s specification function (see the
section Linear solver specification functions). This function call is needed only if pretype is being changed from
its original value.

int ARKSpilsSetMassTimesVecFn(void* arkode_mem, ARKSpilsMassTimesVecFn mtimes)
Specifies the mass matrix-times-vector function.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• mtimes – user-defined mass matrix-vector product function.

Return value:

• ARKSPILS_SUCCESS if successful.

• ARKSPILS_MEM_NULL if the ARKode memory was NULL.

• ARKSPILS_MASSMEM_NULL if the mass matrix solver memory was NULL.

• ARKSPILS_ILL_INPUT if an input has an illegal value.

Notes: This function must be called after the mass matrix solver has been initialized, through a call to one
of ARKMassDense(), ARKMassLapackDense(), ARKMassBand() or ARKMassLapackBand().
It is only required if the mass matrix solver is not iterative, since mtimes will already be supplied
to one of ARKMassSpgmr(), ARKMassSpbcg(), ARKMassSptfqmr(), ARKMassSpfgmr() or
ARKMassPcg().

The function type ARKSpilsMassTimesVecFn() is described in the section User-supplied functions.

int ARKSpilsSetMassEpsLin(void* arkode_mem, realtype eplifac)
Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the mass
matrix linear iteration.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• eplifac – linear convergence safety factor (≥ 0.0).

Return value:

• ARKSPILS_SUCCESS if successful.

• ARKSPILS_MEM_NULL if the ARKode memory was NULL.

• ARKSPILS_MASSMEM_NULL if the mass matrix solver memory was NULL.

• ARKSPILS_ILL_INPUT if an input has an illegal value.

Notes: This must be called after the iterative mass matrix solver has been initialized, through a call
to one of ARKMassSpgmr(), ARKMassSpbcg(), ARKMassSptfqmr(), ARKMassSpfgmr() or
ARKMassPcg().

Passing a value eplifac of 0.0 indicates to use the default value of 0.05.

int ARKSpilsSetMassMaxl(void* arkode_mem, int maxl)
Resets the maximum mass matrix Krylov subspace size, maxl, from the value previously set, when using the
Bi-CGStab, TFQMR or PCG linear solver methods.

Arguments:

4.5. User-callable functions 79

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• arkode_mem – pointer to the ARKode memory block.

• maxl – maximum dimension of the mass matrix Krylov subspace.

Return value:

• ARKSPILS_SUCCESS if successful.

• ARKSPILS_MEM_NULL if the ARKode memory was NULL.

• ARKSPILS_MASSMEM_NULL if the mass matrix solver memory was NULL.

• ARKSPILS_ILL_INPUT if an input has an illegal value.

Notes: This must be called after the iterative mass matrix solver has been initialized, through a call to one of
ARKMassSpbcg(), ARKMassSptfqmr() or ARKMassPcg().

The maximum subspace dimension is initially set in the call to the linear mass matrix solver specification
function. This function call is needed only if maxl is being changed from its previous value.

An input value maxl ≤ 0, gives the default value, 5.

This option is available only for the ARKSPBCG, ARKSPTFQMR and ARKPCG linear solvers.

int ARKSpilsSetMassGSType(void* arkode_mem, int gstype)
Specifies the type of Gram-Schmidt orthogonalization to be used with the ARKSPGMR or ARKSPFGMR linear
mass matrix solvers. This must be one of the two enumeration constants MODIFIED_GS or CLASSICAL_GS
defined in sundials_iterative.h (already included by arkode_spgmr.h and arkode_spfgmr.h).
These correspond to using modified Gram-Schmidt and classical Gram-Schmidt, respectively.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• gstype – type of Gram-Schmidt orthogonalization.

Return value:

• ARKSPILS_SUCCESS if successful.

• ARKSPILS_MEM_NULL if the ARKode memory was NULL.

• ARKSPILS_MASSMEM_NULL if the mass matrix solver memory was NULL.

• ARKSPILS_ILL_INPUT if an input has an illegal value.

Notes: This must be called after the iterative mass matrix solver has been initialized, through a call to one of
ARKMassSpgmr() or ARKMassSpfgmr().

The default value is MODIFIED_GS.

This option is available only for the ARKSPGMR and ARKSPFGMR linear solvers.

int ARKSpilsSetMassPreconditioner(void* arkode_mem, ARKSpilsMassPrecSetupFn psetup, ARK-
SpilsMassPrecSolveFn psolve)

Specifies the mass matrix preconditioner setup and solve functions.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• psetup – user defined preconditioner setup function. Pass NULL if no setup is to be done.

• psolve – user-defined preconditioner solve function.

Return value:

• ARKSPILS_SUCCESS if successful.

80 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARKSPILS_MEM_NULL if the ARKode memory was NULL.

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL.

• ARKSPILS_ILL_INPUT if an input has an illegal value.

Notes: This function must be called after the iterative mass matrix solver has been initialized, through a
call to one of ARKMassSpgmr(), ARKMassSpbcg(), ARKMassSptfqmr(), ARKMassSpfgmr() or
ARKMassPcg().

The default is NULL for both arguments (i.e. no preconditioning).

Both of the function types ARKSpilsMassPrecSetupFn() and ARKSpilsMassPrecSolveFn() are
described in the section User-supplied functions.

int ARKSpilsSetMassPrecType(void* arkode_mem, int pretype)
Resets the type of mass matrix preconditioner, pretype, from the value previously set.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• pretype – the type of preconditioning to use, must be one of PREC_NONE, PREC_LEFT,
PREC_RIGHT or PREC_BOTH.

Return value:

• ARKSPILS_SUCCESS if successful.

• ARKSPILS_MEM_NULL if the ARKode memory was NULL.

• ARKSPILS_MASSMEM_NULL if the mass matrix solver memory was NULL.

• ARKSPILS_ILL_INPUT if an input has an illegal value.

Notes: This function must be called after the iterative mass matrix solver has been initialized, through a
call to one of ARKMassSpgmr(), ARKMassSpbcg(), ARKMassSptfqmr(), ARKMassSpfgmr() or
ARKMassPcg().

The preconditioning type is initially set in the call to the mass matrix solver’s specification function. This
function call is needed only if pretype is being changed from its original value.

Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm, the mathematics of
which are described in the section Rootfinding.

Optional input Function name Default
Direction of zero-crossings to monitor ARKodeSetRootDirection() both
Disable inactive root warnings ARKodeSetNoInactiveRootWarn() enabled

int ARKodeSetRootDirection(void* arkode_mem, int* rootdir)
Specifies the direction of zero-crossings to be located and returned.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• rootdir – state array of length nrtfn, the number of root functions gi, as specified in the call to the
function ARKodeRootInit(). If rootdir[i] == 0 then crossing in either direction for gi
should be reported. A value of +1 or -1 indicates that the solver should report only zero-crossings
where gi is increasing or decreasing, respectively.

Return value:

4.5. User-callable functions 81

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default behavior is to monitor for both zero-crossing directions.

int ARKodeSetNoInactiveRootWarn(void* arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory is NULL

Notes: ARKode will not report the initial conditions as a possible zero-crossing (assuming that one or more
components gi are zero at the initial time). However, if it appears that some gi is identically zero at the initial
time (i.e., gi is zero at the initial time and after the first step), ARKode will issue a warning which can be
disabled with this optional input function.

4.5.8 Interpolated output function

An optional function ARKodeGetDky() is available to obtain additional output values. This function should only
be called after a successful return from ARKode(), as it provides interpolated values either of y or of its derivatives
(up to the 3rd derivative) interpolated to any value of t in the last internal step taken by ARKode(). Internally, this
dense output algorithm is identical to the algorithm used for the maximum order implicit predictors, described in the
section Maximum order predictor, except that derivatives of the polynomial model may be evaluated upon request.

int ARKodeGetDky(void* arkode_mem, realtype t, int k, N_Vector dky)
Computes the k-th derivative of the function y at the time t, i.e. d(k)

dt(k) y(t), for values of the independent variable
satisfying tn − hn ≤ t ≤ tn, with tn as current internal time reached, and hn is the last internal step size
successfully used by the solver. The user may request k in the range {0,1,2,3}. This routine uses an interpolating
polynomial of degree max(dord, k), where dord is the argument provided to ARKodeSetDenseOrder().

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• t – the value of the independent variable at which the derivative is to be evaluated.

• k – the derivative order requested.

• dky – output vector (must be allocated by the user).

Return value:

• ARK_SUCCESS if successful

• ARK_BAD_K if k is not in the range {0,1,2,3}.

• ARK_BAD_T if t is not in the interval [tn − hn, tn]

• ARK_BAD_DKY if the dky vector was NULL

• ARK_MEM_NULL if the ARKode memory is NULL

82 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Notes: It is only legal to call this function after a successful return from ARKode().

A user may access the values tn and hn via the functions ARKodeGetCurrentTime() and
ARKodeGetLastStep(), respectively.

4.5.9 Optional output functions

ARKode provides an extensive set of functions that can be used to obtain solver performance information. We organize
these into four groups:

1. General ARKode output routines are in the subsection Main solver optional output functions,

2. ARKode implicit solver output routines are in the subsection Implicit solver optional output functions,

3. Output routines regarding root-finding results are in the subsection Rootfinding optional output functions,

4. Dense linear solver output routines are in the subsection Dense/band direct linear solvers optional output func-
tions and

5. Sparse linear solver output routines are in the subsection Sparse direct linear solvers optional output functions
and

6. Iterative linear solver output routines are in the subsection Iterative linear solvers optional output functions.

Following each table, we elaborate on each function.

Some of the optional outputs, especially the various counters, can be very useful in determining the efficiency of
various methods inside the ARKode() solver. For example:

• The counters nsteps, nfe_evals and nfi_evals provide a rough measure of the overall cost of a given run, and can
be compared between runs with different solver options to suggest which set of options is the most efficient.

• The ratio nniters/nsteps measures the performance of the nonlinear iteration in solving the nonlinear systems at
each stage, providing a measure of the degree of nonlinearity in the problem. Typical values of this for a Newton
solver on a general problem range from 1.1 to 1.8.

• When using a Newton nonlinear solver, the ratio njevals/nniters (in the case of a direct linear solver), and the
ratio npevals/nniters (in the case of an iterative linear solver) can measure the overall degree of nonlinearity in
the problem, since these are updated infrequently, unless the Newton method convergence slows.

• When using a Newton nonlinear solver, the ratio njevals/nniters (when using a direct linear solver), and the
ratio nliters/nniters (when using an iterative linear solver) can indicate the quality of the approximate Jacobian
or preconditioner being used. For example, if this ratio is larger for a user-supplied Jacobian or Jacobian-
vector product routine than for the difference-quotient routine, it can indicate that the user-supplied Jacobian is
inaccurate.

• The ratio expsteps/accsteps can measure the quality of the ImEx splitting used, since a higher-quality splitting
will be dominated by accuracy-limited steps.

• The ratio nsteps/step_attempts can measure the quality of the time step adaptivity algorithm, since a poor algo-
rithm will result in more failed steps, and hence a lower ratio.

It is therefore recommended that users retrieve and output these statistics following each run, and take some time to
investigate alternate solver options that will be more optimal for their particular problem of interest.

4.5. User-callable functions 83

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Main solver optional output functions

Optional output Function name
Size of ARKode real and integer workspaces ARKodeGetWorkSpace()
Cumulative number of internal steps ARKodeGetNumSteps()
No. of explicit stability-limited steps ARKodeGetNumExpSteps()
No. of accuracy-limited steps ARKodeGetNumAccSteps()
No. of attempted steps ARKodeGetNumStepAttempts()
No. of calls to fe and fi functions ARKodeGetNumRhsEvals()
No. of local error test failures that have occurred ARKodeGetNumErrTestFails()
Actual initial time step size used ARKodeGetActualInitStep()
Step size used for the last successful step ARKodeGetLastStep()
Step size to be attempted on the next step ARKodeGetCurrentStep()
Current internal time reached by the solver ARKodeGetCurrentTime()
Current ERK and DIRK Butcher tables ARKodeGetCurrentButcherTables()
Suggested factor for tolerance scaling ARKodeGetTolScaleFactor()
Error weight vector for state variables ARKodeGetErrWeights()
Estimated local truncation error vector ARKodeGetEstLocalErrors()
Single accessor to many statistics at once ARKodeGetIntegratorStats()
Name of constant associated with a return flag ARKodeGetReturnFlagName()

int ARKodeGetWorkSpace(void* arkode_mem, long int* lenrw, long int* leniw)
Returns the ARKode real and integer workspace sizes.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• lenrw – the number of realtype values in the ARKode workspace.

• leniw – the number of integer values in the ARKode workspace.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetNumSteps(void* arkode_mem, long int* nsteps)
Returns the cumulative number of internal steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nsteps – number of steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetNumExpSteps(void* arkode_mem, long int* expsteps)
Returns the cumulative number of stability-limited steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• expsteps – number of stability-limited steps taken in the solver.

Return value:

84 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetNumAccSteps(void* arkode_mem, long int* accsteps)
Returns the cumulative number of accuracy-limited steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• accsteps – number of accuracy-limited steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetNumStepAttempts(void* arkode_mem, long int* step_attempts)
Returns the cumulative number of steps attempted by the solver (so far).

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• step_attempts – number of steps attempted by solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetNumRhsEvals(void* arkode_mem, long int* nfe_evals, long int* nfi_evals)
Returns the number of calls to the user’s right-hand side functions, fE and fI (so far).

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nfe_evals – number of calls to the user’s fE(t, y) function.

• nfi_evals – number of calls to the user’s fI(t, y) function.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

Notes: The nfi_evals value does not account for calls made to fI by a linear solver or preconditioner module.

int ARKodeGetNumErrTestFails(void* arkode_mem, long int* netfails)
Returns the number of local error test failures that have occured (so far).

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• netfails – number of error test failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetActualInitStep(void* arkode_mem, realtype* hinused)
Returns the value of the integration step size used on the first step.

4.5. User-callable functions 85

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• hinused – actual value of initial step size.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

Notes: Even if the value of the initial integration step was specified by the user through a call to
ARKodeSetInitStep(), this value may have been changed by ARKode to ensure that the step size fell
within the prescribed bounds (hmin ≤ h0 ≤ hmax), or to satisfy the local error test condition, or to ensure
convergence of the nonlinear solver.

int ARKodeGetLastStep(void* arkode_mem, realtype* hlast)
Returns the integration step size taken on the last successful internal step.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• hlast – step size taken on the last internal step.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetCurrentStep(void* arkode_mem, realtype* hcur)
Returns the integration step size to be attempted on the next internal step.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• hcur – step size to be attempted on the next internal step.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetCurrentTime(void* arkode_mem, realtype* tcur)
Returns the current internal time reached by the solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• tcur – current internal time reached.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetCurrentButcherTables(void* arkode_mem, int* s, int* q, int* p, realtype* Ai, real-
type* Ae, realtype* c, realtype* b, realtype* bembed)

Returns the explicit and implicit Butcher tables currently in use by the solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

86 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• s – number of stages in the method.

• q – global order of accuracy of the method.

• p – global order of accuracy of the embedding.

• Ai – coefficients of DIRK method.

• Ae – coefficients of ERK method.

• c – array of internal stage times.

• b – array of solution coefficients.

• bembed – array of embedding coefficients.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

Notes: The user must allocate space for Ae and Ai of size ARK_S_MAX*ARK_S_MAX, and for c, b and bembed
of size ARK_S_MAX prior to calling this function.

int ARKodeGetTolScaleFactor(void* arkode_mem, realtype* tolsfac)
Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been
requested for some internal step.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• tolsfac – suggested scaling factor for user-supplied tolerances.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetErrWeights(void* arkode_mem, N_Vector eweight)
Returns the current error weight vector.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• eweight – solution error weights at the current time.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

Notes: The user must allocate space for eweight, that will be filled in by this function.

int ARKodeGetEstLocalErrors(void* arkode_mem, N_Vector ele)
Returns the vector of estimated local truncation errors for the current step.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• ele – vector of estimated local truncation errors.

Return value:

• ARK_SUCCESS if successful

4.5. User-callable functions 87

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARK_MEM_NULL if the ARKode memory was NULL

Notes: The user must allocate space for ele, that will be filled in by this function.

The values returned in ele are valid only if ARKode() returned a non-negative value.

The ele vector, together with the eweight vector from ARKodeGetErrWeights(), can be used to determine
how the various components of the system contributed to the estimated local error test. Specifically, that error
test uses the RMS norm of a vector whose components are the products of the components of these two vectors.
Thus, for example, if there were recent error test failures, the components causing the failures are those with
largest values for the products, denoted loosely as eweight[i]*ele[i].

int ARKodeGetIntegratorStats(void* arkode_mem, long int* nsteps, long int* expsteps, long int* acc-
steps, long int* step_attempts, long int* nfe_evals, long int* nfi_evals,
long int* nlinsetups, long int* netfails, realtype* hinused, real-
type* hlast, realtype* hcur, realtype* tcur)

Returns many of the most useful integrator statistics in a single call.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nsteps – number of steps taken in the solver.

• expsteps – number of stability-limited steps taken in the solver.

• accsteps – number of accuracy-limited steps taken in the solver.

• step_attempts – number of steps attempted by the solver.

• nfe_evals – number of calls to the user’s fE(t, y) function.

• nfi_evals – number of calls to the user’s fI(t, y) function.

• nlinsetups – number of linear solver setup calls made.

• netfails – number of error test failures.

• hinused – actual value of initial step size.

• hlast – step size taken on the last internal step.

• hcur – step size to be attempted on the next internal step.

• tcur – current internal time reached.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

char *ARKodeGetReturnFlagName(long int flag)
Returns the name of the ARKode constant corresponding to flag.

Arguments:

• flag – a return flag from an ARKode function.

Return value: The return value is a string containing the name of the corresponding constant.

88 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Implicit solver optional output functions

Optional output Function name
No. of calls to linear solver setup function ARKodeGetNumLinSolvSetups()
No. of calls to mass matrix solver ARKodeGetNumMassSolves()
No. of nonlinear solver iterations ARKodeGetNumNonlinSolvIters()
No. of nonlinear solver convergence failures ARKodeGetNumNonlinSolvConvFails()
Single accessor to all nonlinear solver statistics ARKodeGetNonlinSolvStats()

int ARKodeGetNumLinSolvSetups(void* arkode_mem, long int* nlinsetups)
Returns the number of calls made to the linear solver’s setup routine (so far).

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nlinsetups – number of linear solver setup calls made.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetNumMassSolves(void* arkode_mem, long int* nMassSolves)
Returns the number of calls made to the mass matrix solver (so far).

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nMassSolves – number of mass matrix solves made.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetNumNonlinSolvIters(void* arkode_mem, long int* nniters)
Returns the number of nonlinear solver iterations performed (so far).

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nniters – number of nonlinear iterations performed.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

int ARKodeGetNumNonlinSolvConvFails(void* arkode_mem, long int* nncfails)
Returns the number of nonlinear solver convergence failures that have occurred (so far).

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nncfails – number of nonlinear convergence failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

4.5. User-callable functions 89

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

int ARKodeGetNonlinSolvStats(void* arkode_mem, long int* nniters, long int* nncfails)
Returns all of the nonlinear solver statistics in a single call.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nniters – number of nonlinear iterations performed.

• nncfails – number of nonlinear convergence failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

Rootfinding optional output functions

Optional output Function name
Array showing roots found ARKodeGetRootInfo()
No. of calls to user root function ARKodeGetNumGEvals()

int ARKodeGetRootInfo(void* arkode_mem, int* rootsfound)
Returns an array showing which functions were found to have a root.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• rootsfound – array of length nrtfn with the indices of the user functions gi found to have a root. For
i = 0 . . . nrtfn-1, rootsfound[i] is nonzero if gi has a root, and 0 if not.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

Notes: The user must allocate space for rootsfound prior to calling this function.

For the components of gi for which a root was found, the sign of rootsfound[i] indicates the direction of
zero-crossing. A value of +1 indicates that gi is increasing, while a value of -1 indicates a decreasing gi.

int ARKodeGetNumGEvals(void* arkode_mem, long int* ngevals)
Returns the cumulative number of calls made to the user’s root function g.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• ngevals – number of calls made to g so far.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

Dense/band direct linear solvers optional output functions

The following optional outputs are available from the ARKDLS modules: workspace requirements, number of calls to
the Jacobian routine, number of calls to the mass matrix routine, number of calls to the implicit right-hand side routine
for finite-difference Jacobian approximation, and last return value from an ARKDLS function. Note that, where the

90 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

name of an output would otherwise conflict with the name of an optional output from the main solver, a suffix LS (for
Linear Solver) or MLS (for Mass Linear Solver) has been added here (e.g. lenrwLS).

Optional output Function name
Size of real and integer workspaces ARKDlsGetWorkSpace()
Size of mass real and integer workspaces ARKDlsGetMassWorkSpace()
No. of Jacobian evaluations ARKDlsGetNumJacEvals()
No. of mass matrix evaluations ARKDlsGetNumMassEvals()
No. of fi calls for finite diff. Jacobian evals ARKDlsGetNumRhsEvals()
Last return flag from a linear solver function ARKDlsGetLastFlag()
Last return flag from a mass matrix solver function ARKDlsGetLastMassFlag()
Name of constant associated with a return flag ARKDlsGetReturnFlagName()

int ARKDlsGetWorkSpace(void* arkode_mem, long int* lenrwLS, long int* leniwLS)
Returns the real and integer workspace used by the ARKDLS linear solver (ARKDENSE or ARKBAND).

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• lenrwLS – the number of realtype values in the ARKDLS workspace.

• leniwLS – the number of integer values in the ARKDLS workspace.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_LMEM_NULL if the linear solver memory was NULL

Notes: For the ARKDENSE linear solver, in terms of the problem size n, the actual size of the real workspace
is 2n2 realtype words, and the actual size of the integer workspace is n integer words. For the ARKBAND
linear solver, in terms of n and the Jacobian lower and upper half-bandwidths mL and mU , the actual size of
the real workspace is (2mU + 3mL + 2)n realtype words, and the actual size of the integer workspace is n
integer words.

int ARKDlsGetMassWorkSpace(void* arkode_mem, long int* lenrwMLS, long int* leniwMLS)
Returns the real and integer workspace used by the ARKDLS mass matrix linear solver (ARKDENSE or ARK-
BAND).

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• lenrwMLS – the number of realtype values in the ARKDLS workspace.

• leniwMLS – the number of integer values in the ARKDLS workspace.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_LMEM_NULL if the linear solver memory was NULL

Notes: For the ARKDENSE linear solver, in terms of the problem size n, the actual size of the real workspace
is 2n2 realtype words, and the actual size of the integer workspace is n integer words. For the ARKBAND
linear solver, in terms of n and the Jacobian lower and upper half-bandwidths mL and mU , the actual size of
the real workspace is (2mU + 3mL + 2)n realtype words, and the actual size of the integer workspace is n
integer words.

4.5. User-callable functions 91

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

int ARKDlsGetNumJacEvals(void* arkode_mem, long int* njevals)
Returns the number of calls made to the ARKDLS (dense or band) Jacobian approximation routine.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• njevals – number of calls to the Jacobian function.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_LMEM_NULL if the linear solver memory was NULL

int ARKDlsGetNumMassEvals(void* arkode_mem, long int* nmevals)
Returns the number of calls made to the ARKDLS (dense or band) mass matrix construction routine.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nmevals – number of calls to the mass matrix function.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_LMEM_NULL if the linear solver memory was NULL

int ARKDlsGetNumRhsEvals(void* arkode_mem, long int* nfevalsLS)
Returns the number of calls made to the user-supplied fI routine due to the finite difference (dense or band)
Jacobian approximation.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nfevalsLS – the number of calls made to the user-supplied fI function.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_LMEM_NULL if the linear solver memory was NULL

Notes: The value of nfevalsLS is incremented only if the default internal difference quotient function is used.

int ARKDlsGetLastFlag(void* arkode_mem, long int* lsflag)
Returns the last return value from an ARKDLS routine.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• lsflag – the value of the last return flag from an ARKDLS function.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_LMEM_NULL if the linear solver memory was NULL

92 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Notes: If the ARKDENSE setup function failed (i.e. ARKode() returned ARK_LSETUP_FAIL), then the value
of lsflag is equal to the column index (numbered from one) at which a zero diagonal element was encountered
during the LU factorization of the (dense or banded) Jacobian matrix. For all other failures, lsflag is negative.

int ARKDlsGetLastMassFlag(void* arkode_mem, long int* mlsflag)
Returns the last return value from an ARKDLS mass matrix solve routine.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• mlsflag – the value of the last return flag from an ARKDLS mass matrix solver function.

Return value:

• ARKDLS_SUCCESS if successful

• ARKDLS_MEM_NULL if the ARKode memory was NULL

• ARKDLS_LMEM_NULL if the linear solver memory was NULL

Notes: If the ARKDENSE setup function failed (i.e. ARKode() returned ARK_LSETUP_FAIL), then the value
of lsflag is equal to the column index (numbered from one) at which a zero diagonal element was encountered
during the LU factorization of the (dense or banded) mass matrix. For all other failures, lsflag is negative.

char *ARKDlsGetReturnFlagName(long int lsflag)
Returns the name of the ARKDLS constant corresponding to lsflag.

Arguments:

• lsflag – a return flag from an ARKDLS function.

Return value: The return value is a string containing the name of the corresponding constant. If 1 ≤ lsflag ≤ n
(LU factorization failed), this routine returns “NONE”.

Sparse direct linear solvers optional output functions

The following optional outputs are available from the ARKSLS modules: number of calls to the Jacobian routine,
number of calls to the mass matrix routine, and last return value from an ARKSLS function. Note that, where the
name of an output would otherwise conflict with the name of an optional output from the main solver, a suffix LS (for
Linear Solver) or MLS (for Mass Linear Solver) has been added here (e.g. lenrwLS).

Optional output Function name
No. of Jacobian evaluations ARKSlsGetNumJacEvals()
No. of mass matrix evaluations ARKSlsGetNumMassEvals()
Last return flag from a linear solver function ARKSlsGetLastFlag()
Last return flag from a mass matrix solver function ARKSlsGetLastMassFlag()
Name of constant associated with a return flag ARKSlsGetReturnFlagName()

int ARKSlsGetNumJacEvals(void* arkode_mem, long int* njevals)
Returns the number of calls made to the ARKSLS sparse Jacobian approximation routine.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• njevals – number of calls to the Jacobian function.

Return value:

• ARKSLS_SUCCESS if successful

• ARKSLS_MEM_NULL if the ARKode memory was NULL

4.5. User-callable functions 93

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARKSLS_LMEM_NULL if the linear solver memory was NULL

int ARKSlsGetNumMassEvals(void* arkode_mem, long int* nmevals)
Returns the number of calls made to the ARKSLS sparse mass matrix construction routine.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nmevals – number of calls to the mass matrix function.

Return value:

• ARKSLS_SUCCESS if successful

• ARKSLS_MEM_NULL if the ARKode memory was NULL

• ARKSLS_LMEM_NULL if the linear solver memory was NULL

int ARKSlsGetLastFlag(void* arkode_mem, long int* lsflag)
Returns the last return value from an ARKSLS routine.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• lsflag – the value of the last return flag from an ARKSLS function.

Return value:

• ARKSLS_SUCCESS if successful

• ARKSLS_MEM_NULL if the ARKode memory was NULL

• ARKSLS_LMEM_NULL if the linear solver memory was NULL

int ARKSlsGetLastMassFlag(void* arkode_mem, long int* mlsflag)
Returns the last return value from an ARKSLS mass matrix solve routine.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• mlsflag – the value of the last return flag from an ARKSLS mass matrix solver function.

Return value:

• ARKSLS_SUCCESS if successful

• ARKSLS_MEM_NULL if the ARKode memory was NULL

• ARKSLS_LMEM_NULL if the linear solver memory was NULL

char *ARKSlsGetReturnFlagName(long int lsflag)
Returns the name of the ARKSLS constant corresponding to lsflag.

Arguments:

• lsflag – a return flag from an ARKSLS function.

Return value: The return value is a string containing the name of the corresponding constant.

Iterative linear solvers optional output functions

The following optional outputs are available from the ARKSPILS modules: workspace requirements, number of
linear iterations, number of linear convergence failures, number of calls to the preconditioner setup and solve routines,
number of calls to the Jacobian-vector product routine, number of calls to the mass-matrix-vector product routine,

94 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

number of calls to the implicit right-hand side routine for finite-difference Jacobian-vector product approximation,
and last return value from a linear solver function. Note that, where the name of an output would otherwise conflict
with the name of an optional output from the main solver, a suffix LS (for Linear Solver) or MLS (for Mass Linear
Solver) has been added here (e.g. lenrwLS).

Optional output Function name
Size of real and integer workspaces ARKSpilsGetWorkSpace()
No. of preconditioner evaluations ARKSpilsGetNumPrecEvals()
No. of preconditioner solves ARKSpilsGetNumPrecSolves()
No. of linear iterations ARKSpilsGetNumLinIters()
No. of linear convergence failures ARKSpilsGetNumConvFails()
No. of Jacobian-vector product evaluations ARKSpilsGetNumJtimesEvals()
No. of fi calls for finite diff. Jacobian-vector evals. ARKSpilsGetNumRhsEvals()
Last return from a linear solver function ARKSpilsGetLastFlag()
Size of real and integer mass matrix solver workspaces ARKSpilsGetMassWorkSpace()
No. of mass matrix preconditioner evaluations ARKSpilsGetNumMassPrecEvals()
No. of mass matrix preconditioner solves ARKSpilsGetNumMassPrecSolves()
No. of mass matrix linear iterations ARKSpilsGetNumMassIters()
No. of mass matrix solver convergence failures ARKSpilsGetNumMassConvFails()
No. of mass-matrix-vector product evaluations ARKSpilsGetNumMtimesEvals()
Last return from a mass matrix solver function ARKSpilsGetLastMassFlag()
Name of constant associated with a return flag ARKSpilsGetReturnFlagName()

int ARKSpilsGetWorkSpace(void* arkode_mem, long int* lenrwLS, long int* leniwLS)
Returns the global sizes of the ARKSPILS real and integer workspaces.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• lenrwLS – the number of realtype values in the ARKSPILS workspace.

• leniwLS – the number of integer values in the ARKSPILS workspace.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL

Notes: In terms of the problem size n and maximum Krylov subspace size m, the actual size of the real
workspace is roughly: (m+ 5)n+m(m+ 4) + 1 realtype words for ARKSPGMR, 9n realtype words
for ARKSPBCG, 11n realtype words for ARKSPTFQMR, (2m+ 4)n+m(m+ 4) + 1 realtype words
for ARKSPFGMR, and 4n+ 1 realtype words for ARKPCG.

In a parallel setting, the above values are global, summed over all processors.

int ARKSpilsGetNumPrecEvals(void* arkode_mem, long int* npevals)
Returns the total number of preconditioner evaluations, i.e. the number of calls made to psetup with jok =
FALSE.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• npevals – the current number of calls to psetup.

Return value:

• ARKSPILS_SUCCESS if successful

4.5. User-callable functions 95

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumPrecSolves(void* arkode_mem, long int* npsolves)
Returns the number of calls made to the preconditioner solve function, psolve.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• npsolves – the number of calls to psolve.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumLinIters(void* arkode_mem, long int* nliters)
Returns the cumulative number of linear iterations.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nliters – the current number of linear iterations.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumConvFails(void* arkode_mem, long int* nlcfails)
Returns the cumulative number of linear convergence failures.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nlcfails – the current number of linear convergence failures.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumJtimesEvals(void* arkode_mem, long int* njvevals)
Returns the cumulative number of calls made to the Jacobian-vector function, jtimes.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• njvevals – the current number of calls to jtimes.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

96 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumRhsEvals(void* arkode_mem, long int* nfevalsLS)
Returns the number of calls to the user-supplied implicit right-hand side function fI for finite difference
Jacobian-vector product approximation.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nfevalsLS – the number of calls to the user implicit right-hand side function.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL

Notes: The value nfevalsLS is incremented only if the default internal difference quotient function is used.

int ARKSpilsGetLastFlag(void* arkode_mem, long int* lsflag)
Returns the last return value from an ARKSPILS routine.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• lsflag – the value of the last return flag from an ARKSPILS function.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL

Notes: If the ARKSPILS setup function failed (ARKode() returned ARK_LSETUP_FAIL), then ls-
flag will be SPGMR_PSET_FAIL_UNREC, SPBCG_PSET_FAIL_UNREC, SPTFQMR_PSET_FAIL_UNREC,
SPFGMR_PSET_FAIL_UNREC, or PCG_PSET_FAIL_UNREC.

If the ARKSPGMR solve function failed (ARKode() returned ARK_LSOLVE_FAIL), then lsflag contains the
error return flag from SpgmrSolve and will be one of: SPGMR_MEM_NULL, indicating that the SPGMR
memory is NULL; SPGMR_ATIMES_FAIL_UNREC, indicating an unrecoverable failure in the J ∗ v function;
SPGMR_PSOLVE_FAIL_UNREC, indicating that the preconditioner solve function psolve failed unrecoverably;
SPGMR_GS_FAIL, indicating a failure in the Gram-Schmidt procedure; or SPGMR_QRSOL_FAIL, indicating
that the matrix R was found to be singular during the QR solve phase.

If the ARKSPBCG solve function failed (ARKode() returned ARK_LSOLVE_FAIL), then lsflag contains the
error return flag from SpbcgSolve and will be one of: SPBCG_MEM_NULL, indicating that the SPBCG mem-
ory is NULL; SPBCG_ATIMES_FAIL_UNREC, indicating an unrecoverable failure in the J ∗ v function; or
SPBCG_PSOLVE_FAIL_UNREC, indicating that the preconditioner solve function psolve failed unrecoverably.

If the ARKSPTFQMR solve function failed (ARKode() returned ARK_LSOLVE_FAIL), then lsflag contains
the error return flag from SptfqmrSolve and will be one of: SPTFQMR_MEM_NULL, indicating that the SPT-
FQMR memory is NULL; SPTFQMR_ATIMES_FAIL_UNREC, indicating an unrecoverable failure in the J ∗ v
function; or SPTFQMR_PSOLVE_FAIL_UNREC, indicating that the preconditioner solve function psolve failed
unrecoverably.

If the ARKSPFGMR solve function failed (ARKode() returned ARK_LSOLVE_FAIL), then lsflag contains the
error return flag from SpfgmrSolve and will be one of: SPFGMR_MEM_NULL, indicating that the SPFGMR
memory is NULL; SPFGMR_ATIMES_FAIL_UNREC, indicating an unrecoverable failure in the J ∗ v function;

4.5. User-callable functions 97

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

SPFGMR_PSOLVE_FAIL_UNREC, indicating that the preconditioner solve function psolve failed unrecover-
ably; SPFGMR_GS_FAIL, indicating a failure in the Gram-Schmidt procedure; or SPFGMR_QRSOL_FAIL,
indicating that the matrix R was found to be singular during the QR solve phase.

If the ARKPCG solve function failed (ARKode() returned ARK_LSOLVE_FAIL), then lsflag contains the
error return flag from PcgSolve and will be one of: PCG_MEM_NULL, indicating that the PCG mem-
ory is NULL; PCG_ATIMES_FAIL_UNREC, indicating an unrecoverable failure in the J ∗ v function; or
PCG_PSOLVE_FAIL_UNREC, indicating that the preconditioner solve function psolve failed unrecoverably.

char *ARKSpilsGetReturnFlagName(long int lsflag)
Returns the name of the ARKSPILS constant corresponding to lsflag.

Arguments:

• lsflag – a return flag from an ARKSPILS function.

Return value: The return value is a string containing the name of the corresponding constant.

int ARKSpilsGetMassWorkSpace(void* arkode_mem, long int* lenrwMLS, long int* leniwMLS)
Returns the global sizes of the ARKSPILS real and integer workspaces.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• lenrwMLS – the number of realtype values in the ARKSPILS workspace.

• leniwMLS – the number of integer values in the ARKSPILS workspace.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL

Notes: In terms of the problem size n and maximum Krylov subspace size m, the actual size of the real
workspace is roughly: (m+ 5)n+m(m+ 4) + 1 realtype words for ARKSPGMR, 9n realtype words
for ARKSPBCG, 11n realtype words for ARKSPTFQMR, (2m+ 4)n+m(m+ 4) + 1 realtype words
for ARKSPFGMR, and 4n+ 1 realtype words for ARKPCG.

In a parallel setting, the above values are global, summed over all processors.

int ARKSpilsGetNumMassPrecEvals(void* arkode_mem, long int* nmpevals)
Returns the total number of mass matrix preconditioner evaluations, i.e. the number of calls made to psetup.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nmpevals – the current number of calls to psetup.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumMassPrecSolves(void* arkode_mem, long int* nmpsolves)
Returns the number of calls made to the mass matrix preconditioner solve function, psolve.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

98 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• nmpsolves – the number of calls to psolve.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumMassIters(void* arkode_mem, long int* nmiters)
Returns the cumulative number of mass matrix solver iterations.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nmiters – the current number of mass matrix solver linear iterations.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumMassConvFails(void* arkode_mem, long int* nmcfails)
Returns the cumulative number of mass matrix solver convergence failures.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nmcfails – the current number of mass matrix solver convergence failures.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetNumMtimesEvals(void* arkode_mem, long int* nmvevals)
Returns the cumulative number of calls made to the mass-matrix-vector product function, mtimes.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nmvevals – the current number of calls to mtimes.

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL

int ARKSpilsGetLastMassFlag(void* arkode_mem, long int* msflag)
Returns the last return value from an ARKSPILS mass matrix solver routine.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• msflag – the value of the last return flag from an ARKSPILS mass matrix solver function.

4.5. User-callable functions 99

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Return value:

• ARKSPILS_SUCCESS if successful

• ARKSPILS_MEM_NULL if the ARKode memory was NULL

• ARKSPILS_LMEM_NULL if the linear solver memory was NULL

Notes: The values of msflag for each of the various solvers will match those described above for the function
ARKSpilsGetLastFlag().

4.5.10 ARKode reinitialization function

The function ARKodeReInit() reinitializes the main ARKode solver for the solution of a problem, where a
prior call to ARKodeInit() has been made. The new problem must have the same size as the previous one.
ARKodeReInit() performs the same input checking and initializations that ARKodeInit() does, but does no
memory allocation as it assumes that the existing internal memory is sufficient for the new problem. A call to
ARKodeReInit() deletes the solution history that was stored internally during the previous integration.

The use of ARKodeReInit() requires that the number of Runge Kutta stages, denoted by s, be no larger for the
new problem than for the previous problem. This condition is automatically fulfilled if the method order q and the
problem type (explicit, implicit, ImEx) are left unchanged. If there are changes to the linear solver specifications, the
user should make the appropriate ARK*Set* calls, as described in the section Linear solver specification functions.

int ARKodeReInit(void* arkode_mem, ARKRhsFn fe, ARKRhsFn fi, realtype t0, N_Vector y0)
Provides required problem specifications and reinitializes ARKode.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• fe – the name of the C function (of type ARKRhsFn()) defining the explicit portion of the right-hand
side function in ẏ = fE(t, y) + fI(t, y).

• fi – the name of the C function (of type ARKRhsFn()) defining the implicit portion of the right-hand
side function in ẏ = fE(t, y) + fI(t, y).

• t0 – the initial value of t.

• y0 – the initial condition vector y(t0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

• ARK_MEM_FAIL if a memory allocation failed

• ARK_ILL_INPUT if an argument has an illegal value.

Notes: If an error occurred, ARKodeReInit() also sends an error message to the error handler function.

4.5.11 ARKode system resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatially-adaptive PDE simulations under a method-of-lines approach), the ARKode integrator may be “resized” be-
tween integration steps, through calls to the ARKodeResize() function. This function modifies ARKode’s internal
memory structures to use the new problem size, without destruction of the temporal adaptivity heuristics. It is assumed
that the dynamical time scales before and after the vector resize will be comparable, so that all time-stepping heuristics
prior to calling ARKodeResize() remain valid after the call. If instead the dynamics should be recomputed from

100 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

scratch, the ARKode memory structure should be deleted with a call to ARKodeFree(), and recreated with calls to
ARKodeCreate() and ARKodeInit().

To aid in the vector resize operation, the user can supply a vector resize function that will take as input a vector with
the previous size, and transform it in-place to return a corresponding vector of the new size. If this function (of type
ARKVecResizeFn()) is not supplied (i.e. is set to NULL), then all existing vectors internal to ARKode will be
destroyed and re-cloned from the new input vector.

In the case that the dynamical time scale should be modified slightly from the previous time scale, an input hscale is
allowed, that will rescale the upcoming time step by the specified factor. If a value hscale ≤ 0 is specified, the default
of 1.0 will be used.

int ARKodeResize(void* arkode_mem, N_Vector ynew, realtype hscale, realtype t0, ARKVecResizeFn resize,
void* resize_data)

Re-initializes ARKode with a different state vector but with comparable dynamical time scale.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• ynew – the newly-sized solution vector, holding the current dependent variable values y(t0).

• hscale – the desired scaling factor for the dynamical time scale (i.e. the next step will be of size
h*hscale).

• t0 – the current value of the independent variable t0 (this must be consistent with ynew.

• resize – the user-supplied vector resize function (of type ARKVecResizeFn().

• resize_data – the user-supplied data structure to be passed to resize when modifying internal ARKode
vectors.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKode memory was NULL

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if an argument has an illegal value.

Notes: If an error occurred, ARKodeResize() also sends an error message to the error handler function.

Resizing the linear solver

When using any of the built-in linear solver modules, the linear solver memory structures must also be resized. At
present, none of these include a solver-specific ‘resize’ function, so the linear solver memory must be destroyed and
re-allocated following each call to ARKodeResize(). For each of the built-in ARKDLS, ARKSLS and ARKSPILS
linear solvers, the specification call itself (e.g. ARKDense() or ARKSpgmr()) will internally destroy the solver-
specific memory prior to re-allocation.

If any user-supplied routines are provided to aid the linear solver (e.g. Jacobian construction, Jacobian-vector product,
mass-matrix-vector product, preconditioning), then the corresponding “set” routines must be called again following
the solver re-specification.

Resizing the absolute tolerance array

If using array-valued absolute tolerances, the absolute tolerance vector will be invalid after the call to
ARKodeResize(), so the new absolute tolerance vector should be re-set following each call to ARKodeResize()
through a new call to ARKodeSVtolerances().

4.5. User-callable functions 101

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

If scalar-valued tolerances or a tolerance function was specified through either ARKodeSStolerances() or
ARKodeWFtolerances(), then these will remain valid. and no further action is necessary.

Note: For an example of ARKodeResize() usage, see the supplied serial C example problem,
ark_heat1D_adapt.c.

4.6 User-supplied functions

The user-supplied functions for ARKode consist of:

• at least one function defining the ODE (required),

• a function that handles error and warning messages (optional),

• a function that provides the error weight vector (optional),

• a function that provides the residual weight vector (optional),

• a function that handles adaptive time step error control (optional),

• a function that handles explicit time step stability (optional),

• a function that defines the root-finding problem(s) to solve (optional),

• a function that provides Jacobian-related information for the linear solver, if a Newton-based nonlinear iteration
is chosen (optional),

• one or two functions that define the preconditioner for use in any of the Krylov iterative algorithms, if a Newton-
based nonlinear iteration and iterative linear solver are chosen (optional), and

• if the problem involves a non-identity mass matrix M 6= I:

– a function that provides mass-matrix-related information for the linear and mass matrix solvers (required),

– one or two functions that define the mass matrix preconditioner for use in an iterative mass matrix solver
is chosen (optional), and

• a function that handles vector resizing operations, if the underlying vector structure supports resizing (as opposed
to deletion/recreation), and if the user plans to call ARKodeResize() (optional).

4.6.1 ODE right-hand side

The user must supply at least one function of type ARKRhsFn() to specify the explicit and/or implicit portions of the
ODE system:

typedef int (*ARKRhsFn)(realtype t, N_Vector y, N_Vector ydot, void* user_data)
These functions compute the ODE right-hand side for a given value of the independent variable t and state
vector y.

Arguments:

• t – the current value of the independent variable.

• y – the current value of teh dependent variable vector, y(t).

• ydot – the output vector that forms a portion of the ODE RHS fE(t, y) + fI(t, y).

• user_data – the user_data pointer that was passed to ARKodeSetUserData().

102 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Return value: An ARKRhsFn should return 0 if successful, a positive value if a recoverable error occurred (in
which case ARKode will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and ARK_RHSFUNC_FAIL is returned).

Notes: Allocation of memory for ydot is handled within ARKode. A recoverable failure error return from the
ARKRhsFn is typically used to flag a value of the dependent variable y that is “illegal” in some way (e.g., nega-
tive where only a nonnegative value is physically meaningful). If such a return is made, ARKode will attempt to
recover (possibly repeating the nonlinear iteration, or reducing the step size) in order to avoid this recoverable er-
ror return. There are some situations in which recovery is not possible even if the right-hand side function returns
a recoverable error flag. One is when this occurs at the very first call to the ARKRhsFn (in which case ARKode
returns ARK_FIRST_RHSFUNC_ERR). Another is when a recoverable error is reported by ARKRhsFn after the
integrator completes a successful stage, in which case ARKode returns ARK_UNREC_RHSFUNC_ERR).

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to by errfp (see
ARKodeSetErrFile()), the user may provide a function of type ARKErrHandlerFn() to process any such
messages.

typedef void (*ARKErrHandlerFn)(int error_code, const char* module, const char* function, char* msg,
void* user_data)

This function processes error and warning messages from ARKode and is sub-modules.

Arguments:

• error_code – the error code.

• module – the name of the ARKode module reporting the error.

• function – the name of the function in which the error occurred.

• msg – the error message.

• user_data – a pointer to user data, the same as the eh_data parameter that was passed to
ARKodeSetErrHandlerFn().

Return value: An ARKErrHandlerFn function has no return value.

Notes: error_code is negative for errors and positive (ARK_WARNING) for warnings. If a function that returns
a pointer to memory encounters an error, it sets error_code to 0.

4.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of
type ARKEwtFn() to compute a vector ewt containing the weights in the WRMS norm ‖v‖WRMS =(

1
n

∑n
i=1 (ewti vi)

2
)1/2

. These weights will be used in place of those defined in the section Choice of norm.

typedef int (*ARKEwtFn)(N_Vector y, N_Vector ewt, void* user_data)
This function computes the WRMS error weights for the vector y.

Arguments:

• y – the dependent variable vector at which the weight vector is to be computed.

• ewt – the output vector containing the error weights.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData().

4.6. User-supplied functions 103

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Return value: An ARKEwtFn function must return 0 if it successfully set the error weights, and -1 otherwise.

Notes: Allocation of memory for ewt is handled within ARKode.

The error weight vector must have all components positive. It is the user’s responsibility to perform this test and
return -1 if it is not satisfied.

4.6.4 Residual weight function

As an alternative to providing the scalar or vector absolute residual tolerances (when the IVP units differ from the
solution units), the user may provide a function of type ARKRwtFn() to compute a vector rwt containing the weights

in the WRMS norm ‖v‖WRMS =
(

1
n

∑n
i=1 (rwti vi)

2
)1/2

. These weights will be used in place of those defined in
the section Choice of norm.

typedef int (*ARKRwtFn)(N_Vector y, N_Vector rwt, void* user_data)
This function computes the WRMS residual weights for the vector y.

Arguments:

• y – the dependent variable vector at which the weight vector is to be computed.

• rwt – the output vector containing the residual weights.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData().

Return value: An ARKRwtFn function must return 0 if it successfully set the residual weights, and -1 otherwise.

Notes: Allocation of memory for rwt is handled within ARKode.

The residual weight vector must have all components positive. It is the user’s responsibility to perform this test
and return -1 if it is not satisfied.

4.6.5 Time step adaptivity function

As an alternative to using one of the built-in time step adaptivity methods for controlling solution error, the user may
provide a function of type ARKAdaptFn() to compute a target step size h for the next integration step. These steps
should be chosen as the maximum value such that the error estimates remain below 1.

typedef int (*ARKAdaptFn)(N_Vector y, realtype t, realtype h1, realtype h2, realtype h3, realtype e1, real-
type e2, realtype e3, int q, int p, realtype* hnew, void* user_data)

This function implements a time step adaptivity algorithm that chooses h satisfying the error tolerances.

Arguments:

• y – the current value of the dependent variable vector, y(t).

• t – the current value of the independent variable.

• h1 – the current step size, tm − tm−1.

• h2 – the previous step size, tm−1 − tm−2.

• h3 – the step size tm−2 − tm−3.

• e1 – the error estimate from the current step, m.

• e2 – the error estimate from the previous step, m− 1.

• e3 – the error estimate from the step m− 2.

• q – the global order of accuracy for the integration method.

104 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• p – the global order of accuracy for the embedding.

• hnew – the output value of the next step size.

• user_data – a pointer to user data, the same as the h_data parameter that was passed to
ARKodeSetAdaptivityFn().

Return value: An ARKAdaptFn function should return 0 if it successfuly set the next step size, and a non-zero
value otherwise.

4.6.6 Explicit stability function

A user may supply a function to predict the maximum stable step size for the explicit portion of the ImEx system,
fE(t, y). While the accuracy-based time step adaptivity algorithms may be sufficient for retaining a stable solution
to the ODE system, these may be inefficient if fE(t, y) contains moderately stiff terms. In this scenario, a user may
provide a function of type ARKExpStabFn() to provide this stability information to ARKode. This function must
set the scalar step size satisfying the stability restriction for the upcoming time step. This value will subsequently be
bounded by the user-supplied values for the minimum and maximum allowed time step, and the accuracy-based time
step.

typedef int (*ARKExpStabFn)(N_Vector y, realtype t, realtype* hstab, void* user_data)
This function predicts the maximum stable step size for the explicit portions of the ImEx ODE system.

Arguments:

• y – the current value of the dependent variable vector, y(t).

• t – the current value of the independent variable

• hstab – the output value with the absolute value of the maximum stable step size.

• user_data – a pointer to user data, the same as the estab_data parameter that was passed to
ARKodeSetStabilityFn().

Return value: An ARKExpStabFn function should return 0 if it successfully set the upcoming stable step size,
and a non-zero value otherwise.

Notes: If this function is not supplied, or if it returns hstab ≤ 0.0, then ARKode will assume that there is no
explicit stability restriction on the time step size.

4.6.7 Rootfinding function

If a rootfinding problem is to be solved during the integration of the ODE system, the user must supply a function of
type ARKRootFn().

typedef int (*ARKRootFn)(realtype t, N_Vector y, realtype* gout, void* user_data)
This function implements a vector-valued function g(t, y) such that the roots of the nrtfn components gi(t, y)
are sought.

Arguments:

• t – the current value of the independent variable

• y – the current value of the dependent variable vector, y(t).

• gout – the output array, of length nrtfn, with components gi(t, y).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData().

4.6. User-supplied functions 105

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Return value: An ARKRootFn function should return 0 if successful or a non-zero value if an error occurred
(in which case the integration is halted and ARKode returns ARK_RTFUNC_FAIL).

Notes: Allocation of memory for gout is handled within ARKode.

4.6.8 Jacobian information (direct method with dense Jacobian)

If the direct linear solver with dense treatment of the Jacobian is used (i.e., ARKDense() or ARKLapackDense()
is called in Step 8 of the section A skeleton of the user’s main program), the user may provide a function of type
ARKDlsDenseJacFn() to provide the Jacobian approximation.

typedef int (*ARKDlsDenseJacFn)(long int N, realtype t, N_Vector y, N_Vector fy, DlsMat Jac,
void* user_data, N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)

This function computes the dense Jacobian J = ∂fI

∂y (or an approximation to it).

Arguments:

• N – the size of the ODE system.

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector, namely the predicted value of y(t).

• fy – the current value of the vector fI(t, y).

• Jac – the output dense Jacobian matrix (of type DlsMat).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData().

• tmp1, tmp2, tmp3 – pointers to memory allocated to variables of type N_Vector which can be used
by an ARKDlsDenseJacFn as temporary storage or work space.

Return value: An ARKDlsDenseJacFn function should return 0 if successful, a positive value if a
recoverable error occurred (in which case ARKode will attempt to correct, while ARKDENSE sets
last_flag to ARKDLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, ARKode() returns ARK_LSETUP_FAIL and ARKDENSE sets last_flag to
ARKDLS_JACFUNC_UNRECVR).

Notes: A user-supplied dense Jacobian function must load the N by N dense matrix Jac with an approximation
to the Jacobian matrix J(t, y) at the point (t, y). Only nonzero elements need to be loaded into Jac because Jac
is set to the zero matrix before the call to the Jacobian function. The type of Jac is DlsMat.

The accessor macros DENSE_ELEM and DENSE_COL allow the user to read and write dense ma-
trix elements without making explicit references to the underlying representation of the DlsMat type.
DENSE_ELEM(J,i,j) references the (i,j)-th element of the dense matrix J (for i, j between 0 and
N-1). This macro is meant for small problems for which efficiency of access is not a major concern. Thus, in
terms of the indices m and n ranging from 1 to N, the Jacobian element Jm,n can be set using the statement
DENSE_ELEM(J, m-1, n-1) = Jm,n. Alternatively, DENSE_COL(J,j) returns a pointer to the first el-
ement of the j-th column of J (for j ranging from 0 to N-1), and the elements of the j-th column can then
be accessed using ordinary array indexing. Consequently, Jm,n can be loaded using the statements col_n =
DENSE_COL(J, n-1); col_n[m-1]= Jm,n. For large problems, it is more efficient to use DENSE_COL
than to use DENSE_ELEM. Note that both of these macros number rows and columns starting from 0.

The DlsMat type and accessor macros DENSE_ELEM and DENSE_COL are documented in the section Linear
Solvers in ARKode.

If the user’s ARKDlsDenseJacFn function uses difference quotient approximations, then it may need to ac-
cess quantities not in the argument list. These include the current step size, the error weights, etc. To obtain
these, use the ARKodeGet* functions listed in Optional output functions. The unit roundoff can be accessed as
UNIT_ROUNDOFF, which is defined in the header file sundials_types.h.

106 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

For the sake of uniformity, the argument N is of type long int, even in the case that the LAPACK dense
solver is to be used.

4.6.9 Jacobian information (direct method with banded Jacobian)

If the direct linear solver with banded treatment of the Jacobian is used (i.e. ARKBand() or ARKLapackBand()
is called in Step 8 of the section A skeleton of the user’s main program), the user may provide a function of type
ARKDlsBandJacFn() to provide the Jacobian approximation.

typedef int (*ARKDlsBandJacFn)(long int N, long int mupper, long int mlower, realtype t,
N_Vector y, N_Vector fy, DlsMat Jac, void* user_data, N_Vector tmp1,
N_Vector tmp2, N_Vector tmp3)

This function computes the banded Jacobian J = ∂fI

∂y (or an approximation to it).

Arguments:

• N – the size of the ODE system.

• mlower, mupper – the lower and upper half-bandwidths of the Jacobian.

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector, namely the predicted value of y(t).

• fy – the current value of the vector fI(t, y).

• Jac – the output dense Jacobian matrix (of type DlsMat).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData().

• tmp1, tmp2, tmp3 – pointers to memory allocated to variables of type N_Vector which can be used
by an ARKDlsBandJacFn as temporary storage or work space.

Return value: An ARKDlsBandJacFn function should return 0 if successful, a positive value if a
recoverable error occurred (in which case ARKode will attempt to correct, while ARKBAND sets
last_flag to ARKDLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, ARKode() returns ARK_LSETUP_FAIL and ARKBAND sets last_flag to
ARKDLS_JACFUNC_UNRECVR).

Notes: A user-supplied banded Jacobian function must load the band matrix Jac of type DlsMat with the
elements of the Jacobian J(t, y) at the point (t, y). Only nonzero elements need to be loaded into Jac because
Jac is initialized to the zero matrix before the call to the Jacobian function.

The accessor macros BAND_ELEM, BAND_COL, and BAND_COL_ELEM allow the user to read and write band
matrix elements without making specific references to the underlying representation of the DlsMat type.
BAND_ELEM(J, i, j) references the (i,j)-th element of the band matrix J, counting from 0. This
macro is meant for use in small problems for which efficiency of access is not a major concern. Thus, in
terms of the indices m and n ranging from 1 to N with (m,n) within the band defined by mupper and mlower,
the Jacobian element Jm,n can be loaded using the statement BAND_ELEM(J, m-1, n-1) = Jm,n. The
elements within the band are those with -mupper ≤ m − n ≤ mlower. Alternatively, BAND_COL(J, j)
returns a pointer to the diagonal element of the j-th column of J, and if we assign this address to realtype
*col_j, then the i-th element of the j-th column is given by BAND_COL_ELEM(col_j, i, j), counting
from 0. Thus, for (m,n) within the band, Jm,n can be loaded by setting col_n = BAND_COL(J, n-1);
BAND_COL_ELEM(col_n, m-1, n-1) = Jm,n . The elements of the j-th column can also be accessed
via ordinary array indexing, but this approach requires knowledge of the underlying storage for a band matrix
of type DlsMat. The array col_n can be indexed from -mupper to mlower. For large problems, it is more
efficient to use BAND_COL and BAND_COL_ELEM than to use the BAND_ELEM macro. As in the dense case,
these macros all number rows and columns starting from 0.

4.6. User-supplied functions 107

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

The DlsMat type and the accessor macros BAND_ELEM, BAND_COL and BAND_COL_ELEM are documented
in the section Linear Solvers in ARKode.

If the user’s ARKDlsBandJacFn function uses difference quotient approximations, then it may need to access
quantities not in the argument list. These include the current step size, the error weights, etc.. To obtain
these, use the ARKodeGet* functions listed in Optional output functions. The unit roundoff can be accessed as
UNIT_ROUNDOFF defined in the header file sundials_types.h.

For the sake of uniformity, the arguments N, mlower, and mupper are of type long int, even in the case that
the LAPACK band solver is to be used.

4.6.10 Jacobian information (direct method with sparse Jacobian)

If the direct linear solver with sparse treatment of the Jacobian is used (i.e., ARKKLU() or ARKSuperLUMT()
is called in Step 8 of the section A skeleton of the user’s main program), the user must provide a function of type
ARKSlsSparseJacFn() to provide the Jacobian approximation.

typedef int (*ARKSlsSparseJacFn)(realtype t, N_Vector y, N_Vector fy, SlsMat Jac, void* user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)

This function computes the sparse Jacobian J = ∂fI

∂y (or an approximation to it).

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector, namely the predicted value of y(t).

• fy – the current value of the vector fI(t, y).

• Jac – the output sparse Jacobian matrix (of type SlsMat).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData().

• tmp1, tmp2, tmp3 – pointers to memory allocated to variables of type N_Vector which can be used
by an ARKDlsDenseJacFn as temporary storage or work space.

Return value: An ARKSlsSparseJacFn function should return 0 if successful, a positive value if a recoverable
error occurred (in which case ARKode will attempt to correct, while ARKKLU or ARKSUPERLUMT sets
last_flag to ARKSLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case the inte-
gration is halted, ARKode() returns ARK_LSETUP_FAIL and ARKKLU or ARKSUPERLUMT sets last_flag
to ARKSLS_JACFUNC_UNRECVR).

Notes: A user-supplied sparse Jacobian function must load the compressed-sparse-column matrix Jac with an
approximation to the Jacobian matrix J(t, y) at the point (t, y). Storage for Jac already exists on entry to this
function, although the user should ensure that sufficient space is allocated in Jac to hold the nonzero values to
be set; if the existing space is insufficient the user may reallocate the data and row index arrays as needed. The
type of Jac is SlsMat, and the amount of allocated space is available within the SlsMat structure as NNZ.
The SlsMat type is further documented in the section Linear Solvers in ARKode.

If the user’s ARKSlsSparseJacFn function uses difference quotient approximations to set the specific matrix
entries, then it may need to access quantities not in the argument list. These include the current step size, the
error weights, etc. To obtain these, use the ARKodeGet* functions listed in Optional output functions. The unit
roundoff can be accessed as UNIT_ROUNDOFF, which is defined in the header file sundials_types.h.

4.6.11 Jacobian information (matrix-vector product)

If one of the Krylov iterative linear solvers SPGMR, SPBCG, SPTFQMR, SPFGMR or PCG is selected (i.e. ARKSp*
is called in step 8 of the section A skeleton of the user’s main program), the user may provide a function of type

108 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

ARKSpilsJacTimesVecFn() in the following form, to compute matrix-vector products J ∗ v. If such a function
is not supplied, the default is a difference quotient approximation to these products.

typedef int (*ARKSpilsJacTimesVecFn)(N_Vector v, N_Vector Jv, realtype t, N_Vector y, N_Vector fy,
void* user_data, N_Vector tmp)

This function computes the product Jv =
(
∂fI

∂y

)
v (or an approximation to it).

Arguments:

• v – the vector to multiply.

• Jv – the output vector computed.

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• fy – the current value of the vector fI(t, y).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData().

• tmp – pointer to memory allocated to a variable of type N_Vector which can be used as temporary
storage or work space.

Return value: The value to be returned by the Jacobian-vector product function should be 0 if successful. Any
other return value will result in an unrecoverable error of the SPILS generic solver, in which case the integration
is halted.

Notes: If the user’s ARKSpilsJacTimesVecFn function uses difference quotient approximations, it may need to
access quantities not in the argument list. These include the current step size, the error weights, etc.. To obtain
these, use the ARKodeGet* functions listed in Optional output functions. The unit roundoff can be accessed as
UNIT_ROUNDOFF defined in the header file sundials_types.h.

4.6.12 Preconditioning (linear system solution)

If one of the Krylov iterative linear solvers SPGMR, SPBCG, SPTFQMR, SPFGMR or PCG is selected, and precondi-
tioning is used, then the user must provide a function of type ARKSpilsPrecSolveFn() to solve the linear system
Pz = r, where P may be either a left or right preconditioning matrix. Here P should approximate (at least crudely)
the Newton matrix A = M − γJ , where M is the mass matrix (typically M = I unless working in a finite-element
setting) and J = ∂fI

∂y If preconditioning is done on both sides, the product of the two preconditioner matrices should
approximate A.

typedef int (*ARKSpilsPrecSolveFn)(realtype t, N_Vector y, N_Vector fy, N_Vector r, N_Vector z,
realtype gamma, realtype delta, int lr, void* user_data,
N_Vector tmp)

This function solves the preconditioner system Pz = r.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• fy – the current value of the vector fI(t, y).

• r – the right-hand side vector of the linear system.

• z – the computed output solution vector.

• gamma – the scalar γ appearing in the Newton matrix given by A = M − γJ .

4.6. User-supplied functions 109

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• delta – an input tolerance to be used if an iterative method is employed in the solution. In that case,
the resdual vector Res = r − Pz of the system should be made to be less than delta in the weighted

l2 norm, i.e.
(∑n

i=1 (Resi ∗ ewti)2
)1/2

< δ, where δ = delta. To obtain the N_Vector ewt, call
ARKodeGetErrWeights().

• lr – an input flag indicating whether the preconditioner solve is to use the left preconditioner (lr = 1)
or the right preconditioner (lr = 2).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData().

• tmp – pointer to memory allocated to a variable of type N_Vector which can be used as temporary
storage or work space.

Return value: The value to be returned by the preconditioner solve function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case the step will be
retried), or negative for an unrecoverable error (in which case the integration is halted).

4.6.13 Preconditioning (Jacobian data)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then these actions
need to occur within a user-supplied function of type ARKSpilsPrecSetupFn().

typedef int (*ARKSpilsPrecSetupFn)(realtype t, N_Vector y, N_Vector fy, booleantype jok, boolean-
type* jcurPtr, realtype gamma, void* user_data, N_Vector tmp1,
N_Vector tmp2, N_Vector tmp3)

This function preprocesses and/or evaluates Jacobian-related data needed by the preconditioner.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• fy – the current value of the vector fI(t, y).

• jok – is an input flag indicating whether the Jacobian-related data needs to be updated. The jok
argument provides for the reuse of Jacobian data in the preconditioner solve function. When jok =
FALSE, the Jacobian-related data should be recomputed from scratch. When jok = TRUE the Jacobian
data, if saved from the previous call to this function, can be reused (with the current value of gamma).
A call with jok = TRUE can only occur after a call with jok = FALSE.

• jcurPtr – is a pointer to a flag which should be set to TRUE if Jacobian data was recomputed, or set to
FALSE if Jacobian data was not recomputed, but saved data was still reused.

• gamma – the scalar γ appearing in the Newton matrix given by A = M − γJ .

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData().

• tmp1, tmp2, tmp3 – pointers to memory allocated to variables of type N_Vector which can be used
as temporary storage or work space.

Return value: The value to be returned by the preconditioner setup function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case the step will be
retried), or negative for an unrecoverable error (in which case the integration is halted).

Notes: The operations performed by this function might include forming a crude approximate Jacobian, and
performing an LU factorization of the resulting approximation to A = M − γJ .

110 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Each call to the preconditioner setup function is preceded by a call to the implicit ARKRhsFn() user function
with the same (t, y) arguments. Thus, the preconditioner setup function can use any auxiliary data that is
computed and saved during the evaluation of the ODE right-hand side.

This function is not called in advance of every call to the preconditioner solve function, but rather is called only
as often as needed to achieve convergence in the Newton iteration.

If the user’s ARKSpilsPrecSetupFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These include the current step size, the error weights, etc. To obtain these,
use the ARKodeGet* functions listed in Optional output functions. The unit roundoff can be accessed as
UNIT_ROUNDOFF defined in the header file sundials_types.h.

4.6.14 Mass matrix information (direct method with dense mass matrix)

If the direct linear solver with dense treatment of the mass matrix is used (i.e., ARKMassDense() or
ARKMassLapackDense() is called in Step 10 of the section A skeleton of the user’s main program), the user
may provide a function of type ARKDlsDenseMassFn() to provide the mass matrix approximation.

typedef int (*ARKDlsDenseMassFn)(long int N, realtype t, N_Vector y, DlsMat M, void* user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)

This function computes the mass matrix M (or an approximation to it).

Arguments:

• N – the size of the ODE system.

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• M – the output dense mass matrix (of type DlsMat).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData().

• tmp1, tmp2, tmp3 – pointers to memory allocated to variables of type N_Vector which can be used
by an ARKDlsDenseMassFn as temporary storage or work space.

Return value: An ARKDlsDenseMassFn function should return 0 if successful, or a negative value if it failed
unrecoverably (in which case the integration is halted, ARKode() returns ARK_MASSSETUP_FAIL and ARK-
DENSE sets last_flag to ARKDLS_MASSFUNC_UNRECVR).

Notes: A user-supplied dense mass matrix function must load the N by N dense matrix M with an approximation
to the mass matrix M(t). Only nonzero elements need to be loaded into M because it is initialized to the zero
matrix before the call to the mass matrix function. The type of M is DlsMat.

As discussed above in section Jacobian information (direct method with dense Jacobian), the accessor macros
DENSE_ELEM and DENSE_COL allow the user to read and write dense matrix elements without making explicit
references to the underlying representation of the DlsMat type. Similarly, the DlsMat type and accessor
macros DENSE_ELEM and DENSE_COL are documented in the section Linear Solvers in ARKode.

For the sake of uniformity, the argument N is of type long int, even in the case that the LAPACK dense
solver is to be used.

4.6.15 Mass matrix information (direct method with banded mass matrix)

If the direct linear solver with banded treatment of the mass matrix is used (i.e. ARKMassBand() or
ARKMassLapackBand() is called in Step 10 of the section A skeleton of the user’s main program), the user may
provide a function of type ARKDlsBandMassFn() to provide the mass matrix approximation.

4.6. User-supplied functions 111

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

typedef int (*ARKDlsBandMassFn)(long int N, long int mupper, long int mlower, realtype t, N_Vector y,
DlsMat M, void* user_data, N_Vector tmp1, N_Vector tmp2,
N_Vector tmp3)

This function computes the banded mass matrix M (or an approximation to it).

Arguments:

• N – the size of the ODE system.

• mlower, mupper – the lower and upper half-bandwidths of the mass matrix.

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector, namely the predicted value of y(t).

• M – the output dense mass matrix (of type DlsMat).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData().

• tmp1, tmp2, tmp3 – pointers to memory allocated to variables of type N_Vector which can be used
by an ARKDlsBandMassFn as temporary storage or work space.

Return value: An ARKDlsBandMassFn function should return 0 if successful, or a negative value if it failed
unrecoverably (in which case the integration is halted, ARKode() returns ARK_MASSSETUP_FAIL and ARK-
BAND sets last_flag to ARKDLS_MASSFUNC_UNRECVR).

Notes: A user-supplied banded mass matrix function must load the band matrix M of type DlsMat with the
elements of the mass matrix M(t). Only nonzero elements need to be loaded into M because it is initialized to
the zero matrix before the call to the mass matrix function.

As discussed above in section Jacobian information (direct method with banded Jacobian), the accessor macros
BAND_ELEM, BAND_COL, and BAND_COL_ELEM allow the user to read and write band matrix elements with-
out making specific references to the underlying representation of the DlsMat type. Similarly, the DlsMat
type and the accessor macros BAND_ELEM, BAND_COL and BAND_COL_ELEM are documented in the section
Linear Solvers in ARKode.

For the sake of uniformity, the arguments N, mlower, and mupper are of type long int, even in the case that
the LAPACK band solver is to be used.

4.6.16 Mass matrix information (direct method with sparse mass matrix)

If the direct linear solver with sparse treatment of the mass matrix is used (i.e., ARKMassKLU() or
ARKMassSuperLUMT() is called in Step 10 of the section A skeleton of the user’s main program), the user may
provide a function of type ARKSlsSparseMassFn() to provide the mass matrix approximation.

typedef int (*ARKSlsSparseMassFn)(realtype t, SlsMat M, void* user_data, N_Vector tmp1,
N_Vector tmp2, N_Vector tmp3)

This function computes the mass matrix M (or an approximation to it).

Arguments:

• t – the current value of the independent variable.

• M – the output sparse mass matrix (of type SlsMat).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData().

• tmp1, tmp2, tmp3 – pointers to memory allocated to variables of type N_Vector which can be used
by an ARKDlsDenseMassFn as temporary storage or work space.

112 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Return value: An ARKSlsSparseMassFn function should return 0 if successful, or a negative value if it
failed unrecoverably (in which case the integration is halted, ARKode() returns ARK_MASSSETUP_FAIL and
ARKKLU or ARKSUPERLUMT sets last_flag to ARKSLS_MASSFUNC_UNRECVR).

Notes: A user-supplied sparse mass matrix function must load the compressed-sparse-column matrix M with an
approximation to the mass matrixM(t). Storage for M already exists on entry to this function, although the user
should ensure that sufficient space is allocated in Jac to hold the nonzero values to be set; if the existing space
is insufficient the user may reallocate the data and row index arrays as needed. The type of Jac is SlsMat, and
the amount of allocated space is available within the SlsMat structure as NNZ. The SlsMat type is further
documented in the section Linear Solvers in ARKode.

4.6.17 Mass matrix information (matrix-vector product)

If one of the Krylov iterative linear solvers SPGMR, SPBCG, SPTFQMR, SPFGMR or PCG is selected (i.e. ARK-
MassSp* is called in step 10 of the section A skeleton of the user’s main program), the user may provide a function of
type ARKSpilsMassTimesVecFn() in the following form, to compute matrix-vector products M ∗ v.

typedef int (*ARKSpilsMassTimesVecFn)(N_Vector v, N_Vector Mv, realtype t, N_Vector y,
void* user_data, N_Vector tmp)

This function computes the product M ∗ v (or an approximation to it).

Arguments:

• v – the vector to multiply.

• Mv – the output vector computed.

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData().

• tmp – pointer to memory allocated to a variable of type N_Vector which can be used as temporary
storage or work space.

Return value: The value to be returned by the mass-matrix-vector product function should be 0 if successful.
Any other return value will result in an unrecoverable error of the SPILS generic solver, in which case the
integration is halted.

4.6.18 Mass matrix preconditioning (linear system solution)

If one of the Krylov iterative linear solvers SPGMR, SPBCG, SPTFQMR, SPFGMR or PCG is selected
for the mass matrix systems, and preconditioning is used, then the user must provide a function of type
ARKSpilsMassPrecSolveFn() to solve the linear system Pz = r, where P may be either a left or right precon-
ditioning matrix. Here P should approximate (at least crudely) the mass matrix M . If preconditioning is done on both
sides, the product of the two preconditioner matrices should approximate M .

typedef int (*ARKSpilsMassPrecSolveFn)(realtype t, N_Vector y, N_Vector r, N_Vector z, real-
type delta, int lr, void* user_data, N_Vector tmp)

This function solves the preconditioner system Pz = r.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• r – the right-hand side vector of the linear system.

4.6. User-supplied functions 113

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• z – the computed output solution vector.

• delta – an input tolerance to be used if an iterative method is employed in the solution. In that case,
the resdual vector Res = r − Pz of the system should be made to be less than delta in the weighted

l2 norm, i.e.
(∑n

i=1 (Resi ∗ ewti)2
)1/2

< δ, where δ = delta. To obtain the N_Vector ewt, call
ARKodeGetErrWeights().

• lr – an input flag indicating whether the preconditioner solve is to use the left preconditioner (lr = 1)
or the right preconditioner (lr = 2).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData().

• tmp – pointer to memory allocated to a variable of type N_Vector which can be used as temporary
storage or work space.

Return value: The value to be returned by the preconditioner solve function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case the step will be
retried), or negative for an unrecoverable error (in which case the integration is halted).

4.6.19 Mass matrix preconditioning (mass matrix data)

If the user’s mass matrix preconditioner requires that any problem data be preprocessed or evaluated, then these actions
need to occur within a user-supplied function of type ARKSpilsMassPrecSetupFn().

typedef int (*ARKSpilsMassPrecSetupFn)(realtype t, N_Vector y, void* user_data, N_Vector tmp1,
N_Vector tmp2, N_Vector tmp3)

This function preprocesses and/or evaluates mass-matrix-related data needed by the preconditioner.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKodeSetUserData().

• tmp1, tmp2, tmp3 – pointers to memory allocated to variables of type N_Vector which can be used
as temporary storage or work space.

Return value: The value to be returned by the mass matrix preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recoverable error (in which case
the step will be retried), or negative for an unrecoverable error (in which case the integration is halted).

Notes: The operations performed by this function might include forming a mass matrix and performing an
incomplete factorization of the result. Although such operations would typically be performed only once at the
beginning of a simulation, these may be required if the mass matrix can change as a function of time.

4.6.20 Vector resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatial adaptivity in a PDE simulation), the ARKode integrator may be “resized” between integration steps, through
calls to the ARKodeResize() function. Typically, when performing adaptive simulations the solution is stored in a
customized user-supplied data structure, to enable adaptivity without repeated allocation/deallocation of memory. In
these scenarios, it is recommended that the user supply a customized vector kernel to interface between SUNDIALS
and their problem-specific data structure. If this vector kernel includes a function to resize a given vector, then this

114 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

function may be supplied to ARKodeResize() so that all internal ARKode vectors may be resized, instead of
deleting and re-creating them at each call. This resize function should have the following form:

typedef int (*ARKVecResizeFn)(N_Vector y, N_Vector ytemplate, void* user_data)
This function resizes the vector y to match the dimensions of the supplied vector, ytemplate.

Arguments:

• y – the vector to resize.

• ytemplate – a vector of the desired size.

• user_data – a pointer to user data, the same as the resize_data parameter that was passed to
ARKodeResize().

Return value: An ARKVecResizeFn function should return 0 if it successfully resizes the vector y, and a non-
zero value otherwise.

Notes: If this function is not supplied, then ARKode will instead destroy the vector y and clone a new vector y
off of ytemplate.

4.7 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced through precon-
ditioning. For problems in which the user cannot define a more effective, problem-specific preconditioner, ARKode
provides two internal preconditioner modules: a banded preconditioner for serial problems (ARKBANDPRE) and a
band-block-diagonal preconditioner for parallel problems (ARKBBDPRE).

4.7.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner for use with any of the Krylov iterative linear solvers.
It requires that the problem be set up using either the NVECTOR_SERIAL, NVECTOR_OPENMP or NVEC-
TOR_PTHREADS module, due to data access patterns. It uses difference quotients of the ODE right-hand side
function fI to generate a band matrix of bandwidth ml + mu + 1, where the number of super-diagonals (mu, the
upper half-bandwidth) and sub-diagonals (ml, the lower half-bandwidth) are specified by the user. This band matrix is
used to to form a preconditioner the Krylov linear solver. Although this matrix is intended to approximate the Jacobian
J = ∂fI

∂y , it may be a very crude approximation, since the true Jacobian may not be banded, or its true bandwidth may
be larger than ml + mu + 1. However, as long as the banded approximation generated for the preconditioner is
sufficiently accurate, it may speed convergence of the Krylov iteration.

ARKBANDPRE usage

In order to use the ARKBANDPRE module, the user need not define any additional functions. In addition to the
header files required for the remainder of the ODE problem (see the section Access to library and header files), to use
the ARKBANDPRE module, the user’s program must include the header file arkode_bandpre.h which declares
the needed function prototypes. The following is a summary of the usage of this module. Steps that are unchanged
from the skeleton program presented in A skeleton of the user’s main program are italicized.

1. Set problem dimensions

2. Set vector of initial values

3. Create ARKode object

4. Initialize ARKode solver

5. Specify integration tolerances

4.7. Preconditioner modules 115

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

6. Set optional inputs

7. Attach iterative linear solver module, one of:

• ier = ARKSpgmr(...);

• ier = ARKSpbcg(...);

• ier = ARKSptfqmr(...);

• ier = ARKSpfgmr(...);

• ier = ARKPcg(...);

8. Initialize the ARKBANDPRE preconditioner module

Specify the upper and lower half-bandwidths (mu and ml, respectively) and call

ier = ARKBandPrecInit(arkode_mem, N, mu, ml);

to allocate memory and initialize the internal preconditioner data.

9. Set linear solver optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through calls to the
ARKSpilsSet* optional input functions.

10. Specify rootfinding problem

11. Advance solution in time

12. Get optional outputs

Additional optional outputs associated with ARKBANDPRE are available by way of the two routines described
below, ARKBandPrecGetWorkSpace() and ARKBandPrecGetNumRhsEvals().

13. Free solver memory

14. Deallocate memory for solution vector

We note that at present, the ARKBANDPRE preconditioner may not be used for problems involving a non-identity
mass matrix, M 6= I , although support for this is planned for the near future.

ARKBANDPRE user-callable functions

The ARKBANDPRE preconditioner module is initialized and attached by calling the following function:

int ARKBandPrecInit(void* arkode_mem, long int N, long int mu, long int ml)
Initializes the ARKBANDPRE preconditioner and allocates required (internal) memory for it.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• N – problem dimension (size of ODE system).

• mu – upper half-bandwidth of the Jacobian approximation.

• ml – lower half-bandwidth of the Jacobian approximation.

Return value:

• ARKSPILS_SUCCESS if no errors occurred

• ARKSPILS_MEM_NULL if the integrator memory is NULL

• ARKSPILS_LMEM_NULL if the linear solver memory is NULL

116 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ARKSPILS_ILL_INPUT if an input has an illegal value

• ARKSPILS_MEM_FAIL if a memory allocation request failed

Notes: The banded approximate Jacobian will have nonzero elements only in locations (i, j) with ml ≤ j− i ≤
mu.

The following two optional output functions are available for use with the ARKBANDPRE module:

int ARKBandPrecGetWorkSpace(void* arkode_mem, long int* lenrwLS, long int* leniwLS)
Returns the sizes of the ARKBANDPRE real and integer workspaces.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• lenrwLS – the number of realtype values in the ARKBANDPRE workspace.

• leniwLS – the number of integer values in the ARKBANDPRE workspace.

Return value:

• ARKSPILS_SUCCESS if no errors occurred

• ARKSPILS_MEM_NULL if the integrator memory is NULL

• ARKSPILS_LMEM_NULL if the linear solver memory is NULL

• ARKSPILS_PMEM_NULL if the preconditioner memory is NULL

Notes: In terms of the problem size N and smu = min(N − 1, mu+ml), the actual size of the real workspace
is (2 ml + mu + smu +2)N realtype words, and the actual size of the integer workspace is N integer words.

The workspaces referred to here exist in addition to those given by the corresponding function
ARKSpilsGetWorkspace().

int ARKBandPrecGetNumRhsEvals(void* arkode_mem, long int* nfevalsBP)
Returns the number of calls made to the user-supplied right-hand side function fI for constructing the finite-
difference banded Jacobian approximation used within the preconditioner setup function.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• nfevalsBP – number of calls to fI

Return value:

• ARKSPILS_SUCCESS if no errors occurred

• ARKSPILS_MEM_NULL if the integrator memory is NULL

• ARKSPILS_LMEM_NULL if the linear solver memory is NULL

• ARKSPILS_PMEM_NULL if the preconditioner memory is NULL

Notes: The counter nfevalsBP is distinct from the counter nfevalsLS returned by the corresponding function
ARKSpilsGetNumRhsEvals() and also from nfi_evals returned by ARKodeGetNumRhsEvals(). The
total number of right-hand side function evaluations is the sum of all three of these counters, plus the nfe_evals
counter for fE calls returned by ARKodeGetNumRhsEvals().

4.7.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver (such as ARKode) lies in the solution of partial differential equations
(PDEs). Moreover, Krylov iterative methods are used on many such problems due to the nature of the underlying linear
system of equations that needs to solved at each time step. For many PDEs, the linear algebraic system is large, sparse

4.7. Preconditioner modules 117

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

and structured. However, if a Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner
is required. Otherwise, the rate of convergence of the Krylov iterative method is usually slow, and degrades as the
PDE mesh is refined. Typically, an effective preconditioner must be problem-specific. However, we have developed
one type of preconditioner that treats a rather broad class of PDE-based problems. It has been successfully used with
CVODE for several realistic, large-scale problems [HT1998] and is included in a software module within the ARKode
package. This module works with the parallel vector module NVECTOR_PARALLEL and is usable with any of the
Krylov iterative linear solvers. It generates a preconditioner that is a block-diagonal matrix with each block being a
band matrix. The blocks need not have the same number of super- and sub-diagonals and these numbers may vary
from block to block. This Band-Block-Diagonal Preconditioner module is called ARKBBDPRE.

One way to envision these preconditioners is to think of the computational PDE domain as being subdivided into
Q non-overlapping subdomains, where each subdomain is assigned to one of the Q MPI tasks used to solve the
ODE system. The basic idea is to isolate the preconditioning so that it is local to each process, and also to use a
(possibly cheaper) approximate right-hand side function for construction of this preconditioning matrix. This requires
the definition of a new function g(t, y) ≈ fI(t, y) that will be used to construct the BBD preconditioner matrix. As
with the rest of ARKode, we assume here that the ODE system is written as

Mẏ = fE(t, y) + fI(t, y),

where fI corresponds to the ODE components to be treated implicitly. The user may set g = fI , if no less expensive
approximation is desired.

Corresponding to the domain decomposition, there is a decomposition of the solution vector y into Q disjoint blocks
yq , and a decomposition of g into blocks gq . The block gq depends both on yp and on components of blocks yq′
associated with neighboring subdomains (so-called ghost-cell data). If we let ȳq denote yq augmented with those other
components on which gq depends, then we have

g(t, y) = [g1(t, ȳ1), g2(t, ȳ2), . . . , gQ(t, ȳQ)]T ,

and each of the blocks gq(t, ȳq) is decoupled from one another.

The preconditioner associated with this decomposition has the form

P = diag[P1, P2, . . . , PQ]

where

Pq ≈M − γJq

and where Jq is a difference quotient approximation to ∂gq

∂ȳq
. This matrix is taken to be banded, with upper and lower

half-bandwidths mudq and mldq defined as the number of non-zero diagonals above and below the main diagonal,
respectively. The difference quotient approximation is computed using mudq + mldq + 2 evaluations of gm, but only
a matrix of bandwidth mukeep + mlkeep + 1 is retained. Neither pair of parameters need be the true half-bandwidths
of the Jacobian of the local block of g, if smaller values provide a more efficient preconditioner. The solution of the
complete linear system

Px = b

reduces to solving each of the distinct equations

Pqxq = bq, q = 1, . . . , Q,

and this is done by banded LU factorization of Pq followed by a banded backsolve.

Similar block-diagonal preconditioners could be considered with different treatments of the blocks Pq . For example,
incomplete LU factorization or an iterative method could be used instead of banded LU factorization.

118 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

ARKBBDPRE user-supplied functions

The ARKBBDPRE module calls two user-provided functions to construct P : a required function gloc (of type
ARKLocalFn()) which approximates the right-hand side function g(t, y) ≈ fI(t, y) and which is computed locally,
and an optional function cfn (of type ARKCommFn()) which performs all interprocess communication necessary to
evaluate the approximate right-hand side g. These are in addition to the user-supplied right-hand side function fI .
Both functions take as input the same pointer user_data that is passed by the user to ARKodeSetUserData() and
that was passed to the user’s function fI . The user is responsible for providing space (presumably within user_data)
for components of y that are communicated between processes by cfn, and that are then used by gloc, which should
not do any communication.

typedef int (*ARKLocalFn)(long int Nlocal, realtype t, N_Vector y, N_Vector glocal, void* user_data)
This gloc function computes g(t, y). It fills the vector glocal as a function of t and y.

Arguments:

• Nlocal – the local vector length

• t – the value of the independent variable

• y – the value of the dependent variable vector on this process

• glocal – the output vector of g(t, y) on this process

• user_data – a pointer to user data, the same as the user_data parameter passed to
ARKodeSetUserData().

Return value: An ARKLocalFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case ARKode will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and ARKode() will return ARK_LSETUP_FAIL).

Notes: This function should assume that all interprocess communication of data needed to calculate glocal has
already been done, and that this data is accessible within user data.

The case where g is mathematically identical to fI is allowed.

typedef int (*ARKCommFn)(long int Nlocal, realtype t, N_Vector y, void* user_data)
This cfn function performs all interprocess communication necessary for the executation of the gloc function
above, using the input vector y.

Arguments:

• Nlocal – the local vector length

• t – the value of the independent variable

• y – the value of the dependent variable vector on this process

• user_data – a pointer to user data, the same as the user_data parameter passed to
ARKodeSetUserData().

Return value: An ARKCommFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case ARKode will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and ARKode() will return ARK_LSETUP_FAIL).

Notes: The cfn function is expected to save communicated data in space defined within the data structure
user_data.

Each call to the cfn function is preceded by a call to the right-hand side function fI with the same (t, y) argu-
ments. Thus, cfn can omit any communication done by fI if relevant to the evaluation of glocal. If all necessary
communication was done in fI , then cfn = NULL can be passed in the call to ARKBBDPrecInit() (see
below).

4.7. Preconditioner modules 119

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

ARKBBDPRE usage

In addition to the header files required for the integration of the ODE problem (see the section Access to library and
header files), to use the ARKBBDPRE module, the user’s program must include the header file arkode_bbdpre.h
which declares the needed function prototypes.

The following is a summary of the proper usage of this module. Steps that are unchanged from the skeleton program
presented in A skeleton of the user’s main program are italicized.

1. Initialize MPI

2. Set problem dimensions

3. Set vector of initial values

4. Create ARKode object

5. Initialize ARKode solver

6. Specify integration tolerances

7. Set optional inputs

8. Attach iterative linear solver module, one of:

• ier = ARKSpgmr(...);

• ier = ARKSpbcg(...);

• ier = ARKSptfqmr(...);

• ier = ARKSpfgmr(...);

• ier = ARKPcg(...);

9. Initialize the ARKBBDPRE preconditioner module

Specify the upper and lower half-bandwidths for computation mudq and mldq, the upper and lower half-
bandwidths for storage mukeep and mlkeep, and call

ier = ARKBBDPrecInit(arkode_mem, Nlocal, mudq, mldq, mukeep, mlkeep,
dqrely, gloc, cfn);

to allocate memory and initialize the internal preconditioner data. The last two arguments of
ARKBBDPrecInit() are the two user-supplied functions of type ARKLocalFn() and ARKCommFn() de-
scribed above, respectivelyl.

10. Set the linear solver optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through calls to
ARKSPILS optional input functions.

11. Specify rootfinding problem

12. Advance solution in time

13. Get optional outputs

Additional optional outputs associated with ARKBBDPRE are available through the routines
ARKBBDPrecGetWorkSpace() and ARKBBDPrecGetNumGfnEvals().

14. Free solver memory

15. Deallocate memory for solution vector

16. Finalize MPI

120 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

We note that at present, the ARKBBDPRE preconditioner may not be used for problems involving a non-identity mass
matrix, M 6= I , although support for this is planned for the near future.

ARKBBDPRE user-callable functions

The ARKBBDPRE preconditioner module is initialized (or re-initialized) and attached to the integrator by calling the
following functions:

int ARKBBDPrecInit(void* arkode_mem, long int Nlocal, long int mudq, long int mldq, long int mukeep,
long int mlkeep, realtype dqrely, ARKLocalFn gloc, ARKCommFn cfn)

Initializes and allocates (internal) memory for the ARKBBDPRE preconditioner.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• Nlocal – local vector length.

• mudq – upper half-bandwidth to be used in the difference quotient Jacobian approximation.

• mldq – lower half-bandwidth to be used in the difference quotient Jacobian approximation.

• mukeep – upper half-bandwidth of the retained banded approximate Jacobian block.

• mlkeep – lower half-bandwidth of the retained banded approximate Jacobian block.

• dqrely – the relative increment in components of y used in the difference quotient approximations.
The default is dqrely =

√
unit roundoff, which can be specified by passing dqrely = 0.0.

• gloc – the name of the C function (of type ARKLocalFn()) which computes the approximation
g(t, y) ≈ fI(t, y).

• cfn – the name of the C function (of type ARKCommFn()) which performs all interprocess commu-
nication required for the computation of g(t, y).

Return value:

• ARKSPILS_SUCCESS if no errors occurred

• ARKSPILS_MEM_NULL if the integrator memory is NULL

• ARKSPILS_LMEM_NULL if the linear solver memory is NULL

• ARKSPILS_ILL_INPUT if an input has an illegal value

• ARKSPILS_MEM_FAIL if a memory allocation request failed

Notes: If one of the half-bandwidths mudq or mldq to be used in the difference quotient calculation of the
approximate Jacobian is negative or exceeds the value Nlocal-1, it is replaced by 0 or Nlocal-1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jacobian of the local block of
g when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate Jacobian block may be even
smaller than mudq and mldq, to reduce storage and computational costs further.

For all four half-bandwidths, the values need not be the same on every processor.

The ARKBBDPRE module also provides a reinitialization function to allow solving a sequence of problems of the
same size, with the same linear solver choice, provided there is no change in Nlocal, mukeep, or mlkeep. After solv-
ing one problem, and after calling ARKodeReInit() to re-initialize ARKode for a subsequent problem, a call to
ARKBBDPrecReInit() can be made to change any of the following: the half-bandwidths mudq and mldq used in
the difference-quotient Jacobian approximations, the relative increment dqrely, or one of the user-supplied functions
gloc and cfn. If there is a change in any of the linear solver inputs, an additional call to ARKSpgmr(), ARKSpbcg(),

4.7. Preconditioner modules 121

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

ARKSptfqmr(), ARKSpfgmr(), or ARKPcg(), and/or one or more of the corresponding ARKSpilsSet* func-
tions, must also be made (in the proper order).

int ARKBBDPrecReInit(void* arkode_mem, long int mudq, long int mldq, realtype dqrely)
Re-initializes the ARKBBDPRE preconditioner module.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• mudq – upper half-bandwidth to be used in the difference quotient Jacobian approximation.

• mldq – lower half-bandwidth to be used in the difference quotient Jacobian approximation.

• dqrely – the relative increment in components of y used in the difference quotient approximations.
The default is dqrely =

√
unit roundoff, which can be specified by passing dqrely = 0.0.

Return value:

• ARKSPILS_SUCCESS if no errors occurred

• ARKSPILS_MEM_NULL if the integrator memory is NULL

• ARKSPILS_LMEM_NULL if the linear solver memory is NULL

• ARKSPILS_PMEM_NULL if the preconditioner memory is NULL

Notes: If one of the half-bandwidths mudq or mldq is negative or exceeds the value Nlocal-1, it is replaced by 0
or Nlocal-1 accordingly.

The following two optional output functions are available for use with the ARKBBDPRE module:

int ARKBBDPrecGetWorkSpace(void* arkode_mem, long int* lenrwBBDP, long int* leniwBBDP)
Returns the processor-local ARKBBDPRE real and integer workspace sizes.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• lenrwBBDP – the number of realtype values in the ARKBBDPRE workspace.

• leniwBBDP – the number of integer values in the ARKBBDPRE workspace.

Return value:

• ARKSPILS_SUCCESS if no errors occurred

• ARKSPILS_MEM_NULL if the integrator memory is NULL

• ARKSPILS_LMEM_NULL if the linear solver memory is NULL

• ARKSPILS_PMEM_NULL if the preconditioner memory is NULL

Notes: In terms of Nlocal and smu = min(Nlocal-1, mukeep+mlkeep), the actual size of the real workspace is (2
mlkeep + mukeep + smu + 2)*Nlocal realtype words, and the actual size of the integer workspace is Nlocal
integer words. These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding function
ARKSpilsGetWorkSpace().

int ARKBBDPrecGetNumGfnEvals(void* arkode_mem, long int* ngevalsBBDP)
Returns the number of calls made to the user-supplied gloc function (of type ARKLocalFn()) due to the finite
difference approximation of the Jacobian blocks used within the preconditioner setup function.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

122 Chapter 4. Using ARKode for C and C++ Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ngevalsBBDP – the number of calls made to the user-supplied gloc function.

Return value:

• ARKSPILS_SUCCESS if no errors occurred

• ARKSPILS_MEM_NULL if the integrator memory is NULL

• ARKSPILS_LMEM_NULL if the linear solver memory is NULL

• ARKSPILS_PMEM_NULL if the preconditioner memory is NULL

In addition to the ngevalsBBDP gloc evaluations, the costs associated with ARKBBDPRE also include nlinsetups
LU factorizations, nlinsetups calls to cfn, npsolves banded backsolve calls, and nfevalsLS right-hand side function
evaluations, where nlinsetups is an optional ARKode output and npsolves and nfevalsLS are linear solver optional
outputs (see the table Iterative linear solvers optional output functions).

4.7. Preconditioner modules 123

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

124 Chapter 4. Using ARKode for C and C++ Applications

CHAPTER

FIVE

FARKODE, AN INTERFACE MODULE FOR FORTRAN APPLICATIONS

The FARKODE interface module is a package of C functions which support the use of the ARKODE solver for the
solution of ODE systems

Mẏ = fE(t, y) + fI(t, y),

in a mixed Fortran/C setting. While ARKODE is written in C, it is assumed here that the user’s calling program
and user-supplied problem-defining routines are written in Fortran. This package provides the necessary interfaces to
ARKODE for all of the provided NVECTOR implementations.

5.1 Important note on portability

In this package, the names of the interface functions, and the names of the Fortran user routines called by them, appear
as dummy names which are mapped to actual values by a series of definitions in the header files. By default, those
mapping definitions depend in turn on the C macro F77_FUNC defined in the header file sundials_config.h.
The mapping defined by F77_FUNC in turn transforms the C interface names to match the name-mangling approach
used by the supplied Fortran compiler.

By “name-mangling”, we mean that due to the case-independent nature of the Fortran language, Fortran compilers
convert all subroutine and object names to use either all lower-case or all upper-case characters, and append either
zero, one or two underscores as a prefix or suffix the the name. For example, the Fortran subroutine MyFunction()
will be changed to one of myfunction, MYFUNCTION, myfunction__, MYFUNCTION_, and so on, depending
on the Fortran compiler used.

SUNDIALS determines this name-mangling scheme at configuration time (see ARKode Installation Procedure).

5.2 Fortran Data Types

Throughout this documentation, we will refer to data types according to their usage in C. The equivalent types to these
may vary, depending on your computer architecture and on how SUNDIALS was compiled (see ARKode Installation
Procedure). A Fortran user should first determine the equivalent types for their architecture and compiler, and then
take care that all arguments passed through this Fortran/C interface are declared of the appropriate type.

Integers: SUNDIALS uses both int and long int types:

• int – equivalent to an INTEGER or INTEGER*4 in Fortran

• long int – this will depend on the computer architecture:

– 32-bit architecture – equivalent to an INTEGER or INTEGER*4 in Fortran

– 64-bit architecture – equivalent to an INTEGER*8 in Fortran

125

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Real numbers: As discussed in ARKode Installation Procedure, at compilation SUNDIALS allows the configuration
option --with-precision, that accepts values of single, double or extended (the default is double).
This choice dictates the size of a realtype variable. The corresponding Fortran types for these realtype sizes
are:

• single – equivalent to a REAL or REAL*4 in Fortran

• double – equivalent to a DOUBLE PRECISION or REAL*8 in Fortran

• extended – equivalent to a REAL*16 in Fortran

Details on the Fortran interface to ARKode are provided in the following sub-sections:

5.2.1 FARKODE routines

In this section, we list the full set of user-callable functions comprising the FARKODE solver interface. For each func-
tion, we list the corresponding ARKode functions, to provide a mapping between the two solver interfaces. Further
documentation on each FARKODE function is provided in the following sections, Usage of the FARKODE interface
module, FARKODE optional output, Usage of the FARKROOT interface to rootfinding and Usage of the FARKODE in-
terface to built-in preconditioners. Additionally, all Fortran and C functions below are hyperlinked to their definitions
in the documentation, for simplified access.

Interface to the NVECTOR modules

• FNVINITS() (defined by NVECTOR_SERIAL) interfaces to N_VNewEmpty_Serial().

• FNVINITOMP() (defined by NVECTOR_OPENMP) interfaces to N_VNewEmpty_OpenMP().

• FNVINITPTS() (defined by NVECTOR_PTHREADS) interfaces to N_VNewEmpty_Pthreads().

• FNVINITP() (defined by NVECTOR_PARALLEL) interfaces to N_VNewEmpty_Parallel().

Interface to the main ARKODE module

• FARKMALLOC() interfaces to ARKodeCreate(), ARKodeSetUserData(), and ARKodeInit(), as
well as one of ARKodeSStolerances() or ARKodeSVtolerances().

• FARKREINIT() interfaces to ARKodeReInit().

• FARKRESIZE() interfaces to ARKodeResize().

• FARKSETIIN() and FARKSETRIN() interface to the ARKodeSet* functions (see Optional input functions).

• FARKEWTSET() interfaces to ARKodeWFtolerances().

• FARKADAPTSET() interfaces to ARKodeSetAdaptivityFn().

• FARKEXPSTABSET() interfaces to ARKodeSetStabilityFn().

• FARKODE() interfaces to ARKode(), the ARKodeGet* functions (see Optional output functions), and to the
optional output functions for the selected linear solver module (see Optional output functions).

• FARKDKY() interfaces to the interpolated output function ARKodeGetDky().

• FARKGETERRWEIGHTS() interfaces to ARKodeGetErrWeights().

• FARKGETESTLOCALERR() interfaces to ARKodeGetEstLocalErrors().

• FARKFREE() interfaces to ARKodeFree().

126 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Interface to the system linear solver modules

• FARKDENSE() interfaces to ARKDense().

• FARKLAPACKDENSE() interfaces to ARKLapackDense().

• FARKDENSESETJAC() interfaces to ARKDlsSetDenseJacFn().

• FARKBAND() interfaces to ARKBand().

• FARKLAPACKBAND() interfaces to ARKLapackBand().

• FARKBANDSETJAC() interfaces to ARKDlsSetBandJacFn().

• FARKKLU() interfaces to ARKKLU().

• FARKSUPERLUMT() interfaces to ARKSuperLUMT().

• FARKSPGMR() interfaces to ARKSpgmr() and the SPGMR optional input functions (see Table: Optional
inputs for ARKSPILS).

• FARKSPGMRREINIT() interfaces to the SPGMR optional input functions (see Table: Optional inputs for
ARKSPILS).

• FARKSPBCG() interfaces to ARKSpbcg() and the SPBCG optional input functions (see Table: Optional
inputs for ARKSPILS).

• FARKSPBCGREINIT() interfaces to the SPBCG optional input functions.

• FARKSPTFQMR() interfaces to ARKSptfqmr() and the SPTFQMR optional input functions.

• FARKSPTFQMRREINIT() interfaces to the SPTFQMR optional input functions.

• FARKSPFGMR() interfaces to ARKSpfgmr() and the SPFGMR optional input functions (see Table: Optional
inputs for ARKSPILS).

• FARKSPFGMRREINIT() interfaces to the SPFGMR optional input functions (see Table: Optional inputs for
ARKSPILS).

• FARKPCG() interfaces to ARKPcg() and the PCG optional input functions (see Table: Optional inputs for
ARKSPILS).

• FARKPCGREINIT() interfaces to the PCG optional input functions.

• FARKSPILSSETJAC() interfaces to ARKSpilsSetJacTimesVecFn().

• FARKSPILSSETPREC() interfaces to ARKSpilsSetPreconditioner().

Interface to the mass matrix linear solver modules

• FARKMASSDENSE() interfaces to ARKMassDense().

• FARKMASSLAPACKDENSE() interfaces to ARKMassLapackDense().

• FARKDENSESETMASS() interfaces to ARKDlsSetDenseMassFn().

• FARKMASSBAND() interfaces to ARKMassBand().

• FARKMASSLAPACKBAND() interfaces to ARKMassLapackBand().

• FARKBANDSETMASS() interfaces to ARKDlsSetBandMassFn().

• FARKMASSKLU() interfaces to ARKMassKLU().

• FARKMASSSUPERLUMT() interfaces to ARKMassSuperLUMT().

5.2. Fortran Data Types 127

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• FARKMASSSPGMR() interfaces to ARKMassSpgmr() and the SPGMR optional input functions (see Table:
Optional inputs for ARKSPILS).

• FARKMASSSPGMRREINIT() interfaces to the SPGMR optional input functions (see Table: Optional inputs
for ARKSPILS).

• FARKMASSSPBCG() interfaces to ARKMassSpbcg() and the SPBCG optional input functions (see Table:
Optional inputs for ARKSPILS).

• FARKMASSSPBCGREINIT() interfaces to the SPBCG optional input functions.

• FARKMASSSPTFQMR() interfaces to ARKMassSptfqmr() and the SPTFQMR optional input functions.

• FARKMASSSPTFQMRREINIT() interfaces to the SPTFQMR optional input functions.

• FARKMASSSPFGMR() interfaces to ARKMassSpfgmr() and the SPFGMR optional input functions (see
Table: Optional inputs for ARKSPILS).

• FARKMASSSPFGMRREINIT() interfaces to the SPFGMR optional input functions (see Table: Optional inputs
for ARKSPILS).

• FARKMASSPCG() interfaces to ARKMassPcg() and the PCG optional input functions (see Table: Optional
inputs for ARKSPILS).

• FARKMASSPCGREINIT() interfaces to the PCG optional input functions.

• FARKSPILSSETMASS() interfaces to ARKSpilsSetMassTimesVecFn().

• FARKSPILSSETMASSPREC() interfaces to ARKSpilsSetMassPreconditioner().

User-supplied routines

As with the native C interface, the FARKode solver interface requires user-supplied functions to specify the ODE
problem to be solved. In contrast to the case of direct use of ARKode, and of most Fortran ODE solvers, the names of
all user-supplied routines here are fixed, in order to maximize portability for the resulting mixed-language program.
As a result, whether using a purely implicit, purely explicit, or mixed implicit-explicit solver, routines for both fE(t, y)
and fI(t, y) must be provided by the user (though either of which may do nothing):

FARKODE routine (FORTRAN, user-supplied) ARKode interface function type
FARKIFUN() ARKRhsFn()
FARKEFUN() ARKRhsFn()

In addition, as with the native C interface a user may provide additional routines to assist in the solution process. Each
of the following user-supplied routines is activated by calling the specified “activation” routine, with the exception of
FARKSPJAC() which is required whenever a sparse matrix solver is used:

128 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

FARKODE routine (FORTRAN,
user-supplied)

ARKode interface function
type

FARKODE “activation”
routine

FARKDJAC() ARKDlsDenseJacFn() FARKDENSESETJAC()
FARKDMASS() ARKDlsDenseMassFn() FARKDENSESETMASS()
FARKBJAC() ARKDlsBandJacFn() FARKBANDSETJAC()
FARKBMASS() ARKDlsBandMassFn() FARKBANDSETMASS()
FARKSPJAC() ARKSlsSparseJacFn() FARKSPARSESETJAC()
FARKSPMASS() ARKSlsSparseMassFn() FARKSPARSESETMASS()
FARKPSET() ARKSpilsPrecSetupFn() FARKSPILSSETPREC()
FARKPSOL() ARKSpilsPrecSolveFn() FARKSPILSSETPREC()
FARKMASSPSET() ARKSpilsMassPrecSetupFn()FARKSPILSSETMASSPREC()
FARKMASSPSOL() ARKSpilsMassPrecSolveFn()FARKSPILSSETMASSPREC()
FARKJTIMES() ARKSpilsJacTimesVecFn() FARKSPILSSETJAC()
FARKMTIMES() ARKSpilsMassTimesVecFn()FARKSPILSSETMASS()
FARKEWT() ARKEwtFn() FARKEWTSET()
FARKADAPT() ARKAdaptFn() FARKADAPTSET()
FARKEXPSTAB() ARKExpStabFn() FARKEXPSTABSET()

5.2.2 Usage of the FARKODE interface module

The usage of FARKODE requires calls to five or more interface functions, depending on the method options selected,
and two or more user-supplied routines which define the problem to be solved. These function calls and user routines
are summarized individually below. Some details on specific argument options, and the user is referred to the de-
scription of the corresponding C interface ARKode functions for complete information on the arguments of any given
user-callable interface routine. The usage of FARKODE for rootfinding and with preconditioner modules is described
in later subsections.

In the instructions below, steps marked [S] apply to the NVECTOR implementation NVECTOR_SERIAL, steps
marked [O] apply to NVECTOR_OPENMP, steps marked [T] apply to NVECTOR_PTHREADS, while steps marked
[P] apply to NVECTOR_PARALLEL. Some steps will be marked with a combination of the above, e.g. [S, O, T].
Steps not marked apply to all supplied NVECTOR implementations.

Right-hand side specification

The user must in all cases supply the following Fortran routines:

subroutine FARKIFUN(T, Y, YDOT, IPAR, RPAR, IER)
Sets the YDOT array to fI(t, y), the implicit portion of the right-hand side of the ODE system, as function of
the independent variable T = t and the array of dependent state variables Y = y.

Arguments:

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing state variables.

• YDOT (realtype, output) – array containing state derivatives.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 success, >0 recoverable error, <0 unrecoverable error).

subroutine FARKEFUN(T, Y, YDOT, IPAR, RPAR, IER)
Sets the YDOT array to fE(t, y), the explicit portion of the right-hand side of the ODE system, as function of
the independent variable T = t and the array of dependent state variables Y = y.

5.2. Fortran Data Types 129

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Arguments:

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing state variables.

• YDOT (realtype, output) – array containing state derivatives.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 success, >0 recoverable error, <0 unrecoverable error).

For purely explicit problems, although the routine FARKIFUN() must exist, it will never be called, and may remain
empty. Similarly, for purely implicit problems, FARKEFUN() will never be called and must exist and may remain
empty.

NVECTOR module initialization

[S] To initialize the serial NVECTOR module, the user must make the following call:

subroutine FNVINITS(KEY, NEQ, IER)
Initializes the Fortran interface to the serial NVECTOR module.

Arguments:

• KEY (int, input) – the solver id (KEY = 4 for ARKode).

• NEQ (long int, input) – size of the ODE system.

• IER (int, output) – return flag (0 success, -1 if a failure occurred).

[O] To initialize the NVECTOR_OPENMP NVECTOR module, the user must make the following call:

subroutine FNVINITOMP(KEY, NEQ, NUM_THREADS, IER)
Initializes the Fortran interface to the OpenMP NVECTOR module.

Arguments:

• KEY (int, input) – the solver id (KEY = 4 for ARKode).

• NEQ (long int, input) – size of the ODE system.

• NUM_THREADS (int, input) – number of threads to use in parallelized regions.

• IER (int, output) – return flag (0 success, -1 if a failure occurred).

[T] To initialize the Pthreads NVECTOR module, the user must make hte following call.

subroutine FNVINITPTS(KEY, NEQ, NUM_THREADS, IER)
Initializes the Fortran interface to the Pthreads NVECTOR module.

Arguments:

• KEY (int, input) – the solver id (KEY = 4 for ARKode).

• NEQ (long int, input) – size of the ODE system.

• NUM_THREADS (int, input) – number of threads to use in parallelized regions.

• IER (int, output) – return flag (0 success, -1 if a failure occurred).

[P] To initialize the parallel NVECTOR module, the user must make the following call:

subroutine FNVINITP(COMM, KEY, NLOCAL, NGLOBAL, IER)
Initializes the Fortran interface to the parallel NVECTOR module.

130 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Arguments:

• COMM (int, input) – the MPI communicator.

• KEY (int, input) – the solver id (KEY = 4 for ARKode).

• NLOCAL (long int, input) – local vector size on this processor.

• NGLOBAL (long int, input) – the size of the ODE system, and the global size of vectors (the sum
of all values of NLOCAL).

• IER (int, output) – return flag (0 success, -1 if a failure occurred).

Notes: If the header file sundials_config.h defines SUNDIALS_MPI_COMM_F2C to be 1 (meaning the
MPI implementation used to build SUNDIALS includes the MPI_Comm_f2c() function), then COMM can
be any valid MPI communicator. Otherwise, MPI_COMM_WORLD will be used, so the user can just pass an
integer value as a placeholder.

Problem specification

To set various problem and solution parameters and allocate internal memory, the user must call FARKMALLOC().

subroutine FARKMALLOC(T0, Y0, IMEX, IATOL, RTOL, ATOL, IOUT, ROUT, IPAR, RPAR, IER)
Initializes the Fortran interface to the ARKode solver, providing interfaces to the C routines
ARKodeCreate(), ARKodeSetUserData(), and ARKodeInit(), as well as one of
ARKodeSStolerances() or ARKodeSVtolerances().

Arguments:

• T0 (realtype, input) – initial value of t.

• Y0 (realtype, input) – array of initial conditions.

• IMEX (int, input) – flag denoting basic integration method: 0 = implicit, 1 = explicit, 2 = ImEx.

• IATOL (int, input) – type for absolute tolerance input ATOL: 1 = scalar, 2 = array, 3 = user-supplied
function; the user must subsequently call FARKEWTSET() and supply a routine FARKEWT() to
compute the error weight vector.

• RTOL (realtype, input) – scalar relative tolerance.

• ATOL (realtype, input) – scalar or array absolute tolerance.

• IOUT (long int, input/output) – array of length 29 for integer optional outputs.

• ROUT (realtype, input/output) – array of length 6 for real optional outputs.

• IPAR (long int, input/output) – array of user integer data, which will be passed unmodified to all
user-provided routines.

• RPAR (realtype, input/output) – array with user real data, which will be passed unmodified to all
user-provided routines.

• IER (int, output) – return flag (0 success, 6= 0 failure).

Notes: Modifications to the user data arrays IPAR and RPAR inside a user-provided routine will be propagated
to all subsequent calls to such routines. The optional outputs associated with the main ARKode integrator are
listed in Table: Optional FARKODE integer outputs and Table: Optional FARKODE real outputs, in the section
FARKODE optional output.

As an alternative to providing tolerances in the call to FARKMALLOC(), the user may provide a routine to compute
the error weights used in the WRMS norm evaluations. If supplied, it must have the following form:

5.2. Fortran Data Types 131

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

subroutine FARKEWT(Y, EWT, IPAR, RPAR, IER)
It must set the positive components of the error weight vector EWT for the calculation of the WRMS norm of Y.

Arguments:

• Y (realtype, input) – array containing state variables.

• EWT (realtype, output) – array containing the error weight vector.

• IPAR (long int, input) – array containing the integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input) – array containing the real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 success, 6= 0 failure).

If the FARKEWT() routine is provided, then, following the call to FARKMALLOC(), the user must call the function
FARKEWTSET().

subroutine FARKEWTSET(FLAG, IER)
Informs FARKODE to use the user-supplied FARKEWT() function.

Arguments:

• FLAG (int, input) – flag, use “1” to denoting to use FARKEWT().

• IER (int, output) – return flag (0 success, 6= 0 failure).

Setting optional inputs

Unlike ARKode’s C interface, that provides separate functions for setting each optional input, FARKODE uses only
two functions, that accept keywords to specify which optional input should be set to the provided value. These routines
are FARKSETIIN() and FARKSETRIN(), and are further described below.

subroutine FARKSETIIN(KEY, IVAL, IER)
Specification routine to pass optional integer inputs to the FARKODE() solver.

Arguments:

• KEY (quoted string, input) – which optional input is set (see Table: Keys for setting FARKODE integer
optional inputs).

• IVAL (long int, input) – the integer input value to be used.

• IER (int, output) – return flag (0 success, 6= 0 failure).

132 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Table: Keys for setting FARKODE integer optional inputs

Key ARKode routine
ORDER ARKodeSetOrder()
DENSE_ORDER ARKodeSetDenseOrder()
LINEAR ARKodeSetLinear()
NONLINEAR ARKodeSetNonlinear()
FIXEDPOINT ARKodeSetFixedPoint()
NEWTON ARKodeSetNewton()
EXPLICIT ARKodeSetExplicit()
IMPLICIT ARKodeSetImplicit()
IMEX ARKodeSetImEx()
IRK_TABLE_NUM ARKodeSetIRKTableNum()
ERK_TABLE_NUM ARKodeSetERKTableNum()
ARK_TABLE_NUM (a) ARKodeSetARKTableNum()
MAX_NSTEPS ARKodeSetMaxNumSteps()
HNIL_WARNS ARKodeSetMaxHnilWarns()
PREDICT_METHOD ARKodeSetPredictorMethod()
MAX_ERRFAIL ARKodeSetMaxErrTestFails()
MAX_CONVFAIL ARKodeSetMaxConvFails()
MAX_NITERS ARKodeSetMaxNonlinIters()
ADAPT_SMALL_NEF ARKodeSetSmallNumEFails()
LSETUP_MSBP ARKodeSetMaxStepsBetweenLSet()

(a) When setting ARK_TABLE_NUM, pass in IVAL as an array of length 2, specifying the IRK table number first, then
the ERK table number.

subroutine FARKSETRIN(KEY, RVAL, IER)
Specification routine to pass optional real inputs to the FARKODE() solver.

Arguments:

• KEY (quoted string, input) – which optional input is set (see Table: Keys for setting FARKODE real
optional inputs).

• RVAL (realtype, input) – the real input value to be used.

• IER (int, output) – return flag (0 success, 6= 0 failure).

5.2. Fortran Data Types 133

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Table: Keys for setting FARKODE real optional inputs

Key ARKode routine
INIT_STEP ARKodeSetInitStep()
MAX_STEP ARKodeSetMaxStep()
MIN_STEP ARKodeSetMinStep()
STOP_TIME ARKodeSetStopTime()
NLCONV_COEF ARKodeSetNonlinConvCoef()
ADAPT_CFL ARKodeSetCFLFraction()
ADAPT_SAFETY ARKodeSetSafetyFactor()
ADAPT_BIAS ARKodeSetErrorBias()
ADAPT_GROWTH ARKodeSetMaxGrowth()
ADAPT_ETAMX1 ARKodeSetMaxFirstGrowth()
ADAPT_BOUNDS ARKodeSetFixedStepBounds()
ADAPT_ETAMXF ARKodeSetMaxEFailGrowth()
ADAPT_ETACF ARKodeSetMaxCFailGrowth()
NONLIN_CRDOWN ARKodeSetNonlinCRDown()
NONLIN_RDIV ARKodeSetNonlinRDiv()
LSETUP_DGMAX ARKodeSetDeltaGammaMax()
FIXED_STEP ARKodeSetFixedStep()

If a user wishes to reset all of the options to their default values, they may call the routine FARKSETDEFAULTS().

subroutine FARKSETDEFAULTS(IER)
Specification routine to reset all FARKODE optional inputs to their default values.

Arguments:

• IER (int, output) – return flag (0 success, 6= 0 failure).

Optional advanced FARKODE inputs

FARKODE supplies additional routines to specify optional advanced inputs to the ARKode() solver. These are
summarized below, and the user is referred to their C routine counterparts for more complete information.

subroutine FARKSETERKTABLE(S, Q, P, C, A, B, BEMBED, IER)
Interface to the routine ARKodeSetERKTable().

Arguments:

• S (int, input) – number of stages in the table.

• Q (int, input) – global order of accuracy of the method.

• P (int, input) – global order of accuracy of the embedding.

• C (realtype, input) – array of length S containing the stage times.

• A (realtype, input) – array of length S*S containing the ERK coefficients (stored in row-major,
“C”, order).

• B (realtype, input) – array of length S containing the solution coefficients.

• BEMBED (realtype, input) – array of length S containing the embedding coefficients.

• IER (int, output) – return flag (0 success, 6= 0 failure).

subroutine FARKSETIRKTABLE(S, Q, P, C, A, B, BEMBED, IER)
Interface to the routine ARKodeSetIRKTable().

134 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Arguments:

• S (int, input) – number of stages in the table.

• Q (int, input) – global order of accuracy of the method.

• P (int, input) – global order of accuracy of the embedding.

• C (realtype, input) – array of length S containing the stage times.

• A (realtype, input) – array of length S*S containing the IRK coefficients (stored in row-major,
“C”, order).

• B (realtype, input) – array of length S containing the solution coefficients.

• BEMBED (realtype, input) – array of length S containing the embedding coefficients.

• IER (int, output) – return flag (0 success, 6= 0 failure).

subroutine FARKSETARKTABLES(S, Q, P, C, AI, AE, B, BEMBED, IER)
Interface to the routine ARKodeSetARKTables().

Arguments:

• S (int, input) – number of stages in the table.

• Q (int, input) – global order of accuracy of the method.

• P (int, input) – global order of accuracy of the embedding.

• C (realtype, input) – array of length S containing the stage times.

• AI (realtype, input) – array of length S*S containing the IRK coefficients (stored in row-major,
“C”, order)

• AE (realtype, input) – array of length S*S containing the ERK coefficients (stored in row-major,
“C”, order)

• B (realtype, input) – array of length S containing the solution coefficients

• BEMBED (realtype, input) – array of length S containing the embedding coefficients

• IER (int, output) – return flag (0 success, 6= 0 failure)

Additionally, a user may set the accuracy-based step size adaptivity strategy (and it’s associated parameters) through
a call to FARKSETADAPTIVITYMETHOD(), as described below.

subroutine FARKSETADAPTIVITYMETHOD(IMETHOD, IDEFAULT, IPQ, PARAMS, IER)
Specification routine to set the step size adaptivity strategy and parameters within the FARKODE() solver.
Interfaces with the C routine ARKodeSetAdaptivityMethod().

Arguments:

• IMETHOD (int, input) – choice of adaptivity method.

• IDEFAULT (int, input) – flag denoting whether to use default parameters (1) or that customized
parameters will be supplied (1).

• IPQ (int, input) – flag denoting whether to use the embedding order of accuracy (0) or the method
order of accuracy (1) within step adaptivity algorithm.

• PARAMS (realtype, input) – array of 3 parameters to be used within the adaptivity strategy.

• IER (int, output) – return flag (0 success, 6= 0 failure).

Lastly, the user may provide functions to aid/replace those within ARKode for handling adaptive error control and
explicit stability. The former of these is designed for advanced users who wish to investigate custom step adaptivity

5.2. Fortran Data Types 135

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

approaches as opposed to using any of those built-in to ARKode. In ARKode’s C/C++ interface, this would be provided
by a function of type ARKAdaptFn(); in the Fortran interface this is provided through the user-supplied function:

subroutine FARKADAPT(Y, T, H1, H2, H3, E1, E2, E3, Q, P, HNEW, IPAR, RPAR, IER)
It must set the new step size HNEW based on the three previous steps (H1, H2, H3) and the three previous error
estimates (E1, E2, E3).

Arguments:

• Y (realtype, input) – array containing state variables.

• T (realtype, input) – current value of the independent variable.

• H1 (realtype, input) – current step size.

• H2 (realtype, input) – previous step size.

• H3 (realtype, input) – previous-previous step size.

• E1 (realtype, input) – estimated temporal error in current step.

• E2 (realtype, input) – estimated temporal error in previous step.

• E3 (realtype, input) – estimated temporal error in previous-previous step.

• Q (int, input) – global order of accuracy for RK method.

• P (int, input) – global order of accuracy for RK embedding.

• HNEW (realtype, output) – array containing the error weight vector.

• IPAR (long int, input) – array containing the integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input) – array containing the real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 success, 6= 0 failure).

This routine is enabled by a call to the activation routine:

subroutine FARKADAPTSET(FLAG, IER)
Informs FARKODE to use the user-supplied FARKADAPT() function.

Arguments:

• FLAG (int, input) – flag, use “1” to denoting to use FARKADAPT(), or use “0” to denote a return
to the default adaptivity strategy.

• IER (int, output) – return flag (0 success, 6= 0 failure).

Note: The call to FARKADAPTSET() must occur after the call to FARKMALLOC().

Similarly, if either an explicit or mixed implicit-explicit integration method is to be employed, the user may specify
a function to provide the maximum explicitly-stable step for their problem. Again, in the C/C++ interface this would
be a function of type ARKExpStabFn(), while in ARKode’s Fortran interface this must be given through the user-
supplied function:

subroutine FARKEXPSTAB(Y, T, HSTAB, IPAR, RPAR, IER)
It must set the maximum explicitly-stable step size, HSTAB, based on the current solution, Y.

Arguments:

• Y (realtype, input) – array containing state variables.

• T (realtype, input) – current value of the independent variable.

• HSTAB (realtype, output) – maximum explicitly-stable step size.

136 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• IPAR (long int, input) – array containing the integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input) – array containing the real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 success, 6= 0 failure).

This routine is enabled by a call to the activation routine:

subroutine FARKEXPSTABSET(FLAG, IER)
Informs FARKODE to use the user-supplied FARKEXPSTAB() function.

Arguments:

• FLAG (int, input) – flag, use “1” to denoting to use FARKEXPSTAB(), or use “0” to denote a return
to the default error-based stability strategy.

• IER (int, output) – return flag (0 success, 6= 0 failure).

Note: The call to FARKEXPSTABSET() must occur after the call to FARKMALLOC().

System linear solver specification

In the case of using either an implicit or ImEx method, the solution of each Runge-Kutta stage may involve the
solution of linear systems related to the Jacobian J = ∂fI

∂y of the implicit portion of the ODE system. ARKode
presently includes a variety of choices for the treatment of these systems, and the user of FARKODE must call a
routine with a specific name to make the desired choice.

[S, O, T] Dense treatment of the linear system

To use the direct dense linear solver based on the internal SUNDIALS implementation, the user must call the
FARKDENSE() routine:

subroutine FARKDENSE(NEQ, IER)
Interfaces with the ARKDense() function to specify use of the dense direct linear solver.

Arguments:

• NEQ (long int, input) – size of the ODE system.

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

Alteratively, to use the LAPACK-based direct dense linear solver, a user must call the similar FARKLAPACKDENSE()
routine:

subroutine FARKLAPACKDENSE(NEQ, IER)
Interfaces with the ARKLapackDense() function to specify use of the LAPACK the dense direct linear solver.

Arguments:

• NEQ (int, input) – size of the ODE system.

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

As an option when using either of these dense linear solvers, the user may supply a routine that computes a dense
approximation of the system Jacobian J = ∂fI

∂y . If supplied, it must have the following form:

subroutine FARKDJAC(NEQ, T, Y, FY, DJAC, H, IPAR, RPAR, WK1, WK2, WK3, IER)
Interface to provide a user-supplied dense Jacobian approximation function (of type
ARKDlsDenseJacFn()), to be used by the FARKDENSE() solver.

5.2. Fortran Data Types 137

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Arguments:

• NEQ (long int, input) – size of the ODE system.

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing values of the dependent state variables.

• FY (realtype, input) – array containing values of the dependent state derivatives.

• DJAC (realtype of size (NEQ,NEQ), output) – 2D array containing the Jacobian entries.

• H (realtype, input) – current step size.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: Typically this routine will use only NEQ, T, Y, and DJAC. It must compute the Jacobian and store it
column-wise in DJAC.

If the above routine uses difference quotient approximations, it may need to access the error weight array EWT in the
calculation of suitable increments. The array EWT can be obtained by calling FARKGETERRWEIGHTS() using one
of the work arrays as temporary storage for EWT. It may also need the unit roundoff, which can be obtained as the
optional output ROUT(6), passed from the calling program to this routine using either RPAR or a common block.

If the FARKDJAC() routine is provided, then, following the call to FARKDENSE() or FARKLAPACKDENSE(), the
user must call the routine FARKDENSESETJAC():

subroutine FARKDENSESETJAC(FLAG, IER)
Interface to the ARKDlsSetDenseJacFn() function, specifying to use the user-supplied routine
FARKDJAC() for the Jacobian approximation.

Arguments:

• FLAG (int, input) – any nonzero value specifies to use FARKDJAC().

• IER (int, output) – return flag (0 if success, 6= 0 if an error occurred).

[S, O, T] Band treatment of the linear system

To use the direct band linear solver that is based on the internal SUNDIALS implementation, the user must call the
FARKBAND() routine.

subroutine FARKBAND(NEQ, MU, ML, IER)
Interfaces with the ARKBand() function to specify use of the dense banded linear solver.

Arguments:

• NEQ (long int, input) – size of the ODE system.

• MU (long int, input) – upper half-bandwidth.

• ML (long int, input) – lower half-bandwidth.

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

Alteratively, to use the LAPACK-based direct banded linear solver, a user must call the similar FARKLAPACKBAND()
routine:

138 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

subroutine FARKLAPACKBAND(NEQ, MU, ML, IER)
Interfaces with the ARKLapackBand() function to specify use of the dense banded linear solver.

Arguments:

• NEQ (int, input) – size of the ODE system.

• MU (int, input) – upper half-bandwidth.

• ML (int, input) – lower half-bandwidth.

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

As an option when using either of these banded linear solvers, the user may supply a routine that computes a banded
approximation of the linear system Jacobian J = ∂fI

∂y . If supplied, it must have the following form:

subroutine FARKBJAC(NEQ, MU, ML, MDIM, T, Y, FY, BJAC, H, IPAR, RPAR, WK1, WK2, WK3, IER)
Interface to provide a user-supplied band Jacobian approximation function (of type ARKDlsBandJacFn()),
to be used by the FARKBAND() solver.

Arguments:

• NEQ (long int, input) – size of the ODE system.

• MU (long int, input) – upper half-bandwidth.

• ML (long int, input) – lower half-bandwidth.

• MDIM (long int, input) – leading dimension of BJAC array.

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing dependent state variables.

• FY (realtype, input) – array containing dependent state derivatives.

• BJAC (realtype of size (MDIM,NEQ), output) – 2D array containing the Jacobian entries.

• H (realtype, input) – current step size.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: Typically this routine will use only NEQ, MU, ML, T, Y, and BJAC. It must load the MDIM by N array
BJAC with the Jacobian matrix at the current (t, y) in band form. Store in BJAC(k,j) the Jacobian element Ji,j
with k = i - j + MU + 1 (or k = 1, ..., ML+MU+1) and j = 1, ..., N.

If the above routine uses difference quotient approximations, it may need to use the error weight array EWT in the
calculation of suitable increments. The array EWT can be obtained by calling FARKGETERRWEIGHTS() using one
of the work arrays as temporary storage for EWT. It may also need the unit roundoff, which can be obtained as the
optional output ROUT(6), passed from the calling program to this routine using either RPAR or a common block.

If the FARKBJAC() routine is provided, then, following the call to either FARKBAND() or FARKLAPACKBAND(),
the user must call the routine FARKBANDSETJAC().

subroutine FARKBANDSETJAC(FLAG, IER)
Interface to the ARKDlsSetBandJacFn() function, specifying to use the user-supplied routine
FARKBJAC() for the Jacobian approximation.

Arguments:

5.2. Fortran Data Types 139

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• FLAG (int, input) – any nonzero value specifies to use FARKBJAC().

• IER (int, output) – return flag (0 if success, 6= 0 if an error occurred).

[S, O, T] Sparse treatment of the linear system

To use the sparse direct linear solver interface to the KLU library, the user must call the FARKKLU() routine:

subroutine FARKKLU(NEQ, NNZ, ORDERING, IER)
Interfaces with the ARKKLU() function to specify use of the sparse direct linear solver.

Arguments:

• NEQ (int, input) – size of the ODE system.

• NNZ (int, input) – maximum number of nonzeros in the sparse Jacobian.

• ORDERING (int, input) – the matrix ordering desired, possible values come from the KLU package
(0 = AMD, 1 = COLAMD)

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

Alteratively, to use the SuperLU_MT-based threaded sparse direct linear solver, a user must call the similar
FARKSUPERLUMT() routine:

subroutine FARKSUPERLUMT(NTHREADS, NEQ, NNZ, ORDERING, IER)
Interfaces with the ARKSuperLUMT() function to specify use of the SuperLU_MT threaded sparse direct
linear solver.

Arguments:

• NTHREADS (int, input) – number of threads to use in factorization and solution of the Jacobian
systems.

• NEQ (int, input) – size of the ODE system.

• NNZ (int, input) – maximum number of nonzeros in the sparse Jacobian.

• ORDERING (int, input) – the matrix ordering desired, possible values come from the SuperLU_MT
package:

0 = Natural 1 = Minimum degree on ATA 2 = Minimum degree on AT +A 3 = COLAMD

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

When using either of these sparse direct linear solvers, the user must supply a routine that computes a compressed-
sparse-column approximation of the system Jacobian J = ∂fI

∂y , having the following form:

subroutine FARKSPJAC(T, Y, FY, N, NNZ, JDATA, JRVALS, JCPTRS, H, IPAR, RPAR, WK1, WK2, WK3,
IER)

Interface to provide a user-supplied sparse Jacobian approximation function (of type
ARKSlsSparseJacFn()), to be used by the FARKKLU() or FARKSUPERLUMT() solver.

Arguments:

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing values of the dependent state variables.

• FY (realtype, input) – array containing values of the dependent state derivatives.

• N (int, input) – number of matrix rows in Jacobian.

140 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• NNZ (int, input) – allocated length of nonzero storage in Jacobian.

• JDATA (realtype of size NNZ, output) – nonzero values in Jacobian.

• JRVALS (int of size NNZ, output) – row indices for each nonzero Jacobian entry.

• JCPTRS (int of size N+1, output) – indices of where each column’s nonzeros begin in data array;
last entry points just past end of data values.

• H (realtype, input) – current step size.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: Due to the format of both the KLU and SuperLU_MT solvers, the number of matrix rows, number of
matrix nonzeros, and row index array are all of type int and not long int.

If the above routine uses difference quotient approximations to compute the nonzero entries, it may need to access
the error weight array EWT in the calculation of suitable increments. The array EWT can be obtained by calling
FARKGETERRWEIGHTS() using one of the work arrays as temporary storage for EWT. It may also need the unit
roundoff, which can be obtained as the optional output ROUT(6), passed from the calling program to this routine using
either RPAR or a common block.

When supplying the FARKSPJAC() routine, following the call to either FARKKLU() or FARKSUPERLUMT(), the
user must call the routine FARKSPARSESETJAC().

subroutine FARKSPARSESETJAC(IER)
Interface to the ARKSlsSetSparseJacFn() function, specifying that the user-supplied routine
FARKSPJAC() has been provided for the Jacobian approximation.

Arguments:

• IER (int, output) – return flag (0 if success, 6= 0 if an error occurred).

SPGMR treatment of the linear systems

For the Scaled Preconditioned GMRES solution of the linear systems, the user must call the FARKSPGMR() routine:

subroutine FARKSPGMR(IPRETYPE, IGSTYPE, MAXL, DELT, IER)
Interfaces with the ARKSpgmr() and ARKSpilsSet* routines to specify use of the SPGMR iterative linear
solver.

Arguments:

• IPRETYPE (int, input) – preconditioner type: 0 = none, 1 = left only, 2 = right only, 3 = both sides.

• IGSTYPE (int, input) – Gram-schmidt orthogonalization process: 1 = modified G-S, 2 = classical
G-S.

• MAXL (int; input) – maximum Krylov subspace dimension (0 for default).

• DELT (realtype, input) – linear convergence tolerance factor (0.0 for default).

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

For descriptions of the optional user-supplied routines for use with FARKSPGMR() see the section User-supplied
routines for SPGMR/SPBCG/SPTFQMR/SPFGMR/PCG.

5.2. Fortran Data Types 141

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

SPBCG treatment of the linear systems

For the Scaled Preconditioned Bi-CGStab solution of the linear systems, the user must call the FARKSPBCG() rou-
tine:

subroutine FARKSPBCG(IPRETYPE, MAXL, DELT, IER)
Interfaces with the ARKSpbcg() and ARKSpilsSet* routines to specify use of the SPBCG iterative linear
solver.

Arguments: The arguments are the same as those with the same names for FARKSPGMR().

For descriptions of the optional user-supplied routines for use with FARKSPBCG() see the section User-supplied
routines for SPGMR/SPBCG/SPTFQMR/SPFGMR/PCG.

SPTFQMR treatment of the linear systems

For the Scaled Preconditioned TFQMR solution of the linear systems, the user must call the FARKSPTFQMR()
routine:

subroutine FARKSPTFQMR(IPRETYPE, MAXL, DELT, IER)
Interfaces with the ARKSptfqmr() and ARKSpilsSet* routines to specify use of the SPTFQMR iterative
linear solver.

Arguments: The arguments are the same as those with the same names for FARKSPGMR().

For descriptions of the optional user-supplied routines for use with FARKSPTFQMR() see the next section.

SPFGMR treatment of the linear systems

For the Scaled Preconditioned Flexible Generalized Minimum Residual solution of the linear systems, the user must
call the FARKSPFGMR() routine:

subroutine FARKSPFGMR(IPRETYPE, IGSTYPE, MAXL, DELT, IER)
Interfaces with the ARKSpfgmr() and ARKSpilsSet* routines to specify use of the SPFGMR iterative linear
solver.

Arguments: The arguments are the same as those for FARKSPGMR().

For descriptions of the optional user-supplied routines for use with FARKSPFGMR() see the section User-supplied
routines for SPGMR/SPBCG/SPTFQMR/SPFGMR/PCG.

PCG treatment of the linear systems

For the Preconditioned Conjugate Gradient solution of symmetric linear systems, the user must call the FARKPCG()
routine:

subroutine FARKPCG(IPRETYPE, MAXL, DELT, IER)
Interfaces with the ARKPcg() and ARKSpilsSet* routines to specify use of the PCG iterative linear solver.

Arguments: The arguments are the same as those with the same names for FARKSPGMR().

For descriptions of the optional user-supplied routines for use with FARKPCG() see the section User-supplied routines
for SPGMR/SPBCG/SPTFQMR/SPFGMR/PCG.

142 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

User-supplied routines for SPGMR/SPBCG/SPTFQMR/SPFGMR/PCG

With treatment of the linear systems by any of the Krylov iterative solvers, there are three optional user-supplied
routines – FARKJTIMES(), FARKPSET() and FARKPSOL(). The specifications of these functions are given
below.

The first of these optional routines when using a Krylov iterative solver is a routine to compute the product of the
system Jacobian J = ∂fI

∂y and a given vector v. If supplied, it must have the following form:

subroutine FARKJTIMES(V, FJV, T, Y, FY, H, IPAR, RPAR, WORK, IER)
Interface to provide a user-supplied Jacobian-times-vector product approximation function (corresponding to a
C interface routine of type ARKSpilsJacTimesVecFn()), to be used by one of the Krylov iterative linear
solvers.

Arguments:

• V (realtype, input) – array containing the vector to multiply.

• FJV (realtype, output) – array containing resulting product vector.

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing dependent state variables.

• FY (realtype, input) – array containing dependent state derivatives.

• H (realtype, input) – current step size.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WORK (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, 6= 0 if an error).

Notes: Typically this routine will use only NEQ, T, Y, V, and FJV. It must compute the product vector Jv, where
v is given in V, and the product is stored in FJV.

If this routine has been supplied by the user, then, following the call to FARKSPGMR(), FARKSPBCG(),
FARKSPTFQMR(), FARKSPFGMR() or FARKPCG(), the user must call the routine FARKSPILSSETJAC() with
FLAG 6= 0 to specify use of the user-supplied Jacobian-times-vector function:

subroutine FARKSPILSSETJAC(FLAG, IER)
Interface to the function ARKSpilsSetJacTimesVecFn() to specify use of the user-supplied Jacobian-
times-vector function FARKJTIMES().

Arguments:

• FLAG (int, input) – flag denoting to use FARKJTIMES() routine.

• IER (int, output) – return flag (0 if success, 6= 0 if an error).

If preconditioning is to be performed during the Krylov solver (i.e. the solver was set up with IPRETYPE 6= 0), then
the user must also call the routine FARKSPILSSETPREC() with FLAG 6= 0:

subroutine FARKSPILSSETPREC(FLAG, IER)
Interface to the function ARKSpilsSetPreconditioner() to specify use of the user-supplied precondi-
tioner setup and solve functions, FARKPSET() and FARKPSOL(), respectively.

Arguments:

• FLAG (int, input) – flag denoting use of user-supplied preconditioning routines.

• IER (int, output) – return flag (0 if success, 6= 0 if an error).

5.2. Fortran Data Types 143

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

In addition, the user must provide the following two routines to implement the preconditioner setup and solve functions
to be used within the solve.

subroutine FARKPSET(T, Y, FY, JOK, JCUR, GAMMA, H, IPAR, RPAR, V1, V2, V3, IER)
User-supplied preconditioner setup routine (of type ARKSpilsPrecSetupFn()).

Arguments:

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – current dependent state variable array.

• FY (realtype, input) – current dependent state variable derivative array.

• JOK (int, input) – flag indicating whether Jacobian-related data needs to be recomputed: 0 = recom-
pute, 1 = reuse with the current value of GAMMA.

• JCUR (realtype, output) – return flag to denote if Jacobian data was recomputed (1=yes, 0=no).

• GAMMA (realtype, input) – Jacobian scaling factor.

• H (realtype, input) – current step size.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

• V1, V2, V3 (realtype, input) – arrays containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable failure, <0 if a non-recoverable
failure).

Notes: This routine must set up the preconditioner P to be used in the subsequent call to FARKPSOL(). The
preconditioner (or the product of the left and right preconditioners if using both) should be an approximation to
the matrix M − γJ , where M is the system mass matrix, γ is the input GAMMA, and J = ∂fI

∂y .

subroutine FARKPSOL(T, Y, FY, R, Z, GAMMA, DELTA, LR, IPAR, RPAR, VT, IER)
User-supplied preconditioner solve routine (of type ARKSpilsPrecSolveFn()).

Arguments:

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – current dependent state variable array.

• FY (realtype, input) – current dependent state variable derivative array.

• R (realtype, input) – right-hand side array.

• Z (realtype, output) – solution array.

• GAMMA (realtype, input) – Jacobian scaling factor.

• DELTA (realtype, input) – desired residual tolerance.

• LR (int, input) – flag denoting to solve the right or left preconditioner system: 1 = left preconditioner,
2 = right preconditioner.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

• VT (realtype, input) – array containing temporary workspace of same size as Y.

144 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• IER (int, output) – return flag (0 if success, >0 if a recoverable failure, <0 if a non-recoverable
failure).

Notes: Typically this routine will use only NEQ, T, Y, GAMMA, R, LR, and Z. It must solve the preconditioner
linear system Pz = r. The preconditioner (or the product of the left and right preconditioners if both are
nontrivial) should be an approximation to the matrix M(T)− γJ , where M is the system mass matrix, γ is the
input GAMMA, and J = ∂fI

∂y .

Notes:

1. If the user’s FARKJTIMES() or FARKPSET() routine uses difference quotient approximations, it may need
to use the error weight array EWT and/or the unit roundoff, in the calculation of suitable increments. Also, if
FARKPSOL() uses an iterative method in its solution, the residual vector ρ = r − Pz of the system should be
made less than δ = DELTA in the weighted l2 norm, i.e.(∑

i

(ρiEWTi)
2

)1/2

< δ.

2. If needed in FARKJTIMES(), FARKPSOL(), or FARKPSET(), the error weight array EWT can be obtained
by calling FARKGETERRWEIGHTS() using one of the work arrays as temporary storage for EWT.

3. If needed in FARKJTIMES(), FARKPSOL(), or FARKPSET(), the unit roundoff can be obtained as the
optional output ROUT(6) (available after the call to FARKMALLOC()) and can be passed using either the RPAR
user data array or a common block.

Mass matrix linear solver specification

As described in the section Mass matrix solver, in the case of using a problem with a non-identity mass matrix (no
matter whether the integrator is implicit, explicit or ImEx), linear systems of the form Mx = b must be solved, where
M(t) is the possibly time-dependent system mass matrix. ARKode presently includes a variety of choices for the
treatment of these systems, and the user of FARKODE must call a routine with a specific name to make the desired
choice.

[S, O, T] Dense treatment of the mass matrix linear system

To use the direct dense linear solver based on the internal SUNDIALS implementation, the user must call the
FARKMASSDENSE() routine:

subroutine FARKMASSDENSE(NEQ, IER)
Interfaces with the ARKMassDense() function to specify use of the dense direct linear solver.

Arguments:

• NEQ (long int, input) – size of the ODE system.

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

Alteratively, to use the LAPACK-based direct dense linear solver, a user must call the similar
FARKMASSLAPACKDENSE() routine:

subroutine FARKMASSLAPACKDENSE(NEQ, IER)
Interfaces with the ARKMassLapackDense() function to specify use of the LAPACK the dense direct linear
solver.

Arguments:

• NEQ (int, input) – size of the ODE system.

5.2. Fortran Data Types 145

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

When using either of these dense linear solvers, the user must supply a routine that computes the system mass matrix
M(t). This routine must have the following form:

subroutine FARKDMASS(NEQ, T, DMASS, IPAR, RPAR, WK1, WK2, WK3, IER)
Interface to provide a user-supplied dense mass matrix computation function (of type
ARKDlsDenseMassFn()), to be used by the FARKMASSDENSE() solver.

Arguments:

• NEQ (long int, input) – size of the ODE system.

• T (realtype, input) – current value of the independent variable.

• DMASS (realtype of size (NEQ,NEQ), output) – 2D array containing the mass matrix entries.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: Typically this routine will use only NEQ, T, and DMASS. It must compute the mass matrix and store it
column-wise in DMASS.

To indicate that the FARKDMASS() routine is provided, then, following the call to FARKMASSDENSE() or
FARKMASSLAPACKDENSE(), the user must call the routine FARKDENSESETMASS():

subroutine FARKDENSESETMASS(IER)
Interface to the ARKDlsSetDenseMassFn() function, specifying to use the user-supplied routine
FARKDMASS() for the mass matrix calculation.

Arguments:

• IER (int, output) – return flag (0 if success, 6= 0 if an error occurred).

[S, O, T] Band treatment of the mass matrix linear system

To use the direct band linear solver that is based on the internal SUNDIALS implementation, the user must call the
FARKMASSBAND() routine.

subroutine FARKMASSBAND(NEQ, MU, ML, IER)
Interfaces with the ARKMassBand() function to specify use of the dense banded linear solver.

Arguments:

• NEQ (long int, input) – size of the ODE system.

• MU (long int, input) – upper half-bandwidth.

• ML (long int, input) – lower half-bandwidth.

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

Alteratively, to use the LAPACK-based direct banded linear solver, a user must call the similar
FARKMASSLAPACKBAND() routine:

146 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

subroutine FARKMASSLAPACKBAND(NEQ, MU, ML, IER)
Interfaces with the ARKMassLapackBand() function to specify use of the dense banded linear solver.

Arguments:

• NEQ (int, input) – size of the ODE system.

• MU (int, input) – upper half-bandwidth.

• ML (int, input) – lower half-bandwidth.

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

When using either of these banded linear solvers, the user must supply a routine that computes the possibly time-
dependent banded mass matrix M(t). This routine must have the following form:

subroutine FARKBMASS(NEQ, MU, ML, MDIM, T, BMASS, IPAR, RPAR, WK1, WK2, WK3, IER)
Interface to provide a user-supplied band mass matrix calculation function (of type ARKDlsBandMassFn()),
to be used by the FARKMASSBAND() solver.

Arguments:

• NEQ (long int, input) – size of the ODE system.

• MU (long int, input) – upper half-bandwidth.

• ML (long int, input) – lower half-bandwidth.

• MDIM (long int, input) – leading dimension of BMASS array.

• T (realtype, input) – current value of the independent variable.

• BMASS (realtype of size (MDIM,NEQ), output) – 2D array containing the mass matrix entries.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: Typically this routine will use only NEQ, MU, ML, T, and BMASS. It must load the MDIM by N array
BMASS with the mass matrix at the current (t) in band form. Store in BMASS(k,j) the mass matrix element Mi,j

with k = i - j + MU + 1 (or k = 1, ..., ML+MU+1) and j = 1, ..., N.

To indicate that the FARKBMASS() routine is provided, then, following the call to FARKMASSBAND() or
FARKMASSLAPACKBAND(), the user must call the routine FARKBANDSETMASS():

subroutine FARKBANDSETMASS(IER)
Interface to the ARKDlsSetBandMassFn() function, specifying to use the user-supplied routine
FARKBMASS() for the mass matrix calculation.

Arguments:

• IER (int, output) – return flag (0 if success, 6= 0 if an error occurred).

[S, O, T] Sparse treatment of the mass matrix linear system

To use the sparse direct linear solver interface to the KLU library, the user must call the FARKMASSKLU() routine:

subroutine FARKMASSKLU(NEQ, NNZ, ORDERING, IER)
Interfaces with the ARKMassKLU() function to specify use of the sparse direct linear solver.

5.2. Fortran Data Types 147

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Arguments:

• NEQ (int, input) – size of the ODE system.

• NNZ (int, input) – maximum number of nonzeros in the sparse mass matrix.

• ORDERING (int, input) – the matrix ordering desired, possible values come from the KLU package
(0 = AMD, 1 = COLAMD)

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

Alteratively, to use the SuperLU_MT-based threaded sparse direct linear solver, a user must call the similar
FARKMASSSUPERLUMT() routine:

subroutine FARKMASSSUPERLUMT(NTHREADS, NEQ, NNZ, ORDERING, IER)
Interfaces with the ARKMassSuperLUMT() function to specify use of the SuperLU_MT threaded sparse
direct linear solver.

Arguments:

• NTHREADS (int, input) – number of threads to use in factorization and solution of the mass matrix
systems.

• NEQ (int, input) – size of the ODE system.

• NNZ (int, input) – maximum number of nonzeros in the sparse mass matrix.

• ORDERING (int, input) – the matrix ordering desired, possible values come from the SuperLU_MT
package:

0 = Natural

1 = Minimum degree on ATA

2 = Minimum degree on AT +A

3 = COLAMD

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

When using either of these sparse direct linear solvers, the user must supply a routine that computes a compressed-
sparse-column approximation of the possibly time-dependent system mass matrix M(t), having the following form:

subroutine FARKSPMASS(T, N, NNZ, MDATA, MRVALS, MCPTRS, IPAR, RPAR, WK1, WK2, WK3, IER)
Interface to provide a user-supplied sparse mass matrix approximation function (of type
ARKSlsSparseMassFn()), to be used by the FARKMASSKLU() or FARKMASSSUPERLUMT()
solver.

Arguments:

• T (realtype, input) – current value of the independent variable.

• N (int, input) – number of mass matrix rows.

• NNZ (int, input) – allocated length of nonzero storage in mass matrix.

• MDATA (realtype of size NNZ, output) – nonzero values in mass matrix.

• MRVALS (int of size NNZ, output) – row indices for each nonzero mass matrix entry.

• MCPTRS (int of size N+1, output) – indices of where each column’s nonzeros begin in data array;
last entry points just past end of data values.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

148 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: Due to the format of both the KLU and SuperLU_MT solvers, the number of matrix rows, number of
matrix nonzeros, and row index array are all of type int and not long int.

When supplying the FARKSPMASS() routine, following the call to either FARKMASSKLU() or
FARKMASSSUPERLUMT(), the user must call the routine FARKSPARSESETMASS().

subroutine FARKSPARSESETMASS(IER)
Interface to the ARKSlsSetSparseMassFn() function, specifying that the user-supplied routine
FARKSPMASS() has been provided for the mass matrix calculation.

Arguments:

• IER (int, output) – return flag (0 if success, 6= 0 if an error occurred).

SPGMR treatment of the mass matrix linear systems

For the Scaled Preconditioned GMRES solution of the linear systems, the user must call the FARKMASSSPGMR()
routine:

subroutine FARKMASSSPGMR(IPRETYPE, IGSTYPE, MAXL, DELT, IER)
Interfaces with the ARKMassSpgmr() and ARKSpilsSet* routines to specify use of the SPGMR iterative
linear solver.

Arguments:

• IPRETYPE (int, input) – preconditioner type: 0 = none, 1 = left only, 2 = right only, 3 = both sides.

• IGSTYPE (int, input) – Gram-schmidt orthogonalization process: 1 = modified G-S, 2 = classical
G-S.

• MAXL (int; input) – maximum Krylov subspace dimension (0 for default).

• DELT (realtype, input) – linear convergence tolerance factor (0.0 for default).

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

For descriptions of the required and optional user-supplied routines for use with FARKMASSSPGMR() see the section
User-supplied routines for MASSSPGMR/MASSSPBCG/MASSSPTFQMR/MASSSPFGMR/MASSPCG.

SPBCG treatment of the mass matrix linear systems

For the Scaled Preconditioned Bi-CGStab solution of the linear systems, the user must call the FARKMASSSPBCG()
routine:

subroutine FARKMASSSPBCG(IPRETYPE, MAXL, DELT, IER)
Interfaces with the ARKMassSpbcg() and ARKSpilsSet* routines to specify use of the SPBCG iterative linear
solver.

Arguments: The arguments are the same as those with the same names for FARKMASSSPGMR().

For descriptions of the required and optional user-supplied routines for use with FARKMASSSPBCG() see the section
User-supplied routines for MASSSPGMR/MASSSPBCG/MASSSPTFQMR/MASSSPFGMR/MASSPCG.

5.2. Fortran Data Types 149

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

SPTFQMR treatment of the mass matrix linear systems

For the Scaled Preconditioned TFQMR solution of the linear systems, the user must call the FARKMASSSPTFQMR()
routine:

subroutine FARKMASSSPTFQMR(IPRETYPE, MAXL, DELT, IER)
Interfaces with the ARKMassSptfqmr() and ARKSpilsSet* routines to specify use of the SPTFQMR iterative
linear solver.

Arguments: The arguments are the same as those with the same names for FARKMASSSPGMR().

For descriptions of the required and optional user-supplied routines for use with FARKMASSSPTFQMR() see the
section User-supplied routines for MASSSPGMR/MASSSPBCG/MASSSPTFQMR/MASSSPFGMR/MASSPCG.

SPFGMR treatment of the mass matrix linear systems

For the Scaled Preconditioned Flexible Generalized Minimum Residual solution of the linear systems, the user must
call the FARKMASSSPFGMR() routine:

subroutine FARKMASSSPFGMR(IPRETYPE, IGSTYPE, MAXL, DELT, IER)
Interfaces with the ARKMassSpfgmr() and ARKSpilsSet* routines to specify use of the SPFGMR iterative
linear solver.

Arguments: The arguments are the same as those for FARKMASSSPGMR().

For descriptions of the required and optional user-supplied routines for use with FARKMASSSPFGMR() see the section
User-supplied routines for MASSSPGMR/MASSSPBCG/MASSSPTFQMR/MASSSPFGMR/MASSPCG.

PCG treatment of the mass matrix linear systems

For the Preconditioned Conjugate Gradient solution of symmetric linear systems, the user must call the
FARKMASSPCG() routine:

subroutine FARKMASSPCG(IPRETYPE, MAXL, DELT, IER)
Interfaces with the ARKMassPcg() and ARKSpilsSet* routines to specify use of the PCG iterative linear
solver.

Arguments: The arguments are the same as those with the same names for FARKMASSSPGMR().

For descriptions of the required and optional user-supplied routines for use with FARKMASSPCG() see the section
User-supplied routines for MASSSPGMR/MASSSPBCG/MASSSPTFQMR/MASSSPFGMR/MASSPCG.

User-supplied routines for MASSSPGMR/MASSSPBCG/MASSSPTFQMR/MASSSPFGMR/MASSPCG

With treatment of the mass matrix linear systems by any of the Krylov iterative solvers, there is one required user-
supplied routine, FARKMTIMES(), and there are two optional user-supplied routines, FARKMASSPSET() and
FARKMASSPSOL(). The specifications of these functions are given below.

The required routine when using a Krylov iterative mass matrix linear solver is a routine to compute the product of the
possibly time-dependent system mass matrix M(t) and a given vector v. This routine must have the following form:

subroutine FARKMTIMES(V, MV, T, IPAR, RPAR, IER)
Interface to a user-supplied mass-matrix-times-vector product approximation function (corresponding to a C
interface routine of type ARKSpilsMassTimesVecFn()), to be used by one of the Krylov iterative linear
solvers.

Arguments:

150 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• V (realtype, input) – array containing the vector to multiply.

• MV (realtype, output) – array containing resulting product vector.

• T (realtype, input) – current value of the independent variable.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 if success, 6= 0 if an error).

Notes: Typically this routine will use only NEQ, T, V, and MV. It must compute the product vector Mv, where
v is given in V, and the product is stored in MV.

To indicate that this routine has been supplied by the user, then, following the call to FARKMASSSPGMR(),
FARKMASSSPBCG(), FARKMASSSPTFQMR(), FARKMASSSPFGMR() or FARKMASSPCG(), the user must call
the routine FARKSPILSSETMASS():

subroutine FARKSPILSSETMASS(IER)
Interface to the function ARKSpilsSetMassTimesVecFn() to specify use of the user-supplied mass-
matrix-times-vector function FARKMTIMES().

Arguments:

• IER (int, output) – return flag (0 if success, 6= 0 if an error).

Two optional user-supplied preconditioning routines may be supplied to help accelerate convergence of the Krylov
mass matrix linear solver. If preconditioning was selected when enabling the Krylov solver (i.e. the solver was set up
with IPRETYPE 6= 0), then the user must also call the routine FARKSPILSSETMASSPREC() with FLAG 6= 0:

subroutine FARKSPILSSETMASSPREC(FLAG, IER)
Interface to the function ARKSpilsSetMassPreconditioner() to specify use of the user-supplied pre-
conditioner setup and solve functions, FARKMASSPSET() and FARKMASSPSOL(), respectively.

Arguments:

• FLAG (int, input) – flag denoting use of user-supplied preconditioning routines.

• IER (int, output) – return flag (0 if success, 6= 0 if an error).

In addition, the user must provide the following two routines to implement the preconditioner setup and solve functions
to be used within the solve.

subroutine FARKMASSPSET(T, IPAR, RPAR, V1, V2, V3, IER)
User-supplied preconditioner setup routine (of type ARKSpilsMassPrecSetupFn()).

Arguments:

• T (realtype, input) – current value of the independent variable.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

• V1, V2, V3 (realtype, input) – arrays containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable failure, <0 if a non-recoverable
failure).

Notes: This routine must set up the preconditioner P to be used in the subsequent call to FARKMASSPSOL().
The preconditioner (or the product of the left and right preconditioners if using both) should be an approximation
to the matrix M(t), where M is the system mass matrix.

5.2. Fortran Data Types 151

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

subroutine FARKMASSPSOL(T, R, Z, DELTA, LR, IPAR, RPAR, VT, IER)
User-supplied preconditioner solve routine (of type ARKSpilsMassPrecSolveFn()).

Arguments:

• T (realtype, input) – current value of the independent variable.

• R (realtype, input) – right-hand side array.

• Z (realtype, output) – solution array.

• DELTA (realtype, input) – desired residual tolerance.

• LR (int, input) – flag denoting to solve the right or left preconditioner system: 1 = left preconditioner,
2 = right preconditioner.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

• VT (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable failure, <0 if a non-recoverable
failure).

Notes: Typically this routine will use only T, R, LR, and Z. It must solve the preconditioner linear system
Pz = r. The preconditioner (or the product of the left and right preconditioners if both are nontrivial) should
be an approximation to the system mass matrix M(t).

Notes:

1. If the user’s FARKMASSPSOL() uses an iterative method in its solution, the residual vector ρ = r − Pz of the
system should be made less than δ = DELTA in the weighted l2 norm, i.e.(∑

i

(ρiEWTi)
2

)1/2

< δ.

2. If needed in FARKMTIMES(), FARKMASSPSOL(), or FARKMASSPSET(), the error weight array EWT can
be obtained by calling FARKGETERRWEIGHTS() using one of the work arrays as temporary storage for EWT.

3. If needed in FARKMTIMES(), FARKMASSPSOL(), or FARKMASSPSET(), the unit roundoff can be obtained
as the optional output ROUT(6) (available after the call to FARKMALLOC()) and can be passed using either the
RPAR user data array or a common block.

Problem solution

Carrying out the integration is accomplished by making calls to FARKODE().

subroutine FARKODE(TOUT, T, Y, ITASK, IER)
Fortran interface to the C routine ARKode() for performing the solve, along with many of the ARK*Get*
routines for reporting on solver statistics.

Arguments:

• TOUT (realtype, input) – next value of t at which a solution is desired.

• T (realtype, output) – value of independent variable that corresponds to the output Y

• Y (realtype, output) – array containing dependent state variables on output.

• ITASK (int, input) – task indicator :

152 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

– 1 = normal mode (overshoot TOUT and interpolate)

– 2 = one-step mode (return after each internal step taken)

– 3 = normal ‘tstop’ mode (like 1, but integration never proceeds past TSTOP, which must be
specified through a preceding call to FARKSETRIN() using the key STOP_TIME)

– 4 = one step ‘tstop’ mode (like 2, but integration never goes past TSTOP).

• IER (int, output) – completion flag:

– 0 = success,

– 1 = tstop return,

– 2 = root return,

– values -1, ..., -10 are failure modes (see ARKode() and Appendix: ARKode Constants).

Notes: The current values of the optional outputs are immediately available in IOUT and ROUT upon return
from this function (see Table: Optional FARKODE integer outputs and Table: Optional FARKODE real outputs).

A full description of error flags and output behavior of the solver (values filled in for T and Y) is provided in the
description of ARKode().

Additional solution output

After a successful return from FARKODE(), the routine FARKDKY() may be used to obtain a derivative of the
solution, of order up to 3, at any t within the last step taken.

subroutine FARKDKY(T, K, DKY, IER)
Fortran interface to the C routine ARKDKY() for interpolating output of the solution or its derivatives at any
point within the last step taken.

Arguments:

• T (realtype, input) – time at which solution derivative is desired, within the interval [tn − h, tn].

• K (int, input) – derivative order (0 ≤ k ≤ 3).

• DKY (realtype, output) – array containing the computed K-th derivative of y.

• IER (int, output) – return flag (0 if success, <0 if an illegal argument).

Problem reinitialization

To re-initialize the ARKode solver for the solution of a new problem of the same size as one already solved, the user
must call FARKREINIT():

subroutine FARKREINIT(T0, Y0, IMEX, IATOL, RTOL, ATOL, IER)
Re-initializes the Fortran interface to the ARKode solver.

Arguments: The arguments have the same names and meanings as those of FARKMALLOC().

Notes: This routine performs no memory allocation, instead using the existing memory created by the previous
FARKMALLOC() call. The call to specify the linear system solution method may or may not be needed.

Following a call to FARKREINIT(), a call to specify the linear system solver must be made if the choice of linear
solver is being changed. Otherwise, a call to reinitialize the linear solver last used is only needed if linear solver input
parameters need modification.

In the case of the BAND solver, for any change in the half-bandwidth parameters, call FARKBAND() (or
FARKLAPACKBAND()) again, as described above.

5.2. Fortran Data Types 153

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

In the case of the KLU sparse solver, ARKode will reuse much of the factorization information from one solve to the
next. It is therefore recommended that on problem re-initialization the user force a full refactorization of the Jacobian
matrix with a call to FARKKLUREINIT(), as follows:

subroutine FARKKLUREINIT(NEQ, NNZ, REINIT_TYPE)
Re-initializes the factorization of the KLU sparse Jacobian.

Arguments:

• NEQ (int, input) – the problem size

• NNZ (int, input) – the number of nonzeros in the sparse Jacobian matrix

• REINIT_TYPE (int, input) – allowable values are 1 and 2. For a value of 1, the matrix will be
destroyed and a new one will be allocated with NNZ nonzeros. For a value of 2, only symbolic and
numeric factorizations will be completed.

We note that similar functionality is not provided for the ARKode interface to the SuperLU_MT sparse solver.

In the case of SPGMR, for a change of inputs other than MAXL, the user may call the routine FARKSPGMRREINIT()
to reinitialize SPGMR without reallocating its memory, as follows:

subroutine FARKSPGMRREINIT(IPRETYPE, IGSTYPE, DELT, IER)
Re-initializes the Fortran interface to the SPGMR linear solver.

Arguments: The arguments have the same names and meanings as those of FARKSPGMR().

However, if MAXL is being changed, then the user should call FARKSPGMR() instead, since memory will need to be
deallocated/reallocated by the solver.

In the case of SPBCG, for a change in any inputs, the user can reinitialize SPBCG without reallocating its memory by
calling FARKSPBCGREINIT(), as follows:

subroutine FARKSPBCGREINIT(IPRETYPE, MAXL, DELT, IER)
Re-initializes the Fortran interface to the SPBCG linear solver.

Arguments: The arguments have the same names and meanings as those of FARKSPBCG().

In the case of SPTFQMR, for a change in any inputs, the user can reinitialize SPTFQMR without reallocating its
memory by calling FARKSPTFQMRREINIT(), as follows:

subroutine FARKSPTFQMRREINIT(IPRETYPE, MAXL, DELT, IER)
Re-initializes the Fortran interface to the SPBTFQMR linear solver.

Arguments: The arguments have the same names and meanings as those of FARKSPTFQMR().

In the case of SPFGMR, for a change of inputs other than MAXL, the user may call the routine
FARKSPFGMRREINIT() to reinitialize SPFGMR without reallocating its memory, as follows:

subroutine FARKSPFGMRREINIT(IPRETYPE, IGSTYPE, DELT, IER)
Re-initializes the Fortran interface to the SPFGMR linear solver.

Arguments: The arguments have the same names and meanings as those of FARKSPFGMR().

However, if MAXL is being changed, then the user should call FARKSPFGMR() instead, since memory will need to
be deallocated/reallocated by the solver.

In the case of PCG, for a change in any inputs, the user can reinitialize PCG without reallocating its memory by calling
FARKPCGREINIT(), as follows:

subroutine FARKPCGREINIT(IPRETYPE, MAXL, DELT, IER)
Re-initializes the Fortran interface to the PCG linear solver.

Arguments: The arguments have the same names and meanings as those of FARKPCG().

154 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Similarly, following a call to FARKREINIT(), a call to specify the mass matrix linear system solver must be made if
the choice of mass matrix linear solver is being changed. Otherwise, a call to reinitialize the mass matrix linear solver
last used is only needed if linear solver input parameters need modification.

In the case of the BAND solver, for any change in the half-bandwidth parameters, call FARKMASSBAND() (or
FARKMASSLAPACKBAND()) again, as described above.

In the case of the KLU sparse solver, ARKode will reuse much of the factorization information from one solve to the
next. It is therefore recommended that on problem re-initialization the user force a full refactorization of the system
mass matrix with a call to FARKMASSKLUREINIT(), as follows:

subroutine FARKMASSKLUREINIT(NEQ, NNZ, REINIT_TYPE)
Re-initializes the factorization of the KLU sparse mass matrix

Arguments:

• NEQ (int, input) – the problem size

• NNZ (int, input) – the number of nonzeros in the sparse mass matrix

• REINIT_TYPE (int, input) – allowable values are 1 and 2. For a value of 1, the matrix will be
destroyed and a new one will be allocated with NNZ nonzeros. For a value of 2, only symbolic and
numeric factorizations will be completed.

We note that similar functionality is not provided for the ARKode interface to the SuperLU_MT sparse solver.

In the case of SPGMR, for a change of inputs other than MAXL, the user may call the routine
FARKMASSSPGMRREINIT() to reinitialize SPGMR without reallocating its memory, as follows:

subroutine FARKMASSSPGMRREINIT(IPRETYPE, IGSTYPE, DELT, IER)
Re-initializes the Fortran interface to the SPGMR mass matrix linear solver.

Arguments: The arguments have the same names and meanings as those of FARKMASSSPGMR().

However, if MAXL is being changed, then the user should call FARKMASSSPGMR() instead, since memory will need
to be deallocated/reallocated by the solver.

In the case of SPBCG, for a change in any inputs, the user can reinitialize SPBCG without reallocating its memory by
calling FARKMASSSPBCGREINIT(), as follows:

subroutine FARKMASSSPBCGREINIT(IPRETYPE, MAXL, DELT, IER)
Re-initializes the Fortran interface to the SPBCG mass matrix linear solver.

Arguments: The arguments have the same names and meanings as those of FARKMASSSPBCG().

In the case of SPTFQMR, for a change in any inputs, the user can reinitialize SPTFQMR without reallocating its
memory by calling FARKMASSSPTFQMRREINIT(), as follows:

subroutine FARKMASSSPTFQMRREINIT(IPRETYPE, MAXL, DELT, IER)
Re-initializes the Fortran interface to the SPBTFQMR mass matrix linear solver.

Arguments: The arguments have the same names and meanings as those of FARKMASSSPTFQMR().

In the case of SPFGMR, for a change of inputs other than MAXL, the user may call the routine
FARKMASSSPFGMRREINIT() to reinitialize SPFGMR without reallocating its memory, as follows:

subroutine FARKMASSSPFGMRREINIT(IPRETYPE, IGSTYPE, DELT, IER)
Re-initializes the Fortran interface to the SPFGMR mass matrix linear solver.

Arguments: The arguments have the same names and meanings as those of FARKMASSSPFGMR().

However, if MAXL is being changed, then the user should call FARKMASSSPFGMR() instead, since memory will
need to be deallocated/reallocated by the solver.

5.2. Fortran Data Types 155

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

In the case of PCG, for a change in any inputs, the user can reinitialize PCG without reallocating its memory by calling
FARKMASSPCGREINIT(), as follows:

subroutine FARKMASSPCGREINIT(IPRETYPE, MAXL, DELT, IER)
Re-initializes the Fortran interface to the PCG mass matrix linear solver.

Arguments: The arguments have the same names and meanings as those of FARKMASSPCG().

Resizing the ODE system

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when solving a
spatially-adaptive PDE), the FARKODE() integrator may be “resized” between integration steps, through calls to the
FARKRESIZE() function, that interfaces with the C routine ARKodeResize(). This function modifies ARKode’s
internal memory structures to use the new problem size, without destruction of the temporal adaptivity heuristics.
It is assumed that the dynamical time scales before and after the vector resize will be comparable, so that all time-
stepping heuristics prior to calling FARKRESIZE() remain valid after the call. If instead the dynamics should be
re-calibrated, the FARKODE memory structure should be deleted with a call to FARKFREE(), and re-created with a
call to FARKMALLOC().

subroutine FARKRESIZE(T0, Y0, HSCALE, ITOL, RTOL, ATOL, IER)
Re-initializes the Fortran interface to the ARKode solver for a differently-sized ODE system.

Arguments:

• T0 (realtype, input) – initial value of the independent variable t.

• Y0 (realtype, input) – array of dependent-variable initial conditions.

• HSCALE (realtype, input) – desired step size scale factor:

– 1.0 is the default,

– any value <= 0.0 results in the default.

• ITOL (int, input) – flag denoting that a new relative tolerance and vector of absolute tolerances are
supplied in the RTOL and ATOL arguments:

– 0 = retain the current scalar-valued relative and absolute tolerances, or the user-supplied error
weight function, FARKEWT().

– 1 = RTOL contains the new scalar-valued relative tolerance and ATOL contains a new array of
absolute tolerances.

• RTOL (realtype, input) – scalar relative tolerance.

• ATOL (realtype, input) – array of absolute tolerances.

• IER (int, output) – return flag (0 success, 6= 0 failure).

Notes: This routine performs the opposite set of of operations as FARKREINIT(): it does not reinitialize any
of the time-step heuristics, but it does perform memory reallocation.

Following a call to FARKRESIZE(), a call to re-specify the linear system solver must be made after the call to
FARKRESIZE(), since the internal data structures for all linear solvers will also be the incorrect size.

If any user-supplied linear solver helper routines were used (Jacobian evaluation, Jacobian-vector product, mass matrix
evaluation, mass-matrix-vector product, preconditioning, etc.), then the relevant “set” routines to specify their usage
must be called again following the re-specification of the linear solver module(s).

156 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Memory deallocation

To free the internal memory created by FARKMALLOC(), the user may call FARKFREE(), as follows:

subroutine FARKFREE()
Frees the internal memory created by FARKMALLOC().

Arguments: None.

5.2.3 FARKODE optional output

We note that the optional inputs to FARKODE have already been described in the section Setting optional inputs.

IOUT and ROUT arrays

In the Fortran interface, the optional outputs from the FARKODE() solver are accessed not through individual func-
tions, but rather through a pair of user-allocated arrays, IOUT (having long int type) of dimension at least 29, and
ROUT (having realtype type) of dimension at least 6. These arrays must be allocated by the user program that
calls FARKODE(), that passes them through the Fortran interface as arguments to FARKMALLOC(). Following this
call, FARKODE() will modify the entries of these arrays to contain all optional output values provided to a Fortran
user.

In the following tables, Table: Optional FARKODE integer outputs and Table: Optional FARKODE real outputs, we
list the entries in these arrays by index, naming them according to their role with the main ARKode solver, and list the
relevant ARKode C/C++ function that is actually called to extract the output value. Similarly, optional integer output
values that are specific to the ARKDENSE and ARKBAND linear solvers are listed in Table: Optional ARKDENSE
and ARKBAND outputs, optional integer output values that are specific to the ARKKLU and ARKSUPERLUMT linear
solvers are listed in Table: Optional ARKKLU and ARKSUPERLUMT outputs, while integer optional output values
specific to the ARKSPGMR, ARKSPBCG, ARKSPTFQMR, ARKSPFGMR and ARKPCG iterative linear solvers are
listed in Table: Optional ARKSPGMR, ARKSPBCG, ARKSPTFQMR, ARKSPFGMR and ARKPCG outputs.

For more details on the optional inputs and outputs to ARKode, see the sections Optional input functions and Optional
output functions.

Table: Optional FARKODE integer outputs

IOUT Index Optional output ARKode function
1 LENRW ARKodeGetWorkSpace()
2 LENIW ARKodeGetWorkSpace()
3 NST ARKodeGetNumSteps()
4 NST_STB ARKodeGetNumExpSteps()
5 NST_ACC ARKodeGetNumAccSteps()
6 NST_ATT ARKodeGetNumStepAttempts()
7 NFE ARKodeGetNumRhsEvals() (num fE calls)
8 NFI ARKodeGetNumRhsEvals() (num fI calls)
9 NSETUPS ARKodeGetNumLinSolvSetups()
10 NETF ARKodeGetNumErrTestFails()
11 NNI ARKodeGetNumNonlinSolvIters()
12 NCFN ARKodeGetNumNonlinSolvConvFails()
13 NGE ARKodeGetNumGEvals()

5.2. Fortran Data Types 157

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Table: Optional FARKODE real outputs

ROUT Index Optional output ARKode function
1 H0U ARKodeGetActualInitStep()
2 HU ARKodeGetLastStep()
3 HCUR ARKodeGetCurrentStep()
4 TCUR ARKodeGetCurrentTime()
5 TOLSF ARKodeGetTolScaleFactor()
6 UROUND UNIT_ROUNDOFF (see the section Data Types)

Table: Optional ARKDENSE and ARKBAND outputs

IOUT Index Optional output ARKode function
14 LENRWLS ARKDlsGetWorkSpace()
15 LENIWLS ARKDlsGetWorkSpace()
16 LSTF ARKDlsGetLastFlag()
17 NFELS ARKDlsGetNumRhsEvals()
18 NJE ARKDlsGetNumJacEvals()

Table: Optional ARKMASSDENSE and ARKMASSBAND outputs

IOUT Index Optional output ARKode function
23 LENRWMS ARKDlsGetMassWorkSpace()
24 LENIWMS ARKDlsGetMassWorkSpace()
25 LSTMF ARKDlsGetLastMassFlag()
26 NME ARKDlsGetNumMassEvals()

Table: Optional ARKKLU and ARKSUPERLUMT outputs

IOUT Index Optional output ARKode function
16 LSTF ARKSlsGetLastFlag()
18 NJE ARKSlsGetNumJacEvals()

Table: Optional ARKMASSKLU and ARKMASSSUPERLUMT outputs

IOUT Index Optional output ARKode function
25 LSTMF ARKSlsGetLastMassFlag()
26 NME ARKSlsGetNumMassEvals()

158 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Table: Optional ARKSPGMR, ARKSPBCG, ARKSPTFQMR, ARKSPFGMR and ARKPCG outputs

IOUT Index Optional output ARKode function
14 LENRWLS ARKSpilsGetWorkSpace()
15 LENIWLS ARKSpilsGetWorkSpace()
16 LSTF ARKSpilsGetLastFlag()
17 NFELS ARKSpilsGetNumRhsEvals()
18 NJTV ARKSpilsGetNumJtimesEvals()
19 NPE ARKSpilsGetNumPrecEvals()
20 NPS ARKSpilsGetNumPrecSolves()
21 NLI ARKSpilsGetNumLinIters()
22 NCFL ARKSpilsGetNumConvFails()

Table: Optional ARKMASSSPGMR, ARKMASSSPBCG, ARKMASSSPTFQMR, ARKMASSSPFGMR and ARK-
MASSPCG outputs

IOUT Index Optional output ARKode function
23 LENRWMS ARKSpilsGetMassWorkSpace()
24 LENIWMS ARKSpilsGetMassWorkSpace()
25 LSTMF ARKSpilsGetLastMassFlag()
26 NMPE ARKSpilsGetNumMassPrecEvals()
27 NMPS ARKSpilsGetNumMassPrecSolves()
28 NMLI ARKSpilsGetNumMassIters()
29 NMCFL ARKSpilsGetNumMassConvFails()

Additional optional output routines

In addition to the optional inputs communicated through FARKSET* calls and the optional outputs extracted from
IOUT and ROUT, the following user-callable routines are available.

To obtain the error weight array EWT, containing the multiplicative error weights used in the WRMS norms, the user
may call the routine FARKGETERRWEIGHTS() as follows:

subroutine FARKGETERRWEIGHTS(EWT, IER)
Retrieves the current error weight vector (interfaces with ARKodeGetErrWeights()).

Arguments:

• EWT (realtype, output) – array containing the error weight vector.

• IER (int, output) – return flag (0 if success, 6= 0 if an error).

Notes: The array EWT must have already been allocated by the user, of the same size as the solution array Y.

Similarly, to obtain the estimated local truncation errors, following a successful call to FARKODE(), the user may call
the routine FARKGETESTLOCALERR() as follows:

subroutine FARKGETESTLOCALERR(ELE, IER)
Retrieves the current local truncation error estimate vector (interfaces with
ARKodeGetEstLocalErrors()).

Arguments:

• ELE (realtype, output) – array with the estimated local truncation error vector.

• IER (int, output) – return flag (0 if success, 6= 0 if an error).

5.2. Fortran Data Types 159

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Notes: The array ELE must have already been allocated by the user, of the same size as the solution array Y.

5.2.4 Usage of the FARKROOT interface to rootfinding

The FARKROOT interface package allows programs written in Fortran to use the rootfinding feature of the ARKode
solver module. The user-callable functions in FARKROOT, with the corresponding ARKODE functions, are as fol-
lows:

• FARKROOTINIT() interfaces to ARKodeRootInit(),

• FARKROOTINFO() interfaces to ARKodeGetRootInfo(), and

• FARKROOTFREE() interfaces to ARKodeRootInit(), freeing memory by calling the initializer with no
root functions.

Note that at this time, FARKROOT does not provide support to specify the direction of zero-crossing that is to be
monitored. Instead, all roots are considered. However, the actual direction of zero-crossing may be captured by the
user through monitoring the sign of any non-zero elements in the array INFO returned by FARKROOTINFO().

In order to use the rootfinding feature of ARKode, after calling FARKMALLOC() but prior to calling FARKODE(),
the user must call FARKROOTINIT() to allocate and initialize memory for the FARKROOT module:

subroutine FARKROOTINIT(NRTFN, IER)
Initializes the Fortran interface to the FARKROOT module.

Arguments:

• NRTFN (int, input) – total number of root functions.

• IER (int, output) – return flag (0 success, -1 if ARKode memory is NULL, and -11 if a memory
allocation error occurred).

If rootfinding is enabled, the user must specify the functions whose roots are to be found. These rootfinding functions
should be implemented in the user-supplied FARKROOTFN() subroutine:

subroutine FARKROOTFN(T, Y, G, IPAR, RPAR, IER)
User supplied function implementing the vector-valued function g(t, y) such that the roots of the NRTFN com-
ponents gi(t, y) = 0 are sought.

Arguments:

• T (realtype, input) – independent variable value t.

• Y (realtype, input) – dependent variable array y.

• G (realtype, output) – function value array g(t, y).

• IPAR (long int, input/output) – integer user data array, the same as the array passed to
FARKMALLOC().

• RPAR (realtype, input/output) – real-valued user data array, the same as the array passed to
FARKMALLOC().

• IER (int, output) – return flag (0 success, < 0 if error).

When making calls to FARKODE() to solve the ODE system, the occurrence of a root is flagged by the return value
IER = 2. In that case, if NRTFN > 1, the functions gi(t, y) which were found to have a root can be identified by calling
the routine FARKROOTINFO():

subroutine FARKROOTINFO(NRTFN, INFO, IER)
Initializes the Fortran interface to the FARKROOT module.

Arguments:

160 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• NRTFN (int, input) – total number of root functions.

• INFO (int, input/output) – array of length NRTFN with root information (must be allocated by the
user). For each index, i = 1, ..., NRTFN:

– INFO(i) = 1 if gi(t, y) was found to have a root, and gi is increasing.

– INFO(i) = -1 if gi(t, y) was found to have a root, and gi is decreasing.

– INFO(i) = 0 otherwise.

• IER (int, output) – return flag (0 success, < 0 if error).

The total number of calls made to the root function FARKROOTFN(), denoted NGE, can be obtained from IOUT(12).
If the FARKODE/ARKode memory block is reinitialized to solve a different problem via a call to FARKREINIT(),
then the counter NGE is reset to zero.

Lastly, to free the memory resources allocated by a prior call to FARKROOTINIT(), the user must make a call to
FARKROOTFREE():

subroutine FARKROOTFREE()
Frees memory associated with the FARKODE rootfinding module.

5.2.5 Usage of the FARKODE interface to built-in preconditioners

The FARKODE interface enables usage of the two built-in preconditioning modules ARKBANDPRE and ARKBBD-
PRE. Details on how these preconditioners work are provided in the section Preconditioner modules. In this section,
we focus specifically on the Fortran interface to these modules.

Usage of the FARKBP interface to ARKBANDPRE

The FARKBP interface module is a package of C functions which, as part of the FARKODE interface module, support
the use of the ARKode solver with the serial or threaded NVector modules (The NVECTOR_SERIAL Module, The
NVECTOR_OPENMP Module or The NVECTOR_PTHREADS Module), and the combination of the ARKBANDPRE
preconditioner module (see the section A serial banded preconditioner module) with any of the Krylov iterative linear
solvers.

The two user-callable functions in this package, with the corresponding ARKode function around which they wrap,
are:

• FARKBPINIT() interfaces to ARKBandPrecInit().

• FARKBPOPT() interfaces to the ARKBANDPRE optional output functions,
ARKBandPrecGetWorkSpace() and ARKBandPrecGetNumRhsEvals().

As with the rest of the FARKODE routines, the names of the user-supplied routines are mapped to actual values
through a series of definitions in the header file farkbp.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main program described
in the section Usage of the FARKODE interface module are italicized.

1. Right-hand side specification

2. NVECTOR module initialization

3. Problem specification

4. Set optional inputs

5.2. Fortran Data Types 161

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

5. Linear solver specification

First, specify one of the ARKSPILS iterative linear solvers, by calling one of FARKSPGMR(), FARKSPBCG(),
FARKSPTFQMR(), FARKSPFGMR() or FARKPCG().

Optionally, to specify that SPGMR, SPBCG, SPTFQMR, SPFGMR or PCG should use the supplied
FARKJTIMES() routine, the user should call FARKSPILSSETJAC() with FLAG 6= 0, as described in the
section User-supplied routines for SPGMR/SPBCG/SPTFQMR/SPFGMR/PCG.

Then, to initialize the ARKBANDPRE preconditioner, call the routine FARKBPINIT(), as follows:

subroutine FARKBPINIT(NEQ, MU, ML, IER)
Interfaces with the ARKBandPrecInit() function to allocate memory and initialize data associated
with the ARKBANDPRE preconditioner.

Arguments:

• NEQ (long int, input) – problem size.

• MU (long int, input) – upper half-bandwidth of the band matrix that is retained as an approx-
imation of the Jacobian.

• ML (long int, input) – lower half-bandwidth of the band matrix approximation to the Jacobian.

• IER (int, output) – return flag (0 if success, -1 if a memory failure).

6. Problem solution

7. ARKBANDPRE optional outputs

Optional outputs specific to the SPGMR, SPBCG, SPTFQMR, SPFGMR or PCG solver are listed in Table: Op-
tional ARKSPGMR, ARKSPBCG, ARKSPTFQMR, ARKSPFGMR and ARKPCG outputs. To obtain the optional
outputs associated with the ARKBANDPRE module, the user should call the FARKBPOPT(), as specified
below:

subroutine FARKBPOPT(LENRWBP, LENIWBP, NFEBP)
Interfaces with the ARKBANDPRE optional output functions.

Arguments:

• LENRWBP (long int, output) – length of real preconditioner work space (from
ARKBandPrecGetWorkSpace()).

• LENIWBP (long int, output) – length of integer preconditioner work space, in integer words
(from ARKBandPrecGetWorkSpace()).

• NFEBP (long int, output) – number of fI(t, y) evaluations (from
ARKBandPrecGetNumRhsEvals())

8. Additional solution output

9. Problem reinitialization

10. Memory deallocation

(The memory allocated for the FARKBP module is deallocated automatically by FARKFREE())

Usage of the FARKBBD interface to ARKBBDPRE

The FARKBBD interface module is a package of C functions which, as part of the FARKODE interface module,
support the use of the ARKode solver with the parallel vector module (The NVECTOR_PARALLEL Module), and the
combination of the ARKBBDPRE preconditioner module (see the section A parallel band-block-diagonal precondi-
tioner module) with any of the Krylov iterative linear solvers.

162 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

The user-callable functions in this package, with the corresponding ARKode and ARKBBDPRE functions, are as
follows:

• FARKBBDINIT() interfaces to ARKBBDPrecInit().

• FARKBBDREINIT() interfaces to ARKBBDPrecReInit().

• FARKBBDOPT() interfaces to the ARKBBDPRE optional output functions.

In addition to the functions required for general FARKODE usage, the user-supplied functions required by this pack-
age are listed in the table below, each with the corresponding interface function which calls it (and its type within
ARKBBDPRE or ARKode).

Table: FARKBBD function mapping

FARKBBD routine (FORTRAN,
user-supplied)

ARKode routine (C,
interface)

ARKode interface function
type

FARKJTIMES() FARKJtimes ARKSpilsJacTimesVecFn()
FARKGLOCFN() FARKgloc ARKLocalFn()
FARKCOMMFN() FARKcfn ARKCommFn()

As with the rest of the FARKODE routines, the names of all user-supplied routines here are fixed, in order to maximize
portability for the resulting mixed-language program. Additionally, based on flags discussed above in the section
FARKODE routines, the names of the user-supplied routines are mapped to actual values through a series of definitions
in the header file farkbbd.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main program described
in the section Usage of the FARKODE interface module are italicized.

1. Right-hand side specification

2. NVECTOR module initialization

3. Problem specification

4. Set optional inputs

5. Linear solver specification

First, specify one of the ARKSPILS iterative linear solvers, by calling one of FARKSPGMR(), FARKSPBCG(),
FARKSPTFQMR(), FARKSPFGMR() or FARKPCG().

Optionally, to specify that SPGMR, SPBCG, SPTFQMR, SPFGMR or PCG should use the supplied
FARKJTIMES() routine, the user should call FARKSPILSSETJAC() with FLAG 6= 0, as described in the
section User-supplied routines for SPGMR/SPBCG/SPTFQMR/SPFGMR/PCG.

Then, to initialize the ARKBBDPRE preconditioner, call the function FARKBBDINIT(), as described below:

subroutine FARKBBDINIT(NLOCAL, MUDQ, MLDQ, MU, ML, DQRELY, IER)
Interfaces with the ARKBBDPrecInit() routine to initialize the ARKBBDPRE preconditioning mod-
ule.

Arguments:

• NLOCAL (long int, input) – local vector size on this process.

• MUDQ (long int, input) – upper half-bandwidth to be used in the computation of the local
Jacobian blocks by difference quotients. These may be smaller than the true half-bandwidths of
the Jacobian of the local block of g, when smaller values may provide greater efficiency.

• MLDQ (long int, input) – lower half-bandwidth to be used in the computation of the local
Jacobian blocks by difference quotients.

• MU (long int, input) – upper half-bandwidth of the band matrix that is retained as an approx-
imation of the local Jacobian block (may be smaller than MUDQ).

5.2. Fortran Data Types 163

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• ML (long int, input) – lower half-bandwidth of the band matrix that is retained as an approx-
imation of the local Jacobian block (may be smaller than MLDQ).

• DQRELY (realtype, input) – relative increment factor in y for difference quotients (0.0 indi-
cates to use the default).

• IER (int, output) – return flag (0 if success, -1 if a memory failure).

6. Problem solution

7. ARKBBDPRE optional outputs

Optional outputs specific to the SPGMR, SPBCG, SPTFQMR, SPFGMR or PCG solver are listed in Table:
Optional ARKSPGMR, ARKSPBCG, ARKSPTFQMR, ARKSPFGMR and ARKPCG outputs. To obtain the op-
tional outputs associated with the ARKBBDPRE module, the user should call the FARKBBDOPT(), as specified
below:

subroutine FARKBBDOPT(LENRWBBD, LENIWBBD, NGEBBD)
Interfaces with the ARKBBDPRE optional output functions.

Arguments:

• LENRWBP (long int, output) – length of real preconditioner work space on this process (from
ARKBBDPrecGetWorkSpace()).

• LENIWBP (long int, output) – length of integer preconditioner work space on this process
(from ARKBBDPrecGetWorkSpace()).

• NGEBBD (long int, output) – number of g(t, y) evaluations (from
ARKBBDPrecGetNumGfnEvals()) so far.

8. Additional solution output

9. Problem reinitialization

If a sequence of problems of the same size is being solved using the same linear solver (SPGMR, SPBCG,
SPTFQMR, SPFGMR or PCG) in combination with the ARKBBDPRE preconditioner, then the ARKode
package can be re-initialized for the second and subsequent problems by calling FARKREINIT(), follow-
ing which a call to FARKBBDREINIT() may or may not be needed. If the input arguments are the same, no
FARKBBDREINIT() call is needed.

If there is a change in input arguments other than MU or ML, then the user program should call
FARKBBDREINIT() as specified below:

subroutine FARKBBDREINIT(NLOCAL, MUDQ, MLDQ, DQRELY, IER)
Interfaces with the ARKBBDPrecReInit() function to reinitialize the ARKBBDPRE module.

Arguments: The arguments of the same names have the same meanings as in FARKBBDINIT().

However, if the value of MU or ML is being changed, then a call to FARKBBDINIT() must be made instead.

Finally, if there is a change in any of the linear solver inputs, then a call to FARKSPGMR(), FARKSPBCG(),
FARKSPTFQMR(), FARKSPFGMR() or FARKPCG()must also be made; in this case the linear solver memory
is reallocated.

10. Problem resizing

If a sequence of problems of different sizes (but with similar dyanamical time scales) is being solved using the
same linear solver (SPGMR, SPBCG, SPTFQMR, SPFGMR or PCG) in combination with the ARKBBDPRE
preconditioner, then the ARKode package can be re-initialized for the second and subsequent problems by
calling FARKRESIZE(), following which a call to FARKBBDINIT() is required to delete and re-allocate the
preconditioner memory of the correct size.

164 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

subroutine FARKBBDREINIT(NLOCAL, MUDQ, MLDQ, DQRELY, IER)
Interfaces with the ARKBBDPrecReInit() function to reinitialize the ARKBBDPRE module.

Arguments: The arguments of the same names have the same meanings as in FARKBBDINIT().

However, if the value of MU or ML is being changed, then a call to FARKBBDINIT() must be made instead.

Finally, if there is a change in any of the linear solver inputs, then a call to FARKSPGMR(), FARKSPBCG(),
FARKSPTFQMR(), FARKSPFGMR() or FARKPCG()must also be made; in this case the linear solver memory
is reallocated.

11. Memory deallocation

(The memory allocated for the FARKBBD module is deallocated automatically by FARKFREE()).

12. User-supplied routines

The following two routines must be supplied for use with the ARKBBDPRE module:

subroutine FARKGLOCFN(NLOC, T, YLOC, GLOC, IPAR, RPAR, IER)
User-supplied routine (of type ARKLocalFn()) that computes a processor-local approximation g(t, y)
to the right-hand side function fI(t, y).

Arguments:

• NLOC (long int, input) – local problem size.

• T (realtype, input) – current value of the independent variable.

• YLOC (realtype, input) – array containing local dependent state variables.

• GLOC (realtype, output) – array containing local dependent state derivatives.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecov-
erable error occurred).

subroutine FARKCOMMFN(NLOC, T, YLOC, IPAR, RPAR, IER)
User-supplied routine (of type ARKCommFn()) that performs all interprocess communication necessary
for the executation of the FARKGLOCFN() function above, using the input vector YLOC.

Arguments:

• NLOC (long int, input) – local problem size.

• T (realtype, input) – current value of the independent variable.

• YLOC (realtype, input) – array containing local dependent state variables.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecov-
erable error occurred).

Notes: This subroutine must be supplied even if it is not needed, and must return IER = 0.

5.2. Fortran Data Types 165

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

166 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

CHAPTER

SIX

VECTOR DATA STRUCTURES

The SUNDIALS library comes packaged with four NVECTOR implementations, one designed for serial simulations,
two designed for shared-memory parallel simulations (via OpenMP and Pthreads), and one for distributed-memory
parallel simulations (via MPI). All implementations assume that the process-local data is stored contiguously, and
they in turn provide a variety of standard vector algebra operations that may be performed on the data.

In addition, SUNDIALS provides a simple interface for generic vectors (akin to a C++ abstract base class). All
of the major SUNDIALS solvers (CVODE, IDA, KINSOL, ARKODE) in turn are constructed to only depend on
these generic vector operations, making them immediately extensible to new user-defined vector objects. The only
exceptions to this rule relate to the dense and banded linear system solvers, since they rely on particular data storage
and access patterns in the NVECTORS used.

Details on the generic NVECTOR module are below. However, to jump to specific descriptions of the various vector
modules provided by SUNDIALS, or ARKode’s requirements for routines comprising a user-supplied NVECTOR
module, the following links are provided:

6.1 The NVECTOR_SERIAL Module

The serial implementation of the NVECTOR module provided with SUNDIALS, NVECTOR_SERIAL, defines the
content field of a N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a
contiguous data array, and a boolean flag own_data which specifies the ownership of data.

struct _N_VectorContent_Serial {
long int length;
booleantype own_data;
realtype *data;

};

The following five macros are provided to access the content of an NVECTOR_SERIAL vector. The suffix _S in the
names denotes the serial version.

NV_CONTENT_S(v)
This macro gives access to the contents of the serial vector N_Vector v.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the serial N_Vector con-
tent structure.

Implementation:

#define NV_CONTENT_S(v) ((N_VectorContent_Serial)(v->content))

NV_OWN_DATA_S(v)
Access the own_data component of the serial N_Vector v.

Implementation:

167

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

#define NV_OWN_DATA_S(v) (NV_CONTENT_S(v)->own_data)

NV_DATA_S(v)
The assignment v_data = NV_DATA_S(v) sets v_data to be a pointer to the first component of the data
for the N_Vector v.

Similarly, the assignment NV_DATA_S(v) = v_data sets the component array of v to be v_data by stor-
ing the pointer v_data.

Implementation:

#define NV_DATA_S(v) (NV_CONTENT_S(v)->data)

NV_LENGTH_S(v)
Access the length component of the serial N_Vector v.

The assignment v_len = NV_LENGTH_S(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_S(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_S(v) (NV_CONTENT_S(v)->length)

NV_Ith_S(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_S(v,i) sets r to be the value of the i-th component of v.

The assignment NV_Ith_S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) (NV_DATA_S(v)[i])

The NVECTOR_SERIAL module defines serial implementations of all vector operations listed in the section De-
scription of the NVECTOR operations. Their names are obtained from those in that section by appending the suffix
_Serial.

In addition, the module NVECTOR_SERIAL provides the following additional user-callable routines:

N_Vector N_VNew_Serial(long int vec_length)
This function creates and allocates memory for a serial N_Vector. Its only argument is the vector length.

N_Vector N_VNewEmpty_Serial(long int vec_length)
This function creates a new serial N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Serial(long int vec_length, realtype* v_data)
This function creates and allocates memory for a serial vector with user-provided data array, v_data.

N_Vector* N_VCloneVectorArray_Serial(int count, N_Vector w)
This function creates (by cloning) an array of count serial vectors.

N_Vector* N_VCloneEmptyVectorArray_Serial(int count, N_Vector w)
This function creates (by cloning) an array of count serial vectors, each with an empty (‘NULL) data array.

void N_VDestroyVectorArray_Serial(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_Serial() or with N_VCloneEmptyVectorArray_Serial().

void N_VPrint_Serial(N_Vector v)
This function prints the content of a serial vector to stdout.

168 Chapter 6. Vector Data Structures

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the compo-
nent array via v_data = NV_DATA_S(v) and then access v_data[i] within the loop than it is to use
NV_Ith_S(v,i) within the loop.

• N_VNewEmpty_Serial(), N_VMake_Serial(), and N_VCloneEmptyVectorArray_Serial()
set the field own_data to FALSE. The functions N_VDestroy_Serial() and
N_VDestroyVectorArray_Serial() will not attempt to free the pointer data for any N_Vector
with own_data set to FALSE. In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_SERIAL implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same length.

6.2 The NVECTOR_PARALLEL Module

The NVECTOR_PARALLEL implementation of the NVECTOR module provided with SUNDIALS is based on MPI.
It defines the content field of a N_Vector to be a structure containing the global and local lengths of the vector, a
pointer to the beginning of a contiguous local data array, an MPI communicator, an a boolean flag own_data indicating
ownership of the data array data.

struct _N_VectorContent_Parallel {
long int local_length;
long int global_length;
booleantype own_data;
realtype *data;
MPI_Comm comm;

};

The following seven macros are provided to access the content of a NVECTOR_PARALLEL vector. The suffix _P in
the names denotes the distributed memory parallel version.

NV_CONTENT_P(v)
This macro gives access to the contents of the parallel N_Vector v.

The assignment v_cont = NV_CONTENT_P(v) sets v_cont to be a pointer to the N_Vector content
structure of type struct N_VectorParallelContent.

Implementation:

#define NV_CONTENT_P(v) ((N_VectorContent_Parallel)(v->content))

NV_OWN_DATA_P(v)
Access the own_data component of the parallel N_Vector v.

Implementation:

#define NV_OWN_DATA_P(v) (NV_CONTENT_P(v)->own_data)

NV_DATA_P(v)
The assignment v_data = NV_DATA_P(v) sets v_data to be a pointer to the first component of the lo-
cal_data for the N_Vector v.

The assignment NV_DATA_P(v) = v_data sets the component array of v to be v_data by storing the
pointer v_data into data.

Implementation:

6.2. The NVECTOR_PARALLEL Module 169

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

#define NV_DATA_P(v) (NV_CONTENT_P(v)->data)

NV_LOCLENGTH_P(v)
The assignment v_llen = NV_LOCLENGTH_P(v) sets v_llen to be the length of the local part of v.

The call NV_LOCLENGTH_P(v) = llen_v sets the local_length of v to be llen_v.

Implementation:

#define NV_LOCLENGTH_P(v) (NV_CONTENT_P(v)->local_length)

NV_GLOBLENGTH_P(v)
The assignment v_glen = NV_GLOBLENGTH_P(v) sets v_glen to be the global_length of the vector v.

The call NV_GLOBLENGTH_P(v) = glen_v sets the global_length of v to be glen_v.

Implementation:

#define NV_GLOBLENGTH_P(v) (NV_CONTENT_P(v)->global_length)

NV_COMM_P(v)
This macro provides access to the MPI communicator used by the parallel N_Vector v.

Implementation:

#define NV_COMM_P(v) (NV_CONTENT_P(v)->comm)

NV_Ith_P(v, i)
This macro gives access to the individual components of the local_data array of an N_Vector.

The assignment r = NV_Ith_P(v,i) sets r to be the value of the i-th component of the local part of v.

The assignment NV_Ith_P(v,i) = r sets the value of the i-th component of the local part of v to be r.

Here i ranges from 0 to n− 1, where n is the local_length.

Implementation:

#define NV_Ith_P(v,i) (NV_DATA_P(v)[i])

The NVECTOR_PARALLEL module defines parallel implementations of all vector operations listed in the section
Description of the NVECTOR operations. Their names are obtained from those that section by appending the suffix
_Parallel.

In addition, the module NVECTOR_PARALLEL provides the following additional user-callable routines:

N_Vector N_VNew_Parallel(MPI_Comm comm, long int local_length, long int global_length)
This function creates and allocates memory for a parallel vector having global length global_length, having
processor-local length local_length, and using the MPI communicator comm.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm, long int local_length, long int global_length)
This function creates a new parallel N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Parallel(MPI_Comm comm, long int local_length, long int global_length, real-
type* v_data)

This function creates and allocates memory for a parallel vector with user-provided data array.

N_Vector* N_VCloneVectorArray_Parallel(int count, N_Vector w)
This function creates (by cloning) an array of count parallel vectors.

N_Vector* N_VCloneEmptyVectorArray_Parallel(int count, N_Vector w)
This function creates (by cloning) an array of count parallel vectors, each with an empty (NULL) data array.

170 Chapter 6. Vector Data Structures

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

void N_VDestroyVectorArray_Parallel(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_Parallel() or with N_VCloneEmptyVectorArray_Parallel().

void N_VPrint_Parallel(N_Vector v)
This function prints the content of a parallel vector to stdout.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the local compo-
nent array via v_data = NV_DATA_P(v) and then access v_data[i] within the loop than it is to use
NV_Ith_P(v,i) within the loop.

• N_VNewEmpty_Parallel(), N_VMake_Parallel(), and N_VCloneEmptyVectorArray_Parallel()
set the field own_data to FALSE. The routines N_VDestroy_Parallel() and
N_VDestroyVectorArray_Parallel() will not attempt to free the pointer data for any N_Vector
with own_data set to FALSE. In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_PARALLEL implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.3 The NVECTOR_OPENMP Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using pThreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of
length at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism
in the vector calculations.

The OpenMP NVECTOR implementation provided with SUNDIALS, NVECTOR_OPENMP, defines the content
field of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a contiguous
data array, a boolean flag own_data which specifies the ownership of data, and the number of threads. Operations on
the vector are threaded using OpenMP, the number of threads used is based on the supplied argument in the vector
constructor.

struct _N_VectorContent_OpenMP {
long int length;
booleantype own_data;
realtype *data;
int num_threads;

};

The following six macros are provided to access the content of an NVECTOR_OPENMP vector. The suffix _OMP in
the names denotes the OpenMP version.

NV_CONTENT_OMP(v)
This macro gives access to the contents of the OpenMP vector N_Vector v.

The assignment v_cont = NV_CONTENT_OMP(v) sets v_cont to be a pointer to the OpenMP N_Vector
content structure.

Implementation:

#define NV_CONTENT_OMP(v) ((N_VectorContent_OpenMP)(v->content))

6.3. The NVECTOR_OPENMP Module 171

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

NV_OWN_DATA_OMP(v)
Access the own_data component of the OpenMP N_Vector v.

Implementation:

#define NV_OWN_DATA_OMP(v) (NV_CONTENT_OMP(v)->own_data)

NV_DATA_OMP(v)
The assignment v_data = NV_DATA_OMP(v) sets v_data to be a pointer to the first component of the
data for the N_Vector v.

Similarly, the assignment NV_DATA_OMP(v) = v_data sets the component array of v to be v_data by
storing the pointer v_data.

Implementation:

#define NV_DATA_OMP(v) (NV_CONTENT_OMP(v)->data)

NV_LENGTH_OMP(v)
Access the length component of the OpenMP N_Vector v.

The assignment v_len = NV_LENGTH_OMP(v) sets v_len to be the length of v. On the other hand, the
call NV_LENGTH_OMP(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_OMP(v) (NV_CONTENT_OMP(v)->length)

NV_NUM_THREADS_OMP(v)
Access the num_threads component of the OpenMP N_Vector v.

The assignment v_threads = NV_NUM_THREADS_OMP(v) sets v_threads to be the num_threads of
v. On the other hand, the call NV_NUM_THREADS_OMP(v) = num_threads_v sets the num_threads of
v to be num_threads_v.

Implementation:

#define NV_NUM_THREADS_OMP(v) (NV_CONTENT_OMP(v)->num_threads)

NV_Ith_OMP(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_OMP(v,i) sets r to be the value of the i-th component of v.

The assignment NV_Ith_OMP(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_OMP(v,i) (NV_DATA_OMP(v)[i])

The NVECTOR_OPENMP module defines OpenMP implementations of all vector operations listed in the section
Description of the NVECTOR operations. Their names are obtained from those in that section by appending the suffix
_OpenMP.

In addition, the module NVECTOR_OPENMP provides the following additional user-callable routines:

N_Vector N_VNew_OpenMP(long int vec_length, int num_threads)
This function creates and allocates memory for a OpenMP N_Vector. Arguments are the vector length and
number of threads.

172 Chapter 6. Vector Data Structures

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

N_Vector N_VNewEmpty_OpenMP(long int vec_length, int num_threads)
This function creates a new OpenMP N_Vector with an empty (NULL) data array.

N_Vector N_VMake_OpenMP(long int vec_length, realtype* v_data, int num_threads)
This function creates and allocates memory for a OpenMP vector with user-provided data array, v_data.

N_Vector* N_VCloneVectorArray_OpenMP(int count, N_Vector w)
This function creates (by cloning) an array of count OpenMP vectors.

N_Vector* N_VCloneEmptyVectorArray_OpenMP(int count, N_Vector w)
This function creates (by cloning) an array of count OpenMP vectors, each with an empty (‘NULL) data array.

void N_VDestroyVectorArray_OpenMP(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_OpenMP() or with N_VCloneEmptyVectorArray_OpenMP().

void N_VPrint_OpenMP(N_Vector v)
This function prints the content of a OpenMP vector to stdout.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the component
array via v_data = NV_DATA_OMP(v) and then access v_data[i] within the loop than it is to use
NV_Ith_S(v,i) within the loop.

• N_VNewEmpty_OpenMP(), N_VMake_OpenMP(), and N_VCloneEmptyVectorArray_OpenMP()
set the field own_data to FALSE. The functions N_VDestroy_OpenMP() and
N_VDestroyVectorArray_OpenMP() will not attempt to free the pointer data for any N_Vector
with own_data set to FALSE. In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_OPENMP implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.4 The NVECTOR_PTHREADS Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using pThreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of
length at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism
in the vector calculations.

The Pthreads NVECTOR implementation provided with SUNDIALS, NVECTOR_PTHREADS, defines the content
field of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a contiguous
data array, a boolean flag own_data which specifies the ownership of data, and the number of threads. Operations on
the vector are threaded using POSIX threads (Pthreads), the number of threads used is based on the supplied argument
in the vector constructor.

struct _N_VectorContent_Pthreads {
long int length;
booleantype own_data;
realtype *data;
int num_threads;

};

The following six macros are provided to access the content of an NVECTOR_PTHREADS vector. The suffix _PT in
the names denotes the Pthreads version.

6.4. The NVECTOR_PTHREADS Module 173

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

NV_CONTENT_PT(v)
This macro gives access to the contents of the Pthreads vector N_Vector v.

The assignment v_cont = NV_CONTENT_PT(v) sets v_cont to be a pointer to the Pthreads N_Vector
content structure.

Implementation:

#define NV_CONTENT_PT(v) ((N_VectorContent_Pthreads)(v->content))

NV_OWN_DATA_PT(v)
Access the own_data component of the Pthreads N_Vector v.

Implementation:

#define NV_OWN_DATA_PT(v) (NV_CONTENT_PT(v)->own_data)

NV_DATA_PT(v)
The assignment v_data = NV_DATA_PT(v) sets v_data to be a pointer to the first component of the data
for the N_Vector v.

Similarly, the assignment NV_DATA_PT(v) = v_data sets the component array of v to be v_data by
storing the pointer v_data.

Implementation:

#define NV_DATA_PT(v) (NV_CONTENT_PT(v)->data)

NV_LENGTH_PT(v)
Access the length component of the Pthreads N_Vector v.

The assignment v_len = NV_LENGTH_PT(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_PT(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_PT(v) (NV_CONTENT_PT(v)->length)

NV_NUM_THREADS_PT(v)
Access the num_threads component of the Pthreads N_Vector v.

The assignment v_threads = NV_NUM_THREADS_PT(v) sets v_threads to be the num_threads of v.
On the other hand, the call NV_NUM_THREADS_PT(v) = num_threads_v sets the num_threads of v to
be num_threads_v.

Implementation:

#define NV_NUM_THREADS_PT(v) (NV_CONTENT_PT(v)->num_threads)

NV_Ith_PT(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_PT(v,i) sets r to be the value of the i-th component of v.

The assignment NV_Ith_PT(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_PT(v,i) (NV_DATA_PT(v)[i])

174 Chapter 6. Vector Data Structures

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

The NVECTOR_PTHREADS module defines Pthreads implementations of all vector operations listed in the section
Description of the NVECTOR operations. Their names are obtained from those in that section by appending the suffix
_Pthreads.

In addition, the module NVECTOR_PTHREADS provides the following additional user-callable routines:

N_Vector N_VNew_Pthreads(long int vec_length, int num_threads)
This function creates and allocates memory for a Pthreads N_Vector. Arguments are the vector length and
number of threads.

N_Vector N_VNewEmpty_Pthreads(long int vec_length, int num_threads)
This function creates a new Pthreads N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Pthreads(long int vec_length, realtype* v_data, int num_threads)
This function creates and allocates memory for a Pthreads vector with user-provided data array, v_data.

N_Vector* N_VCloneVectorArray_Pthreads(int count, N_Vector w)
This function creates (by cloning) an array of count Pthreads vectors.

N_Vector* N_VCloneEmptyVectorArray_Pthreads(int count, N_Vector w)
This function creates (by cloning) an array of count Pthreads vectors, each with an empty (‘NULL) data array.

void N_VDestroyVectorArray_Pthreads(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_Pthreads() or with N_VCloneEmptyVectorArray_Pthreads().

void N_VPrint_Pthreads(N_Vector v)
This function prints the content of a Pthreads vector to stdout.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the component
array via v_data = NV_DATA_PT(v) and then access v_data[i] within the loop than it is to use
NV_Ith_S(v,i) within the loop.

• N_VNewEmpty_Pthreads(), N_VMake_Pthreads(), and N_VCloneEmptyVectorArray_Pthreads()
set the field own_data to FALSE. The functions N_VDestroy_Pthreads() and
N_VDestroyVectorArray_Pthreads() will not attempt to free the pointer data for any N_Vector
with own_data set to FALSE. In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_PTHREADS implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.5 NVECTOR functions required by ARKode

In the table below, we list the vector functions in the N_Vector module that are called within the ARKode package.
The table also shows, for each function, which ARKode module uses the function. The ARKode column shows func-
tion usage within the main integrator module, while the remaining columns show function usage within the ARKode
linear solvers, the ARKBANDPRE and ARKBBDPRE preconditioner modules, and the FARKODE module. Here
ARKDLS stands for ARKDENSE and ARKBAND; ARKSPILS stands for ARKSPGMR, ARKSPBCG, ARKSPT-
FQMR, ARKSPFGMR and ARKPCG; and ARKSLS stands for ARKKLU and ARKSUPERLUMT.

At this point, we should emphasize that the user does not need to know anything about ARKode’s usage of vector
functions in order to use ARKode. Instead, this information is provided primarily for users interested in constructing
a custom N_Vector module. We note that a number of N_Vector functions from the section Description of the
NVECTOR Modules are not listed in the above table. Therefore a user-supplied N_Vectormodule for ARKode could
safely omit these functions from their implementation.

6.5. NVECTOR functions required by ARKode 175

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Routine ARKode ARKDLS ARKSLS ARKSPILS ARKBANDPRE ARKBBDPRE FARKODE
N_VAbs X X
N_VAddConst X X
N_VClone X X X
N_VCloneEmpty X
N_VConst X X X X X
N_VDestroy X X X
N_VDiv X X X
N_VDotProd X(a) X X(a)

N_VGetArrayPointer X X X X X
N_VInv X X
N_VLinearSum X X X X
N_VMaxNorm X X
N_VMin X X
N_VProd X
N_VScale X X X X X X X
N_VSetArrayPointer X X
N_VSpace X(b) X(b)

N_VWrmsNorm X X X X X X

1. The N_VDotProd() function is only used by the main ARKode integrator module when the fixed-point non-
linear solver is specified; when solving an explicit problem or when using a Newton solver with direct or sparse
linear solver, it need not be supplied by the N_Vector implementation.

2. The N_VSpace() function is only informational, and need not be supplied by the N_Vector implementation.

6.6 Description of the NVECTOR Modules

The SUNDIALS solvers are written in a data-independent manner. They all operate on generic vectors (of type
N_Vector) through a set of operations defined by, and specific to, the particular NVECTOR implementation. Users
can provide a custom implementation of the NVECTOR module or use one of four provided within SUNDIALS – a
serial and three parallel implementations. The generic operations are described below. In the sections following, the
implementations provided with SUNDIALS are described.

The generic N_Vector type is a pointer to a structure that has an implementation-dependent content field containing
the description and actual data of the vector, and an ops field pointing to a structure with generic vector operations.
The type N_Vector is defined as:

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {
void *content;
struct _generic_N_Vector_Ops *ops;

};

Here, the _generic_N_Vector_Op structure is essentially a list of function pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {
N_Vector (*nvclone)(N_Vector);
N_Vector (*nvcloneempty)(N_Vector);
void (*nvdestroy)(N_Vector);
void (*nvspace)(N_Vector, long int *, long int *);
realtype* (*nvgetarraypointer)(N_Vector);
void (*nvsetarraypointer)(realtype *, N_Vector);

176 Chapter 6. Vector Data Structures

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);
void (*nvconst)(realtype, N_Vector);
void (*nvprod)(N_Vector, N_Vector, N_Vector);
void (*nvdiv)(N_Vector, N_Vector, N_Vector);
void (*nvscale)(realtype, N_Vector, N_Vector);
void (*nvabs)(N_Vector, N_Vector);
void (*nvinv)(N_Vector, N_Vector);
void (*nvaddconst)(N_Vector, realtype, N_Vector);
realtype (*nvdotprod)(N_Vector, N_Vector);
realtype (*nvmaxnorm)(N_Vector);
realtype (*nvwrmsnorm)(N_Vector, N_Vector);
realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);
realtype (*nvmin)(N_Vector);
realtype (*nvwl2norm)(N_Vector, N_Vector);
realtype (*nvl1norm)(N_Vector);
void (*nvcompare)(realtype, N_Vector, N_Vector);
booleantype (*nvinvtest)(N_Vector, N_Vector);
booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);
realtype (*nvminquotient)(N_Vector, N_Vector);

};

The generic NVECTOR module defines and implements the vector operations acting on a N_Vector. These routines
are nothing but wrappers for the vector operations defined by a particular NVECTOR implementation, which are
accessed through the ops field of the N_Vector structure. To illustrate this point we show below the implementation
of a typical vector operation from the generic NVECTOR module, namely N_VScale, which performs the scaling of
a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z) {
z->ops->nvscale(c, x, z);

}

The subsection Description of the NVECTOR operations contains a complete list of all vector operations defined
by the generic NVECTOR module. Finally, we note that the generic NVECTOR module defines the functions
N_VCloneVectorArray and N_VCloneEmptyVectorArray. Both functions create (by cloning) an array
of count variables of type N_Vector, each of the same type as an existing N_Vector. Their prototypes are:

N_Vector *N_VCloneVectorArray(int count, N_Vector w);
N_Vector *N_VCloneEmptyVectorArray(int count, N_Vector w);

and their definitions are based on the implementation-specific N_VClone and N_VCloneEmpty operations, respec-
tively.

Similarly, an array of variables of type N_Vector can be destroyed by calling N_VDestroyVectorArray, whose
prototype is

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N_VDestroy operation.

In particular, any implementation of the NVECTOR module must:

• Specify the content field of the N_Vector.

• Define and implement the necessary vector operations. Note that the names of these routines should be unique to
that implementation in order to permit using more than one NVECTOR module (each with different N_Vector
internal data representations) in the same code. We further note that not all of the defined operations are required
for each solver in SUNDIALS. The list of required operations for use with ARKode is given in the section
NVECTOR functions required by ARKode.

6.6. Description of the NVECTOR Modules 177

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• Define and implement user-callable constructor and destructor routines to create and free a N_Vector with the
new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined N_Vector (e.g.,
a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly defined N_Vector.

6.7 Description of the NVECTOR operations

For each of the N_vector operations, we give the name, usage of the function, and a description of its mathematical
operations below.

N_Vector N_VClone(N_Vector w)
Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not copy the
vector, but rather allocates storage for the new vector.

Usage:

v = N_VClone(w);

N_Vector N_VCloneEmpty(N_Vector w)
Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not allocate
storage for the new vector’s data.

Usage:

v = N VCloneEmpty(w);

void N_VDestroy(N_Vector v)
Destroys the N_Vector v and frees memory allocated for its internal data.

Usage:

N_VDestroy(v);

void N_VSpace(N_Vector v, long int* lrw, long int* liw)
Returns storage requirements for the N_Vector v: lrw contains the number of realtype words and liw
contains the number of integer words. This function is advisory only, for use in determining a user’s total space
requirements; it could be a dummy function in a user-supplied NVECTOR module if that information is not of
interest.

Usage:

N_VSpace(nvSpec, &lrw, &liw);

realtype* N_VGetArrayPointer(N_Vector v)
Returns a pointer to a realtype array from the N_Vector v. Note that this assumes that the internal data in
the N_Vector is a contiguous array of realtype. This routine is only used in the solver-specific interfaces to
the dense and banded (serial) linear solvers, and in the interfaces to the banded (serial) and band-block-diagonal
(parallel) preconditioner modules provided with SUNDIALS.

Usage:

vdata = NVGetArrayPointer(v);

void N_VSetArrayPointer(realtype* vdata, N_Vector v)
Replaces the data array pointer in an N_Vector with a given array of realtype. Note that this assumes

178 Chapter 6. Vector Data Structures

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

that the internal data in the N_Vector is a contiguous array of realtype. This routine is only used in the
interfaces to the dense (serial) linear solver, hence need not exist in a user-supplied NVECTOR module.

Usage:

NVSetArrayPointer(vdata,v);

void N_VLinearSum(realtype a, N_Vector x, realtype b, N_Vector y, N_Vector z)
Performs the operation z = ax + by, where a and b are realtype scalars and x and y are of type N_Vector:

zi = axi + byi, i = 1, . . . , n.

Usage:

N_VLinearSum(a, x, b, y, z);

void N_VConst(realtype c, N_Vector z)
Sets all components of the N_Vector z to realtype c:

zi = c, i = 1, . . . , n.

Usage:

N_VConst(c, z);

void N_VProd(N_Vector x, N_Vector y, N_Vector z)
Sets the N_Vector z to be the component-wise product of the N_Vector inputs x and y:

zi = xiyi, i = 1, . . . , n.

Usage:

N_VProd(x, y, z);

void N_VDiv(N_Vector x, N_Vector y, N_Vector z)
Sets the N_Vector z to be the component-wise ratio of the N_Vector inputs x and y:

zi =
xi
yi
, i = 1, . . . , n.

The yi may not be tested for 0 values. It should only be called with a y that is guaranteed to have all nonzero
components.

Usage:

N_VDiv(x, y, z);

void N_VScale(realtype c, N_Vector x, N_Vector z)
Scales the N_Vector x by the realtype scalar c and returns the result in z:

zi = cxi, i = 1, . . . , n.

Usage:

N_VScale(c, x, z);

void N_VAbs(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the absolute values of the components of the N_Vector x:

yi = |xi|, i = 1, . . . , n.

Usage:

6.7. Description of the NVECTOR operations 179

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

N_VAbs(x, z);

void N_VInv(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x:

zi = 1.0/xi, i = 1, . . . , n.

This routine may not check for division by 0. It should be called only with an x which is guaranteed to have all
nonzero components.

Usage:

N_VInv(x, z);

void N_VAddConst(N_Vector x, realtype b, N_Vector z)
Adds the realtype scalar b to all components of x and returns the result in the N_Vector z:

zi = xi + b, i = 1, . . . , n.

Usage:

N_VAddConst(x, b, z);

realtype N_VDotProd(N_Vector x, N_Vector z)
Returns the value of the dot-product of the N_Vectors x and y:

d =
n∑
i=1

xiyi.

Usage:

d = N_VDotProd(x, y);

realtype N_VMaxNorm(N_Vector x)
Returns the value of the l∞ norm of the N_Vector x:

m = max
1≤i≤n

|xi|.

Usage:

m = N_VMaxNorm(x);

realtype N_VWrmsNorm(N_Vector x, N_Vector w)
Returns the weighted root-mean-square norm of the N_Vector x with (positive) realtype weight vector w:

m =

(
1
n

n∑
i=1

(xiwi)
2

)1/2

.

Usage:

m = N_VWrmsNorm(x, w);

realtype N_VWrmsNormMask(N_Vector x, N_Vector w, N_Vector id)
Returns the weighted root mean square norm of the N_Vector x with (positive) realtype weight vector w
built using only the elements of x corresponding to nonzero elements of the N_Vector id:

m =

(
1
n

n∑
i=1

(xiwisign(idi))
2

)1/2

.

180 Chapter 6. Vector Data Structures

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

m = N_VWrmsNormMask(x, w, id);

realtype N_VMin(N_Vector x)
Returns the smallest element of the N_Vector x:

m = min
1≤i≤n

xi.

Usage:

m = N_VMin(x);

realtype N_VWl2Norm(N_Vector x, N_Vector w)
Returns the weighted Euclidean l2 norm of the N_Vector x with realtype weight vector w:

m =

(
n∑
i=1

(xiwi)
2

)1/2

.

Usage:

m = N_VWL2Norm(x, w);

realtype N_VL1Norm(N_Vector x)
Returns the l1 norm of the N_Vector x:

m =
n∑
i=1

|xi|.

Usage:

m = N_VL1Norm(x);

void N_VCompare(realtype c, N_Vector x, N_Vector z)
Compares the components of the N_Vector x to the realtype scalar c and returns an N_Vector z such
that for all 1 ≤ i ≤ n,

zi =

{
1.0 if |xi| ≥ c,
0.0 otherwise

.

Usage:

N_VCompare(c, x, z);

booleantype N_VInvTest(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x, with prior
testing for zero values:

zi = 1.0/xi, i = 1, . . . , n.

This routine returns a boolean assigned to TRUE if all components of x are nonzero (successful inversion) and
returns FALSE otherwise.

Usage:

t = N_VInvTest(x, z);

6.7. Description of the NVECTOR operations 181

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

booleantype N_VConstrMask(N_Vector c, N_Vector x, N_Vector m)
Performs the following constraint tests based on the values in ci:

xi > 0 if ci = 2,
xi ≥ 0 if ci = 1,

xi < 0 if ci = −2,
xi ≤ 0 if ci = −1.

There is no constraint on xi if ci = 0. This routine returns a boolean assigned to FALSE if any element failed
the constraint test and assigned to TRUE if all passed. It also sets a mask vector m, with elements equal to 1.0
where the constraint test failed, and 0.0 where the test passed. This routine is used only for constraint checking.

Usage:

t = N_VConstrMask(c, x, m);

realtype N_VMinQuotient(N_Vector num, N_Vector denom)
This routine returns the minimum of the quotients obtained by termwise dividing the elements of n by the
elements in d:

min
i=1,...,n

numi

denomi
.

A zero element in denom will be skipped. If no such quotients are found, then the large value BIG_REAL
(defined in the header file sundials_types.h) is returned.

Usage:

minq = N_VMinQuotient(num, denom);

182 Chapter 6. Vector Data Structures

CHAPTER

SEVEN

LINEAR SOLVERS IN ARKODE

In this chapter, we describe linear solver code components that are included in SUNDIALS, but which are of potential
use as generic packages in themselves, either in conjunction with the use of SUNDIALS or separately.

These generic linear solver modules are organized in three families of solvers, the DLS family, which includes direct
linear solvers appropriate for sequential computations; the SLS family, which includes sparse matrix solvers; and the
SPILS family, which includes scaled preconditioned iterative (Krylov) linear solvers. The solvers in each family share
common data structures and functions.

The DLS family contains the following two generic linear solvers:

• The DENSE package, a linear solver for dense matrices either specified through a matrix type (defined below)
or as simple arrays.

• The BAND package, a linear solver for banded matrices either specified through a matrix type (defined below)
or as simple arrays.

We further note that this family also includes the BLAS/LAPACK linear solvers (dense and band) available to the
SUNDIALS solvers, but these are not discussed here.

The SLS family contains a sparse matrix package and interfaces between it and two sparse direct solver packages:

• The KLU package, a linear solver for compressed-sparse-column matrices, [KLU], [DP2010].

• The SUPERLUMT package, a threaded linear solver for compressed-sparse-column matrices, [SuperLUMT],
[L2005], [DGL1999].

The SPILS family contains the following generic linear solvers:

• The SPGMR package, a solver for the scaled preconditioned GMRES method.

• The SPFGMR package, a solver for the scaled preconditioned Flexible GMRES method.

• The SPBCG package, a solver for the scaled preconditioned Bi-CGStab method.

• The SPTFQMR package, a solver for the scaled preconditioned TFQMR method.

• The PCG package, a solver for the preconditioned conjugate gradient method.

For reasons related to installation, the names of the files involved in these packages begin with teh prefix sundials_.
But despite this, each of the DLS and SPILS solvers is in fact generic, in that it is usable completely independently of
SUNDIALS.

For the sake of space, the functions for the DENSE, BAND modules that work with a matrix type, and the functions in
the SPGMR, SPFGMR, SPBCG, SPTFQMR and PCG modules are only summarized briefly, since they are less likely
to be of direct use in connection with a SUNDIALS solver. However, the functions for dense matrices treated as simple
arrays and sparse matrices are fully described, because we anticipate that they will be useful in the implementation of
preconditioners used with the combination of one of the SUNDIALS solvers and one of the SPILS linear solvers.

183

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Lastly, it is possible to supply customized linear solvers to ARKode, in that the ARKode solvers only require the
existence of a minimal set of generic routines. Through attaching user-supplied routines for these function pointers, it
is possible to use arbitrary approaches for solution to the implicit linear systems arising during an ARKode solve.

Specifics of these built-in linear solver packages, as well as the generic linear solver interface, are provided in the
following sub-sections:

7.1 The DLS modules: DENSE and BAND

The files comprising the DENSE generic linear solver, and their locations in the SUNDIALS srcdir, are as follows:

• header files (located in srcdir/include/sundials):

sundials_direct.h, sundials_dense.h, sundials_types.h, sundials_math.h,
sundials_config.h

• source files (located in srcdir/src/sundials):

sundials_direct.c, sundials_dense.c, sundials_math.c

The files comprising the BAND generic linear solver are as follows:

• header files (located in srcdir/include/sundials):

sundials_direct.h, sundials_band.h, sundials_types.h, sundials_math.h,
sundials_config.h

• source files (located in srcdir/src/sundials):

sundials_direct.c, sundials_band.c, sundials_math.c

Only two of the preprocessing directives in the header file sundials_config.h are relevant to the DENSE and
BAND packages by themselves.

• (required) definition of the precision of the SUNDIALS type realtype. One of the following lines must be
present:

#define SUNDIALS_DOUBLE_PRECISION 1
#define SUNDIALS_SINGLE_PRECISION 1
#define SUNDIALS_EXTENDED_PRECISION 1

• (optional) use of generic math functions:

#define SUNDIALS_USE_GENERIC_MATH 1

The sundials_types.h header file defines the SUNDIALS realtype and booleantype types and the macro
RCONST, while the sundials_math.h header file is needed for the macros SUNMIN and SUNMAX, and the function
SUNRabs.

The files listed above for either module can be extracted from the SUNDIALS srcdir and compiled by themselves
into a separate library or into a larger user code.

7.1.1 DlsMat

The type DlsMat, defined in sundials_direct.h is a pointer to a structure defining a generic matrix, and is
used with all linear solvers in the DLS family:

DlsMat

184 Chapter 7. Linear Solvers in ARKode

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

typedef struct _DlsMat {
int type;
long int M;
long int N;
long int ldim;
long int mu;
long int ml;
long int s_mu;
realtype *data;
long int ldata;
realtype **cols;

} *DlsMat;

For the DENSE module, the relevant fields of this structure are as follows. Note that a dense matrix of type DlsMat
need not be square.

type – SUNDIALS_DENSE (=1)

M – number of rows

N – number of columns

ldim – leading dimension (≥M)

data – pointer to a contiguous block of realtype variables

ldata – length of the data array (= ldim ∗N). The (i,j) element of a dense matrix A of type DlsMat
(with 0 ≤ i < M and 0 ≤ j < N) is given by the expression (A->data)[0][j*M+i]

cols – array of pointers. cols[j] points to the first element of the j-th column of the matrix in the array
data. The (i,j) element of a dense matrix A of type DlsMat (with 0 ≤ i < M and 0 ≤ j < N)
is given by the expression (A->cols)[j][i]

For the BAND module, the relevant fields of this structure are as follows (see Figure DLS Diagram for a diagram
of the underlying data representation in a banded matrix of type DlsMat). Note that only square band matrices are
allowed.

type – SUNDIALS_BAND (=2)

M – number of rows

N – number of columns (N = M)

mu – upper half-bandwidth, 0 ≤ mu < min(M,N)

ml – lower half-bandwidth, 0 ≤ ml < min(M,N)

s_mu – storage upper bandwidth, mu ≤ s_mu < N . The LU decomposition routine writes the LU
factors into the storage forA. The upper triangular factor U , however, may have an upper bandwidth
as big as min(N − 1,mu + ml) because of partial pivoting. The s_mu field holds the upper half-
bandwidth allocated for A.

ldim – leading dimension (ldim ≥ s_mu)

data – pointer to a contiguous block of realtype variables. The elements of a banded matrix of type
DlsMat are stored columnwise (i.e. columns are stored one on top of the other in memory). Only
elements within the specified half-bandwidths are stored. data is a pointer to ldata contiguous
locations which hold the elements within the band of A.

ldata – length of the data array (= ldim ∗ (s_mu+ml + 1))

cols – array of pointers. cols[j] is a pointer to the uppermost element within the band in the j-th
column. This pointer may be treated as an array indexed from s_mu-mu (to access the uppermost
element within the band in the j-th column) to s_mu+ml (to access the lowest element within the

7.1. The DLS modules: DENSE and BAND 185

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

band in the j-th column). Indices from 0 to s_mu-mu-1 give access to extra storage elements
required by the LU decomposition function. Finally, cols[j][i-j+s_mu] is the (i,j)-th
element, j −mu ≤ i ≤ j +ml.

7.1.2 Accessor macros for the DLS modules

The macros below allow a user to efficiently access individual matrix elements without writing out explicit data
structure references and without knowing too much about the underlying element storage. The only storage assumption
needed is that elements are stored columnwise and that a pointer to the j-th column of elements can be obtained via
the DENSE_COL or BAND_COL macros. Users should use these macros whenever possible.

The following two macros are defined by the DENSE module to provide access to data in the DlsMat type:

DENSE_ELEM
Usage: DENSE_ELEM(A,i,j) = a_ij; or a_ij = DENSE_ELEM(A,i,j);

This macro references the (i, j)-th element of the M ×N DlsMat A, 0 ≤ i < M , 0 ≤ j < N .

DENSE_COL
Usage: col_j = DENSE_COL(A,j);

This macro references the j-th column of the M × N DlsMat A, 0 ≤ j < N . The type of the expression
DENSE_COL(A,j) is realtype * . After the assignment in the usage above, col_j may be treated as an
array indexed from 0 to M − 1. The (i, j)-th element of A is referenced by col_j[i].

The following three macros are defined by the BAND module to provide access to data in the DlsMat type:

BAND_ELEM
Usage: BAND_ELEM(A,i,j) = a_ij; or a_ij = BAND_ELEM(A,i,j);

This macro references the (i, j)-th element of the N ×N band matrix A, where 0 ≤ i, j ≤ N − 1. The location
(i, j) should further satisfy j− (A->mu) ≤ i ≤ j+ (A->ml).

BAND_COL
Usage: col_j = BAND_COL(A,j);

This macro references the diagonal element of the j-th column of the N × N band matrix A, 0 ≤ j ≤
N − 1. The type of the expression BAND_COL(A,j) is realtype *. The pointer returned by the call
BAND_COL(A,j) can be treated as an array which is indexed from -(A->mu) to (A->ml).

BAND_COL_ELEM
Usage: BAND_COL_ELEM(col_j,i,j) = a_ij; or a_ij = BAND_COL_ELEM(col_j,i,j);

This macro references the (i, j)-th entry of the band matrix A when used in conjunction with BAND_COL to
reference the j-th column through col_j. The index (i, j) should satisfy j− (A->mu) ≤ i ≤ j+ (A->ml).

7.1.3 Functions in the DENSE module

The DENSE module defines two sets of functions with corresponding names. The first set contains functions (with
names starting with a capital letter) that act on dense matrices of type DlsMat. The second set contains functions
(with names starting with a lower case letter) that act on matrices represented as simple arrays.

The following functions for DlsMat dense matrices are available in the DENSE package. For full details, see the
header files sundials_direct.h and sundials_dense.h.

DlsMat NewDenseMat(long int M, long int N)
Allocates a DlsMat dense matrix.

void DestroyMat(DlsMat A)
Frees memory for a DlsMat matrix

186 Chapter 7. Linear Solvers in ARKode

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Fig. 7.1: DLS Diagram: Storage for a banded matrix of type DlsMat. Here A is an N × N band matrix of type
DlsMat with upper and lower half-bandwidths mu and ml, respectively. The rows and columns of A are numbered
from 0 toN−1 and the (i,j)-th element of A is denoted A(i,j). The greyed out areas of the underlying component
storage are used by the BandGBTRF and BandGBTRS routines.

7.1. The DLS modules: DENSE and BAND 187

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

void PrintMat(DlsMat A)
Prints a DlsMat matrix to standard output.

long int* NewLintArray(long int N)
Allocates an array of long int integers for use as pivots with DenseGETRF() and DenseGETRS().

int* NewIntArray(int N)
Allocates an array of int integers for use as pivots with the LAPACK dense solvers.

realtype* NewRealArray(long int N)
Allocates an array of type realtype for use as right-hand side with DenseGETRS().

void DestroyArray(void* p)
Frees memory for an array.

void SetToZero(DlsMat A)
Loads a matrix with zeros.

void AddIdentity(DlsMat A)
Increments a square matrix by the identity matrix.

void DenseCopy(DlsMat A, DlsMat B)
Copies one dense matrix to another.

void DenseScale(realtype c, DlsMat A)
Scales a dense matrix by a scalar.

long int DenseGETRF(DlsMat A, long int* p)
LU factorization with partial pivoting of a dense matrix.

long int denseGETRF(realtype** a, long int m, long int n, long int* p)
Solves Ax = b using LU factorization (for square matrices A), using the factorization resulting from
DenseGETRF().

long int DensePOTRF(DlsMat A)
Cholesky factorization of a real symmetric positive definite dense matrix.

void DensePOTRS(DlsMat A, realtype* b)
Solves Ax = b using the Cholesky factorization of A resulting from a call to DensePOTRF().

int DenseGEQRF(DlsMat A, realtype* beta, realtype* wrk)
QR factorization of an m× n dense matrix, with m ≥ n.

int DenseORMQR(DlsMat A, realtype* beta, realtype* vn, realtype* vm, realtype* wrk)
Computes the product w = Qv, with Q calculated using DenseGEQRF().

int DenseMatvec(DlsMat A, realtype* x, realtype* y)
Computes the product y = Ax, where it is assumed that x has length equal to the number of columns in the
matrix A, and y has length equal to the number of rows in the matrix A.

The following functions for small dense matrices are available in the DENSE package. These functions primarily
replicate those defined above for DlsMat dense matrices, but act on the individual data arrays outside of the DlsMat
structure:

realtype** newDenseMat(long int m, long int n)
Allocates storage for an m× n dense matrix. It returns a pointer to the newly allocated storage if successful. If
the memory request cannot be satisfied, then the function returns NULL. The underlying type of the dense matrix
returned is realtype**. If we allocate a dense matrix realtype** a by a = newDenseMat(m,n),
then a[j][i] references the row i, column j element of the matrix a, 0 ≤ i < m, 0 ≤ j < n, and a[j] is a
pointer to the first element in the j-th column of a. The location a[0] contains a pointer to m× n contiguous
locations which contain the elements of a.

188 Chapter 7. Linear Solvers in ARKode

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

void destroyMat(realtype** a)
Frees the dense matrix a allocated by newDenseMat().

long int* newLintArray(long int n)
Allocates an array of n integers of long int type. It returns a pointer to the first element in the array if
successful. It returns NULL if the memory request could not be satisfied.

int* newIntArray(int n)
Allocates an array of n integers of type int. It returns a pointer to the first element in the array if successful. It
returns NULL if the memory request could not be satisfied.

realtype* newRealArray(long int m)
Allocates an array of n realtype values. It returns a pointer to the first element in the array if successful. It
returns NULL if the memory request could not be satisfied.

void destroyArray(void* v)
Frees the array v allocated by newLintArray(), newIntArray(), or newRealArray().

void denseCopy(realtype** a, realtype** b, long int m, long int n)
Copies the m× n dense matrix a into the m× n dense matrix b.

void denseScale(realtype c, realtype** a, long int m, long int n)
Scales every element in the m× n dense matrix a by the scalar c.

void denseAddIdentity(realtype** a, long int n)
Increments the square n× n dense matrix a by the identity matrix In.

long int denseGETRF(realtype** a, long int m, long int n, long int* p)
Factors the m× n dense matrix a, using Gaussian elimination with row pivoting. It overwrites the elements of
a with its LU factors and keeps track of the pivot rows chosen in the pivot array p.

A successful LU factorization leaves the matrix a and the pivot array p with the following information:

1.p[k] contains the row number of the pivot element chosen at the beginning of elimination step k, k =
0, 1, . . . , n− 1.

2.If the unique LU factorization of a is given by Pa = LU , where P is a permutation matrix, L is a m× n
lower trapezoidal matrix with all diagonal elements equal to 1, and U is a n × n upper triangular matrix,
then the upper triangular part of a (including its diagonal) contains U and the strictly lower trapezoidal
part of a contains the multipliers, I − L. If a is square, L is a unit lower triangular matrix.

denseGETRF() returns 0 if successful. Otherwise it encountered a zero diagonal element during the
factorization, indicating that the matrix a does not have full column rank. In this case it returns the column
index (numbered from one) at which it encountered the zero.

void denseGETRS(realtype** a, long int n, long int* p, realtype* b)
Solves the n × n linear system ax = b. It assumes that a (of size n × n) has been LU-factored and the pivot
array p has been set by a successful call to denseGETRF(). The solution x is written into the b array.

long int densePOTRF(realtype** a, long int m)
Calculates the Cholesky decomposition of them×m dense matrix a, assumed to be symmetric positive definite.
Only the lower triangle of a is accessed and overwritten with the Cholesky factor.

void densePOTRS(realtype** a, long int m, realtype* b)
Solves the m×m linear system ax = b. It assumes that the Cholesky factorization of a has been calculated in
the lower triangular part of a by a successful call to densePOTRF(m)().

int denseGEQRF(realtype** a, long int m, long int n, realtype* beta, realtype* v)
Calculates the QR decomposition of the m × n matrix a (m ≥ n) using Householder reflections. On exit, the
elements on and above the diagonal of a contain the n × n upper triangular matrix R; the elements below the
diagonal, with the array beta, represent the orthogonal matrix Q as a product of elementary reflectors. The real
array wrk, of length m, must be provided as temporary workspace.

7.1. The DLS modules: DENSE and BAND 189

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

int denseORMQR(realtype** a, long int m, long int n, realtype* beta, realtype* v, realtype* w, realtype* wrk)
Calculates the product w = Qv for a given vector v of length n, where the orthogonal matrix Q is encoded in
the m × n matrix a and the vector beta of length n, after a successful call to denseGEQRF(). The real array
wrk, of length m, must be provided as temporary workspace.

int denseMatvec(realtype **a, realtype* x, realtype* y, long int m, long int n)
Computes the product y = ax, for an m × n matrix a, where it is assumed that the vector x has length n and
the vector y has length m.

7.1.4 Functions in the BAND module

The BAND module defines two sets of functions with corresponding names. The first set contains functions (with
names starting with a capital letter) that act on band matrices of type DlsMat. The second set contains functions
(with names starting with a lower case letter) that act on matrices represented as simple arrays.

The following functions for DlsMat banded matrices are available in the BAND package. For full details, see the
header files sundials_direct.h and sundials_band.h. A number of these are shared with routines from
the DENSE package, but are listed again here for completeness.

DlsMat NewBandMat(long int N, long int mu, long int ml, long int smu)
Allocates a DlsMat band matrix

void DestroyMat(DlsMat A)
Frees memory for a DlsMat matrix

void PrintMat(DlsMat A)
Prints a DlsMat matrix to standard output.

long int* NewLintArray(long int N)
Allocates an array of long int integers for use as pivots with BandGBRF() and BandGBRS().

int* NewIntArray(int N)
Allocates an array of int integers for use as pivots with the LAPACK band solvers.

realtype* NewRealArray(long int N)
Allocates an array of type realtype for use as right-hand side with BandGBRS().

void DestroyArray(void* p)
Frees memory for an array.

void SetToZero(DlsMat A)
Loads a matrix with zeros.

void AddIdentity(DlsMat A)
Increments a square matrix by the identity matrix.

void BandCopy(DlsMat A, DlsMat B, long int copymu, long int copyml)
Copies one band matrix to another.

void BandScale(realtype c, DlsMat A)
Scales a band matrix by a scalar.

long int BandGBTRF(DlsMat A, long int* p)
LU factorization with partial pivoting.

void BandGBTRS(DlsMat A, long int* p, realtype* b)
Solves Ax = b using LU factorization resulting from BandGBTRF().

int BandMatvec(DlsMat A, realtype* x, realtype* y)
Computes the product y = Ax, where it is assumed that x and y have length equal to the number of rows in the
square band matrix A.

190 Chapter 7. Linear Solvers in ARKode

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

The following functions for small band matrices are available in the BAND package. These functions primarily
replicate those defined above for DlsMat banded matrices, but act on the individual data arrays outside of the DlsMat
structure:

realtype** newBandMat(long int n, long int smu, long int ml)
Allocates storage for a n× n band matrix with lower half-bandwidth ml.

void destroyMat(realtype** a)
Frees the band matrix a allocated by newBandMat().

long int* newLintArray(long int n)
Allocates an array of n integers of type long int. It returns a pointer to the first element in the array if
successful. It returns NULL if the memory request could not be satisfied.

int* newIntArray(int n)
Allocates an array of n integers of type int. It returns a pointer to the first element in the array if successful. It
returns NULL if the memory request could not be satisfied.

realtype* newRealArray(long int m)
Allocates an array of n realtype values. It returns a pointer to the first element in the array if successful. It
returns NULL if the memory request could not be satisfied.

void destroyArray(void* v)
Frees the array v allocated by newLintArray(), newIntArray(), or newRealArray().

void bandCopy(realtype** a, realtype** b, long int n, long int a_smu, long int b_smu, long int copymu, long
int copyml)

Copies the n× n band matrix a into the n× n band matrix b.

void bandScale(realtype c, realtype** a, long int n, long int mu, long int ml, long int smu)
Scales every element in the n× n band matrix a by c.

void bandAddIdentity(realtype** a, long int n, long int smu)
Increments the n× n band matrix a by the identity matrix.

long int bandGBTRF(realtype** a, long int n, long int mu, long int ml, long int smu, long int* p)
Factors the n× n band matrix a, using Gaussian elimination with row pivoting. It overwrites the elements of a
with its LU factors and keeps track of the pivot rows chosen in the pivot array p.

void bandGBTRS(realtype** a, long int n, long int smu, long int ml, long int* p, realtype* b)
Solves the n × n linear system ax = b. It assumes that a (of size n × n) has been LU-factored and the pivot
array p has been set by a successful call to bandGETRF(). The solution x is written into the b array.

int bandMatvec(realtype **a, realtype* x, realtype* y, long int n, long int mu, long int ml, long int smu)
Computes the product y = ax, for an n × n square band matrix a, having band structure as allocated by the
parameters mu, ml and smu, and where it is assumed that x and y have length n.

7.2 The SLS modules

SUNDIALS provides a compressed-sparse-column matrix type and sparse matrix support functions. In addition, SUN-
DIALS provides interfaces to the publicly available KLU and SuperLU_MT sparse direct solver packages. The files
comprising the SLS matrix module, used in the KLU and SUPERLUMT linear solver packages, and their locations in
the SUNDIALS srcdir, are as follows:

• header files (located in srcdir/include/sundials):

sundials_sparse.h, sundials_klu_impl.h, sundials_superlumt_impl.h,
sundials_types.h, sundials_math.h, sundials_config.h

7.2. The SLS modules 191

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

• source files (located in srcdir/src/sundials):

sundials_sparse.c, sundials_math.c

Only two of the preprocessing directives in the header file sundials_config.h are relevant to the SLS package
by itself:

• (required) definition of the precision of the SUNDIALS type realtype. One of the following lines must be
present:

#define SUNDIALS_DOUBLE_PRECISION 1
#define SUNDIALS_SINGLE_PRECISION 1
#define SUNDIALS_EXTENDED_PRECISION 1

• (optional) use of generic math functions:

#define SUNDIALS_USE_GENERIC_MATH 1

The sundials_types.h header file defines the SUNDIALS realtype and booleantype types and the macro
RCONST, while the sundials_math.h header file is needed for the macros SUNMIN and SUNMAX, and the function
SUNRabs.

The files listed above for either module can be extracted from the SUNDIALS srcdir and compiled by themselves
into a separate library or into a larger user code.

7.2.1 SlsMat

The type SlsMat, defined in sundials_sparse.h is a pointer to a structure defining a generic compressed-
sparse-column matrix, and is used with all linear solvers in the SLS family:

SlsMat

typedef struct _SlsMat {
int M;
int N;
int NNZ;
realtype *data;
int *rowvals;
int *colptrs;

} *SlsMat;

The fields of this structure are as follows (see Figure SlsMat Diagram for a diagram of the underlying compressed-
sparse-column representation in a sparse matrix of type SlsMat). Note that a sparse matrix of type SlsMat need
not be square.

M – number of rows

N – number of columns

NNZ – maximum number of nonzero entries in the matrix (allocated length of data and rowvals arrays)

data – pointer to a contiguous block of realtype variables (of length NNZ), containing the values of
the nonzero entries in the matrix.

rowvals – pointer to a contiguous block of int variables (of length NNZ), containing the row indices of
each nonzero entry held in data.

colptrs – pointer to a contiguous block of int variables (of length N+1). Each entry provides the index
of the first column entry into the data and rowvals arrays, e.g. if colptr[3]=7, then the first nonzero
entry in the fourth column of the matrix is located in data[7], and is located in row rowvals[7] of

192 Chapter 7. Linear Solvers in ARKode

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

the matrix. The last entry contains the total number of nonzero values in the matrix and hence points
just past the end of the active data in data and rowvals.

For example, the 5× 4 matrix 
0 3 1 0
3 0 0 2
0 7 0 0
1 0 0 9
0 0 0 5


could be stored in a SlsMat structure as either

M = 5;
N = 4;
NNZ = 8;
data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};
rowvals = {1, 3, 0, 2, 0, 1, 3, 4};
colptrs = {0, 2, 4, 5, 8};

or

M = 5;
N = 4;
NNZ = 10;
data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};
rowvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};
colptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with * may contain any
values). Note in both cases that the final value in colptrs is 8. The work associated with operations on the sparse
matrix is proportional to this value and so one should use the best understanding of the number of nonzeros here.

7.2.2 Functions in the SPARSE module

The SPARSE module defines functions that act on sparse matrices of type SlsMat. For full details, see the header
file sundials_sparse.h.

SlsMat NewSparseMat(int M, int N, int NNZ)
Allocates a SlsMat sparse matrix having M rows, N columns, and storage for NNZ nonzero entries.

SlsMat SlsConvertDls(DlsMat A)
Converts a dense matrix of type DlsMat into a sparse matrix of type SlsMat by retaining only the nonzero
values of the dense matrix.

void DestroySparseMat(SlsMat A)
Frees memory for a SlsMat matrix.

void SlsSetToZero(SlsMat A)
Zeros out a SlsMat matrix (but retains its storage).

void CopySparseMat(SlsMat A, SlsMat B)
Copies one sparse matrix to another. If B has insufficient storage, its data arrays are reallocated to match those
from A.

void ScaleSparseMat(realtype c, SlsMat A)
Scales every element in the sparse matrix A by the by the scalar c.

7.2. The SLS modules 193

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Fig. 7.2: Diagram of the storage for a compressed-sparse-column matrix of type SlsMat: Here A is an M × N
sparse matrix of type SlsMat with storage for up to NNZ nonzero entries (the allocated length of both data and
rowvals). The entries in rowvals may assume values from 0 to M-1, corresponding to the row index (zero-based)
of each nonzero value. The entries in data contain the values of the nonzero entries, with the row i, column j entry
of A (again, zero-based) denoted as A(i,j). The colptrs array contains N+1 entries; the first N denote the starting
index of each column within the rowvals and data arrays, while the final entry points one past the final nonzero
entry. Here, although NNZ values are allocated, only nz are actually filled in; the greyed-out portions of data and
rowvals indicate extra allocated space.

194 Chapter 7. Linear Solvers in ARKode

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

void AddIdentitySparseMat(SlsMat A)
Increments a sparse matrix by the identity matrix. If A is not square, only the existing diagonal values are
incremented. Resizes the data and rowvals arrays of A to allow for new nonzero entries on the diagonal.

int SlsAddMat(SlsMat A, SlsMat B)
Adds two sparse matrices: A = A + B. Resizes the data arrays of A upon completion to exactly match the
nonzero storage for the result. Upon successful completion, the return value is zero; otherwise -1 is returned.

void ReallocSparseMat(SlsMat A)
This function eliminates unused storage in A by reallocating the internal data and rowvals arrays to contain
colptrs[N] nonzeros.

int SlsMatvec(SlsMat A, realtype *x, realtype *y)
Computes the sparse matrix-vector product, y = Ax. If A is a sparse matrix of dimension M × N , then it is
assumed that x is a realtype array of length N , and y is a realtype array of length M . Upon successful
completion, the return value is zero; otherwise -1 is returned.

void PrintSparseMat(DlsMat A)
Prints a SlsMat matrix to standard output.

7.2.3 The KLU solver

KLU is a sparse matrix factorization and solver library written by Tim Davis ([KLU], [DP2010]). KLU has a sym-
bolic factorization routine that computes the permutation of the linear system matrix to block triangular form and the
permutations that will pre-order the diagonal blocks (the only ones that need to be factored) to reduce fill-in (using
AMD, COLAMD, CHOLAMD, natural, or an ordering given by the user). Note that SUNDIALS uses the COLAMD
ordering by default with KLU.

KLU breaks the factorization into two separate parts. The first is a symbolic factorization and the second is a numeric
factorization that returns the factored matrix along with final pivot information. KLU also has a refactor routine that
can be called instead of the numeric factorization. This routine will reuse the pivot information. This routine also
returns diagnostic information that a user can examine to determine if numerical stability is being lost and a full
numerical factorization should be done instead of the refactor.

The KLU interface in SUNDIALS will perform the symbolic factorization once. It then calls the numerical factoriza-
tion once and will call the refactor routine until estimates of the numerical conditioning suggest a new factorization
should be completed. The KLU interface also has a ReInit routine that can be used to force a full refactorization at
the next solver setup call.

In order to use the SUNDIALS interface to KLU, it is assumed that KLU has been installed on the system prior to
installation of SUNDIALS, and that SUNDIALS has been configured appropriately to link with KLU (see ARKode
Installation Procedure for details).

Designed for serial calculations only, KLU is supported for calculations employing SUNDIALS’ serial or shared-
memory parallel N_Vector modules (see The NVECTOR_SERIAL Module, The NVECTOR_OPENMP Module and
The NVECTOR_PTHREADS Module).

7.2.4 The SuperLU_MT solver

SuperLU_MT is a threaded sparse matrix factorization and solver library written by X. Sherry Li ([SuperLUMT],
[L2005], [DGL1999]). The package performs matrix factorization using threads to enhance efficiency in shared
memory parallel environments. It should be noted that threads are only used in the factorization step.

In order to use the SUNDIALS interface to SuperLU_MT, it is assumed that SuperLU_MT has been installed on
the system prior to installation of SUNDIALS, and that SUNDIALS has been configured appropriately to link with
SuperLU_MT (see ARKode Installation Procedure for details).

7.2. The SLS modules 195

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Designed for serial and threaded calculations only, SuperLU_MT is supported for calculations employing SUN-
DIALS’ serial or shared-memory parallel N_Vector modules (see The NVECTOR_SERIAL Module, The NVEC-
TOR_OPENMP Module and The NVECTOR_PTHREADS Module).

7.3 The SPILS modules: SPGMR, SPFGMR, SPBCG, SPTFQMR and
PCG

The SPILS modules contain implementations of some of the most commonly use scaled preconditioned Krylov solvers.
A linear solver module from the SPILS family can be used in conjunction with any NVECTOR implementation library.

In the subsections below, we discuss the iterative linear solvers accessible to ARKode: SPGMR, SPFGMR, SPBCG,
SPTFQMR and PCG. Due to the similarities between these modules, we provide a more complete description of only
the SPGMR interface, and for the remaining solvers only discuss the salient differences.

7.3.1 The SPGMR module

The SPGMR package, in the files sundials_spgmr.h and sundials_spgmr.c, includes an implementation of
the scaled preconditioned GMRES method. A separate code module, implemented in sundials_iterative.h
and sundials_iterative.c, contains auxiliary functions that support SPGMR, as well as the other Krylov
solvers in SUNDIALS (SPFGMR, SPBCG, SPTFQMR and PCG). For full details, including usage instructions, see
the header files sundials_spgmr.h and sundials_iterative.h.

The files comprising the SPGMR generic linear solver, and their locations in the SUNDIALS srcdir, are as follows:

• header files (located in srcdir/include/sundials):

sundials_spgmr.h, sundials_iterative.h, sundials_nvector.h, sundials_types.h,
sundials_math.h, sundials_config.h

• source files (located in srcdir/src/sundials):

sundials_spgmr.c, sundials_iterative.c, sundials_nvector.c

Only two of the preprocessing directives in the header file sundials_config.h are required to use the SPGMR
package by itself:

• (required) definition of the precision of the SUNDIALS type realtype. One of the following three lines must
be present:

#define SUNDIALS_DOUBLE_PRECISION 1
#define SUNDIALS_SINGLE_PRECISION 1
#define SUNDIALS_EXTENDED_PRECISION 1

• (optional) use of generic math functions:

#define SUNDIALS_USE_GENERIC_MATH 1

The sundials_types.h header file defines the SUNDIALS realtype and booleantype types and the macro
RCONST, while the sundials_math.h header file is needed for the macros SUNMIN, SUNMAX, and SUNSQR, and
the functions SUNRabs and SUNRsqrt.

The generic NVECTOR files, sundials_nvector.h and sundials_nvector.c are needed for the defini-
tion of the generic N_Vector type and functions. The NVECTOR functions used by the SPGMR module are:
N_VDotProd(), N_VLinearSum(), N_VScale(), N_VProd(), N_VDiv(), N_VConst(), N_VClone(),
N_VCloneVectorArray(), N_VDestroy(), and N_VDestroyVectorArray().

196 Chapter 7. Linear Solvers in ARKode

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

The nine files listed above can be extracted from the SUNDIALS srcdir and compiled by themselves into an
SPGMR library or into a separate user code.

The following functions are available in the SPGMR package:

• SpgmrMalloc: allocates memory for SpgmrSolve;

• SpgmrSolve: solves Ax = b using the SPGMR method;

• SpgmrFree: frees memory allocated by SpgmrMalloc.

The following functions are available in the support package sundials_iterative.h and
sundials_iterative.c:

• ModifiedGS: performs the modified Gram-Schmidt orthogonalization procedure;

• ClassicalGS: performs the classical Gram-Schmidt orthogonalization procedure;

• QRfact: performs the QR factorization of a Hessenberg matrix;

• QRsol: solves a least squares problem with a Hessenberg matrix factored by QRfact.

7.3.2 The SPFGMR module

The SPFGMR package, in the files sundials_spfgmr.h and sundials_spfgmr.c, includes an implementa-
tion of the scaled preconditioned Flexible Generalized Minimum Residual method [S1993]. For full details, including
usage instructions, see the file sundials_spfgmr.h.

The files needed to use the SPFGMR module by itself are the same as for the SPGMR module, but with
sundials_spfgmr.(h,c) in place of sundials_spgmr.(h,c).

The following functions are available in the SPFGMR package:

• SpfgmrMalloc: allocates memory for SpfgmrSolve;

• SpfgmrSolve: solves Ax = b using the SPFGMR method;

• SpfgmrFree: frees memory allocated by SpfgmrMalloc.

7.3.3 The SPBCG module

The SPBCG package, in the files sundials_spbcgs.h and sundials_spbcgs.c, includes an implemen-
tation of the scaled preconditioned Bi-CGStab method. For full details, including usage instructions, see the file
sundials_spbcgs.h.

The files needed to use the SPBCG module by itself are the same as for the SPGMR module, but with
sundials_spbcgs.(h,c) in place of sundials_spgmr.(h,c).

The following functions are available in the SPBCG package:

• SpbcgMalloc: allocates memory for SpbcgSolve;

• SpbcgSolve: solves Ax = b using the SPBCG method;

• SpbcgFree: frees memory allocated by SpbcgMalloc.

7.3.4 The SPTFQMR module

The SPTFQMR package, in the files sundials_sptfqmr.h and sundials_sptfqmr.c, includes an imple-
mentation of the scaled preconditioned TFQMR method. For full details, including usage instructions, see the file
sundials_sptfqmr.h.

7.3. The SPILS modules: SPGMR, SPFGMR, SPBCG, SPTFQMR and PCG 197

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

The files needed to use the SPTFQMR module by itself are the same as for the SPGMR module, but with
sundials_sptfqmr.(h,c) in place of sundials_spgmr.(h,c).

The following functions are available in the SPTFQMR package:

• SptfqmrMalloc: allocates memory for SptfqmrSolve;

• SptfqmrSolve: solves Ax = b using the SPTFQMR method;

• SptfqmrFree: frees memory allocated by SptfqmrMalloc.

7.3.5 The PCG module

The PCG package, in the files sundials_pcg.h and sundials_pcg.c, includes an implementation of the
preconditioned conjugate gradient method. We note that due to the requirement of symmetric linear systems for the
conjugate gradient method, this solver should only be used for problems with symmetric linear operators. Furthermore,
aside from allowing a weight vector for computing weighted convergence norms, no variable or equation scaling is
allowed for systems using this solver. For full details, including usage instructions, see the file sundials_pcg.h.

The files needed to use the PCG module by itself are the same as for the SPGMR module, but with
sundials_pcg.(h,c) in place of sundials_spgmr.(h,c).

The following functions are available in the PCG package:

• PcgMalloc: allocates memory for PcgSolve;

• PcgSolve: solves Ax = b using the PCG method;

• PcgFree: frees memory allocated by PcgMalloc.

7.4 Providing Alternate Linear Solver Modules

7.4.1 Newton system linear solver

The central ARKode module interfaces with the Newton system linear solver module using calls to one of four routines.
These are denoted here by linit(), lsetup(), lsolve(), and lfree(). Briefly, their purposes are as follows:

• linit(): initializes memory specific to the linear solver;

• lsetup(): evaluates and preprocesses the Jacobian or preconditioner in preparation for solves;

• lsolve(): solves the linear system;

• lfree(): frees the linear solver memory.

A linear solver module must also provide a user-callable specification function (like those described in the section
Linear solver specification functions) which will attach the above four routines to the main ARKode memory block.
The ARKode memory block is a structure defined in the header file arkode_impl.h. A pointer to such a structure
is defined as the type ARKodeMem. The four fields in the ARKodeMem structure that refer to the Newton system
linear solver’s functions are ark_linit, ark_lsetup, ark_lsolve, and ark_lfree, respectively. Note that
of these interface functions , only the lsolve() function is required. The lfree() routine must be provided only
if the solver specification routine makes any memory allocation. For any of the functions that are not provided, the
corresponding field should be set to NULL. The linear solver specification function must also set the value of the field
ark_setupNonNull in the ARKode memory block – to TRUE if lsetup() is used, or FALSE otherwise.

Typically, the linear solver will require a block of memory specific to the solver, and a principal function of the
specification function is to allocate that memory block, and initialize it. Then the field ark_lmem in the ARKode
memory block ARKodeMem is available to attach a pointer to that linear solver memory. This block can then be used
to facilitate the exchange of data between the four interface functions.

198 Chapter 7. Linear Solvers in ARKode

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

If the linear solver involves adjustable parameters, the specification function should set the default values of those.
User-callable functions may be defined that could, optionally, override the default parameter values.

We encourage the use of performance counters in connection with the various operations involved with the linear
solver. Such counters would be members of the linear solver memory block, would be initialized in the linit()
function, and would be incremented by the lsetup() and lsolve() functions. Then user-callable functions would
be needed to obtain the values of these counters.

For consistency with the existing ARKode linear solver modules, we recommend that the return value of the specifi-
cation function be 0 for a successful return, and a negative value if an error occurs. Possible error conditions include:
the pointer to the main ARKode memory block is NULL, an input is illegal, the NVECTOR implementation is not
compatible, or a memory allocation fails.

7.4.2 Mass matrix linear solver

Similarly, for problems involving a non-identity mass matrix M 6= I , the main ARKode module interfaces with
the mass matrix linear solver module using calls to one of four routines: minit(), msetup(), msolve(), and
mfree(). Briefly, their purposes are as follows:

• minit(): initializes memory specific to the mass matrix linear solver;

• msetup(): evaluates and preprocesses the mass matrix or associated preconditioner in preparation for solves;

• msolve(): solves the mass matrix system;

• mfree(): frees the mass matrix linear solver memory.

As with the Newton system linear solver, a mass matrix linear solver module must also provide a user-callable specifi-
cation function (like those described in the section Linear solver specification functions) which will attach the above
four functions to the main ARKode memory block. The four fields in the ARKodeMem structure that refer to the
mass matrix system linear solver’s functions are ark_minit, ark_msetup, ark_msolve, and ark_mfree,
respectively. As with the Newton system solver, only msolve() is required, and mfree() must be provided only
if the solver specification function makes any memory allocation. For any of the functions that are not provided, the
corresponding field should be set to NULL. The mass matrix linear solver specification function must also set the value
of the field ark_MassSetupNonNull in the ARKode memory block – to TRUE if msetup() is used, or FALSE
otherwise.

As with the Newton system linear solver, the mass matrix linear solver will require a block of memory specific to the
solver, so a principal function of the specification function is to allocate that memory block, and initialize it. Then the
field ark_mass_mem in the ARKode memory block ARKodeMem is available to attach a pointer to that mass matrix
solver memory. This block can then be used to facilitate the exchange of data between the various interface functions.

If the linear solver involves adjustable parameters, the specification function should set the default values of those.
User-callable functions may be defined that could, optionally, override the default parameter values.

We encourage the use of performance counters in connection with the various operations involved with the linear
solver. Such counters would be members of the linear solver memory block, would be initialized in the minit()
function, and would be incremented by the msetup() and msolve() functions. Then user-callable functions would
be needed to obtain the values of these counters.

For consistency with the existing ARKode linear solver modules, we recommend that the return value of the specifi-
cation function be 0 for a successful return, and a negative value if an error occurs. Possible error conditions include:
the pointer to the main ARKode memory block is NULL, an input is illegal, the NVECTOR implementation is not
compatible, or a memory allocation fails.

These above functions, which interface between ARKode and the Newton system or mass matrix linear solver module
necessarily have fixed call sequences. Thus, a user wishing to implement another linear solver within the ARKode
package must adhere to this set of interfaces. The following is a complete description of the call list for each of these
functions. Note that the call list of each function includes a pointer to the main ARKode memory block, by which the

7.4. Providing Alternate Linear Solver Modules 199

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

function can access various data related to the ARKode solution. The contents of this memory block are given in the
file arkode_impl.h (but not reproduced here, for the sake of space).

7.4.3 Initialization function

The type definition of linit() is

typedef int (*linit)(ARKodeMem ark_mem)
Completes initializations for the specific linear solver, such as counters and statistics. It should also set pointers
to data blocks that will later be passed to functions associated with the linear solver. The linit() function is
called once only, at the start of the problem, during the first call to ARKode.

Arguments:

• ark_mem – pointer to the ARKode memory block.

Return value: Should return 0 if it has successfully initialized the ARKode linear solver and a negative value
otherwise.

Similarly, the type definition of minit() is

typedef int (*minit)(ARKodeMem ark_mem)
Completes initializations for the specific mass matrix linear solver, such as counters and statistics. It should also
set pointers to data blocks that will later be passed to functions associated with the linear solver. The minit()
function is called once only, at the start of the problem, during the first call to ARKode.

Arguments:

• ark_mem – pointer to the ARKode memory block.

Return value: Should return 0 if it has successfully initialized the ARKode linear solver and a negative value
otherwise.

7.4.4 Setup function

The type definition of lsetup() is

typedef int (*lsetup)(ARKodeMem ark_mem, int convfail, N_Vector ypred, N_Vector fpred, boolean-
type *jcurPtr, N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3)

Prepares the linear solver for subsequent calls to lsolve(), in the solution of systems Ax = b, where A is
some approximation to the Newton matrix, M − γ ∂f∂y . Here, γ is available as ark_mem->ark_gamma.

The lsetup() function may call a user-supplied function, or a function within the linear solver module, to
compute needed data related to the Jacobian matrix ∂f

∂y . Alterntively, it may choose to retrieve and use stored
values of this data.

In either case, lsetup() may also preprocess that data as needed for lsolve(), which may involve calling
a generic function (such as for LU factorization). This data may be intended either for direct use (in a direct
linear solver) or for use in a preconditioner (in a preconditioned iterative linear solver).

The lsetup() function is not called at every stage solve (or even every time step), but only as frequently as
the solver determines that it is appropriate to perform the setup task. In this way, Jacobian-related data generated
by lsetup() is expected to be used over a number of time steps.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• convfail – an input flag used to indicate any problem that occurred during the solution of the nonlinear
equation on the current time step for which the linear solver is being used. This flag can be used to

200 Chapter 7. Linear Solvers in ARKode

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

help decide whether the Jacobian data kept by a linear solver needs to be updated or not. Its possible
values are:

– ARK_NO_FAILURES: this value is passed if either this is the first call for this step, or the local
error test failed on the previous attempt at this step (but the Newton iteration converged).

– ARK_FAIL_BAD_J: this value is passed if (a) the previous Newton corrector iteration did not con-
verge and the linear solver’s setup function indicated that its Jacobian-related data is not current,
or (b) during the previous Newton corrector iteration, the linear solver’s solve function failed in a
recoverable manner and the linear solver’s setup function indicated that its Jacobian-related data
is not current.

– ARK_FAIL_OTHER: this value is passed if during the current internal step try, the previous New-
ton iteration failed to converge even though the linear solver was using current Jacobian-related
data.

• ypred – is the predicted y vector for the current ARKode internal step.

• fpred – is the value of the implicit right-hand side at ypred, fI(tn, ypred).

• jcurPtr – is a pointer to a boolean to be filled in by lsetup(). The function should set *jcurPtr
= TRUE if its Jacobian data is current after the call, and should set *jcurPtr = FALSE if its
Jacobian data is not current. If lsetup() calls for re-evaluation of Jacobian data (based on convfail
and ARKode state data), it should return *jcurPtr = TRUE unconditionally; otherwise an infinite
loop can result.

• vtemp1, vtemp2, vtemp3 – are temporary variables of type N_Vector provided for use by
lsetup().

Return value: Should return 0 if successful, a positive value for a recoverable error, and a negative value for an
unrecoverable error. On a recoverable error return, the solver will attempt to recover by reducing the step size.

Similarly, the type definition of msetup() is

typedef int (*msetup)(ARKodeMem ark_mem, N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3)
Prepares the mass matrix linear solver for subsequent calls to msolve(), in the solution of systems Mx = b,
where M is the system mass matrix.

The msetup() function may call a user-supplied function, or a function within the linear solver module, to
compute needed data related to the mass matrix. Alterntively, it may choose to retrieve and use stored values of
this data.

In either case, msetup() may also preprocess that data as needed for msolve(), which may involve calling
a generic function (such as for LU factorization). This data may be intended either for direct use (in a direct
linear solver) or for use in a preconditioner (in a preconditioned iterative linear solver).

The msetup() function is called at every time step, as discussed in section Mass matrix solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• vtemp1, vtemp2, vtemp3 – are temporary variables of type N_Vector provided for use by
msetup().

Return value: Should return 0 if successful, a positive value for a recoverable error, and a negative value for an
unrecoverable error. On a recoverable error return, the solver will attempt to recover by reducing the step size.

7.4.5 Solve function

The type definition of lsolve() is

7.4. Providing Alternate Linear Solver Modules 201

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

typedef int (*lsolve)(ARKodeMem ark_mem, N_Vector b, N_Vector weight, N_Vector ycur,
N_Vector fcur)

Solves the linear equation Ax = b, where A arises in the Newton iteration (see the section Linear solver
methods) and gives some approximation to the Newton matrix M − γJ , J = ∂

∂yfI(tn, ycur). Note, the right-
hand side vector b is input, and γ is available as ark_mem->ark_gamma.

lsolve() is called once per Newton iteration, hence possibly several times per time step.

If there is an lsetup() function, this lsolve() function should make use of any Jacobian data that was
computed and preprocessed by lsetup(), either for direct use, or for use in a preconditioner.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• b – is the right-hand side vector b. The solution is also to be returned in the vector b.

• weight – is a vector that contains the residual weights. These are the rwti of Residual weight function.
This weight vector is included here to enable the computation of weighted norms needed to test for
the convergence of iterative methods (if any) within the linear solver.

• ycur – is a vector that contains the solver’s current approximation to y(tn).

• fcur – is a vector that contains the current right-hand side, fI(tn, ycur).

Return value: Should return 0 if successful, a positive value for a recoverable error, and a negative value for
an unrecoverable error. On a recoverable error return, the solver will attempt to recover, such as by calling the
lsetup() function with the current arguments.

Similarly, the type definition of msolve() is

typedef int (*msolve)(ARKodeMem ark_mem, N_Vector b, N_Vector weight)
Solves the linear equation Mx = b, where M is the system mass matrix. Note, the right-hand side vector b is
input, and holds the solution x on output.

msolve() is called at least once per time step (if M 6= I), as discussed in section Mass matrix solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

• b – is the right-hand side vector b. The solution is also to be returned in the vector b.

• weight – is a vector that contains the error weights. These are the rwti of Residual weight function.
This weight vector is included here to enable the computation of weighted norms needed to test for
the convergence of iterative methods (if any) within the linear solver.

Return value: Should return 0 if successful, and a nonzero value for an unrecoverable error.

7.4.6 Memory deallocation function

The type definition of lfree() is

typedef void (*lfree)(ARKodeMem ark_mem)
free up any memory allocated by the linear solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

Return value: None

Notes: This function is called once a problem has been completed and the linear solver is no longer needed.

Similarly, the type definition of mfree() is

202 Chapter 7. Linear Solvers in ARKode

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

typedef void (*mfree)(ARKodeMem ark_mem)
free up any memory allocated by the mass matrix linear solver.

Arguments:

• arkode_mem – pointer to the ARKode memory block.

Return value: None

Notes: This function is called once a problem has been completed and the mass matrix solver is no longer
needed.

7.4. Providing Alternate Linear Solver Modules 203

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

204 Chapter 7. Linear Solvers in ARKode

CHAPTER

EIGHT

ARKODE INSTALLATION PROCEDURE

The installation of any SUNDIALS package is accomplished by installing the SUNDIALS suite as a whole, according
to the instructions that follow. The same procedure applies whether or not the downloaded file contains one or all
solvers in SUNDIALS.

The SUNDIALS suite (or individual solvers) are distributed as compressed archives (.tar.gz). The name of the dis-
tribution archive is of the form SOLVER-X.Y.Z.tar.gz, where SOLVER is one of: sundials, cvode, cvodes,
arkode, ida, idas, or kinsol, and X.Y.Z represents the version number (of the SUNDIALS suite or of the in-
dividual solver). To begin the installation, first uncompress and expand the sources, by issuing

% tar -zxf SOLVER-X.Y.Z.tar.gz

This will extract source files under a directory SOLVER-X.Y.Z.

Starting with version 2.6.0 of SUNDIALS, CMake is the only supported method of installation. The explanations on
the installation procedure begins with a few common observations:

• The remainder of this chapter will follow these conventions:

SRCDIR is the directory SOLVER-X.Y.Z created above; i.e. the directory containing the SUNDIALS sources.

BUILDDIR is the (temporary) directory under which SUNDIALS is built.

INSTDIR is the directory under which the SUNDIALS exported header files and libraries will be installed.
Typically, header files are exported under a directory INSTDIR/include while libraries are installed
under INSTDIR/lib, with INSTDIR specified at configuration time.

• For SUNDIALS’ CMake-based installation, in-source builds are prohibited; in other words, the build directory
BUILDDIR can not be the same as SRCDIR and such an attempt will lead to an error. This prevents “polluting”
the source tree and allows efficient builds for different configurations and/or options.

• The installation directory INSTDIR can not be the same as the source directory SRCDIR.

• By default, only the libraries and header files are exported to the installation directory INSTDIR. If enabled by
the user (with the appropriate toggle for CMake), the examples distributed with SUNDIALS will be built to-
gether with the solver libraries but the installation step will result in exporting (by default in a subdirectory of the
installation directory) the example sources and sample outputs together with automatically generated configura-
tion files that reference the installed SUNDIALS headers and libraries. As such, these configuration files for the
SUNDIALS examples can be used as “templates” for your own problems. CMake installs CMakeLists.txt
files and also (as an option available only under Unix/Linux) Makefile files. Note this installation approach
also allows the option of building the SUNDIALS examples without having to install them. (This can be used
as a sanity check for the freshly built libraries.)

• Even if generation of shared libraries is enabled, only static libraries are created for the FCMIX modules.
Because of the use of fixed names for the Fortran user-provided subroutines, FCMIX shared libraries would
result in “undefined symbol” errors at link time.

205

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Further details on the CMake-based installation procedures, instructions for manual compilation, and a roadmap of the
resulting installed libraries and exported header files, are provided in the following subsections:

• CMake-based installation

• Installed libraries and exported header files

8.1 CMake-based installation

CMake-based installation provides a platform-independent build system. CMake can generate Unix and Linux Make-
files, as well as KDevelop, Visual Studio, and (Apple) XCode project files from the same configuration file. In addition,
CMake also provides a GUI front end and which allows an interactive build and installation process.

The SUNDIALS build process requires CMake version 2.8.1 or higher and a working compiler. On Unix-like operating
systems, it also requires Make (and curses, including its development libraries, for the GUI front end to CMake,
ccmake or cmake-gui), while on Windows it requires Visual Studio. While many Linux distributions offer CMake,
the version included may be out of date. Many new CMake features have been added recently, and you should
download the latest version from http://www.cmake.org. Build instructions for CMake (only necessary for Unix-like
systems) can be found on the CMake website. Once CMake is installed, Linux/Unix users will be able to use ccmake
or cmake-gui (depending on the version of CMake), while Windows users will be able to use CMakeSetup.

As previously noted, when using CMake to configure, build and install SUNDIALS, it is always required to use a
separate build directory. While in-source builds are possible, they are explicitly prohibited by the SUNDIALS CMake
scripts (one of the reasons being that, unlike autotools, CMake does not provide a make distclean procedure and
it is therefore difficult to clean-up the source tree after an in-source build). By ensuring a separate build directory, it
is an easy task for the user to clean-up all traces of the build by simply removing the build directory. CMake does
generate a make clean which will remove files generated by the compiler and linker.

8.1.1 Configuring, building, and installing on Unix-like systems

The default CMake configuration will build all included solvers and associated examples and will build
static and shared libraries. The INSTDIR defaults to /usr/local and can be changed by setting the
CMAKE_INSTALL_PREFIX variable. Support for FORTRAN and all other options are disabled.

CMake can be used from the command line with the cmake command, or from a curses-based GUI by using the
ccmake command, or from a wxWidgets or QT based GUI by using the cmake-gui command. Examples for using
both text and graphical methods will be presented. For the examples shown it is assumed that there is a top level
SUNDIALS directory with appropriate source, build and install directories:

$ mkdir (...)/INSTDIR
$ mkdir (...)/BUILDDIR
$ cd (...)/BUILDDIR

Building with the GUI

Using CMake with the ccmake GUI follows the general process:

• Select and modify values, run configure (c key)

• New values are denoted with an asterisk

• To set a variable, move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will toggle the value

– If it is string or file, it will allow editing of the string

206 Chapter 8. ARKode Installation Procedure

http://www.cmake.org

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

– For file and directories, the <tab> key can be used to complete

• Repeat until all values are set as desired and the generate option is available (g key)

• Some variables (advanced variables) are not visible right away

• To see advanced variables, toggle to advanced mode (t key)

• To search for a variable press / key, and to repeat the search, press the n key

Using CMake with the cmake-gui GUI follows a similar process:

• Select and modify values, click Configure

• The first time you click Configure, make sure to pick the appropriate generator (the following will ssume
generation of Unix Makfiles).

• New values are highlighted in red

• To set a variable, click on or move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will check/uncheck the box

– If it is string or file, it will allow editing of the string. Additionally, an ellipsis button will appear ... on
the far right of the entry. Clicking this button will bring up the file or directory selection dialog.

– For files and directories, the <tab> key can be used to complete

• Repeat until all values are set as desired and click the Generate button

• Some variables (advanced variables) are not visible right away

• To see advanced variables, click the advanced button

To build the default configuration using the curses GUI, from the BUILDDIR enter the ccmake command and point
to the SRCDIR:

$ ccmake (...)/SRCDIR

Similarly, to build the default configuration using the wxWidgets GUI, from the BUILDDIR enter the cmake-gui
command and point to the SRCDIR:

$ cmake-gui (...)/SRCDIR

The default curses configuration screen is shown in the following figure.

The default INSTDIR for both SUNDIALS and corresponding examples can be changed by setting the
CMAKE_INSTALL_PREFIX and the EXAMPLES_INSTALL_PATH as shown in the following figure.

Pressing the g key or clicking generate will generate makefiles including all dependencies and all rules to build
SUNDIALS on this system. Back at the command prompt, you can now run:

$ make

or for a faster parallel build (e.g. using 4 threads), you can run

$ make -j 4

To install SUNDIALS in the installation directory specified in the configuration, simply run:

$ make install

8.1. CMake-based installation 207

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Fig. 8.1: Default configuration screen. Note: Initial screen is empty. To get this default configuration, press ‘c’
repeatedly (accepting default values denoted with asterisk) until the ‘g’ option is available.

Fig. 8.2: Changing the INSTDIR for SUNDIALS and corresponding EXAMPLES.

208 Chapter 8. ARKode Installation Procedure

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Building from the command line

Using CMake from the command line is simply a matter of specifying CMake variable settings with the cmake
command. The following will build the default configuration:

$ cmake -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> ../srcdir
$ make
$ make install

8.1.2 Configuration options (Unix/Linux)

A complete list of all available options for a CMake-based SUNDIALS configuration is provide below. Note that the
default values shown are for a typical configuration on a Linux system and are provided as illustration only.

BUILD_ARKODE Build the ARKODE library

Default: ON

BUILD_CVODE Build the CVODE library

Default: ON

BUILD_CVODES Build the CVODES library

Default: ON

BUILD_IDA Build the IDA library

Default: ON

BUILD_IDAS Build the IDAS library

Default: ON

BUILD_KINSOL Build the KINSOL library

Default: ON

BUILD_SHARED_LIBS Build shared libraries

Default: OFF

BUILD_STATIC_LIBS Build static libraries

Default: ON

CMAKE_BUILD_TYPE Choose the type of build, options are: None (CMAKE_C_FLAGS used), Debug,
Release, and MinSizeRel

Default:

CMAKE_C_COMPILER C compiler

Default: /usr/bin/cc

CMAKE_C_FLAGS Flags for C compiler

Default:

CMAKE_C_FLAGS_DEBUG Flags used by the compiler during debug builds

Default: -g

8.1. CMake-based installation 209

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

CMAKE_C_FLAGS_MINSIZEREL Flags used by the compiler during release minsize builds

Default: -Os -DNDEBUG

CMAKE_C_FLAGS_RELEASE Flags used by the compiler during release builds

Default: -O3 -DNDEBUG

CMAKE_CXX_COMPILER C++ compiler

Default: /usr/bin/g++

CMAKE_CXX_FLAGS Flags for C++ compiler

Default:

CMAKE_CXX_FLAGS_DEBUG Flags used by the C++ compiler during debug builds

Default: -g

CMAKE_CXX_FLAGS_MINSIZEREL Flags used by the C++ compiler during release minsize builds

Default: -Os -DNDEBUG

CMAKE_CXX_FLAGS_RELEASE Flags used by the C++ compiler during release builds

Default: -O3 -DNDEBUG

CMAKE_Fortran_COMPILER Fortran compiler

Default: /usr/bin/gfortran

Note: Fortran support (and all related options) are triggered only if either Fortran-C support is enabled
(FCMIX_ENABLE is ON) or BLAS/LAPACK support is enabled (LAPACK_ENABLE is ON).

CMAKE_Fortran_FLAGS Flags for Fortran compiler

Default:

CMAKE_Fortran_FLAGS_DEBUG Flags used by the Fortran compiler during debug builds

Default: -g

CMAKE_Fortran_FLAGS_MINSIZEREL Flags used by the Fortran compiler during release minsize builds

Default: -Os

CMAKE_Fortran_FLAGS_RELEASE Flags used by the Fortran compiler during release builds

Default: -O3

CMAKE_INSTALL_PREFIX Install path prefix, prepended onto install directories

Default: /usr/local

Note: The user must have write access to the location specified through this option. Exported
SUNDIALS header files and libraries will be installed under subdirectories include and lib of
CMAKE_INSTALL_PREFIX, respectively.

CXX_ENABLE Flag to enable C++ ARKode examples (if examples are enabled)

Default: OFF

EXAMPLES_ENABLE Build the SUNDIALS examples

Default: ON

210 Chapter 8. ARKode Installation Procedure

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

EXAMPLES_INSTALL Install example files

Default: ON

Note: This option is triggered only if building example programs is enabled (EXAMPLES_ENABLE
is set to ON). If the user requires installation of example programs then the sources and sample output
files for all SUNDIALS modules that are currently enabled will be exported to the directory specified by
EXAMPLES_INSTALL_PATH. A CMake configuration script will also be automatically generated and ex-
ported to the same directory. Additionally, if the configuration is done under a Unix-like system, makefiles
for the compilation of the example programs (using the installed SUNDIALS libraries) will be automatically
generated and exported to the directory specified by EXAMPLES_INSTALL_PATH.

EXAMPLES_INSTALL_PATH Output directory for installing example files

Default: /usr/local/examples

Note: The actual default value for this option will be an examples subdirectory created under
CMAKE_INSTALL_PREFIX.

FCMIX_ENABLE Enable Fortran-C support

Default: OFF

F90_ENABLE Flag to enable Fortran 90 ARKode examples (if examples are enabled)

Default: OFF

KLU_ENABLE Enable KLU support

Default: OFF

LAPACK_ENABLE Enable LAPACK support

Default: OFF

Note: Setting this option to ON will trigger the two additional options see below.

LAPACK_LIBRARIES LAPACK (and BLAS) libraries

Default: /usr/lib/liblapack.so;/usr/lib/libblas.so

Note: CMake will search for these libraries in your LD_LIBRARY_PATH prior to searching default system
paths.

MPI_ENABLE Enable MPI support

Default: OFF

Note: Setting this option to ON will trigger several additional options related to MPI.

MPI_MPICC mpicc program

Default:

MPI_MPICXX mpicxx program

Default:

Note: This option is triggered only if C++ is enabled (CXX_ENABLE is ON).

8.1. CMake-based installation 211

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

MPI_MPIF77 mpif77 program

Default:

Note: This option is triggered only if Fortran-C support is enabled (FCMIX_ENABLE is ON).

MPI_MPIF90 mpif90 program

Default:

Note: This option is triggered only if Fortran-C support is enabled (FCMIX_ENABLE is ON), and Fortran 90
examples are enabled (F90_ENABLE is ON).

OPENMP_ENABLE Turn on support for the OpenMP based NVector

Default: OFF

PTHREAD_ENABLE Turn on support for the Pthreads based NVector

Default: OFF

SUNDIALS_PRECISION Precision used in SUNDIALS, options are: double, single or extended

Default: double

SUPERLUMT_ENABLE Enable SUPERLU_MT support

Default: OFF

USE_GENERIC_MATH Use generic (stdc) math libraries

Default: ON

8.1.3 Configuration examples

The following examples will help demonstrate usage of the CMake configure options.

To configure SUNDIALS using the default C and Fortran compilers, and default mpicc and mpif77 parallel com-
pilers, enable compilation of examples, and install libraries, headers, and example sources under subdirectories of
/home/myname/sundials/, use:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DMPI_ENABLE=ON \
> -DFCMIX_ENABLE=ON \
> /home/myname/sundials/srcdir

% make install

To disable installation of the examples, use:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DMPI_ENABLE=ON \
> -DFCMIX_ENABLE=ON \
> -DEXAMPLES_INSTALL=OFF \
> /home/myname/sundials/srcdir

% make install

212 Chapter 8. ARKode Installation Procedure

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

8.1.4 Working with external Libraries

The SUNDIALS suite contains many options to enable implementation flexibility when developing solutions. The
following are some notes addressing specific configurations when using the supported third party libraries.

Building with LAPACK and BLAS

To enable LAPACK and BLAS libraries, set the LAPACK_ENABLE option to ON. If the directory contain-
ing the LAPACK and BLAS libraries is in the LD_LIBRARY_PATH environment variable, CMake will set the
LAPACK_LIBRARIES variable accordingly, otherwise CMake will attemp to find the LAPACK and BLAS libraries
in standard system locations. To explicitly tell CMake what libraries to use, the LAPACK_LIBRARIES varible can
be set to the desired libraries.

Example:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DLAPACK_LIBRARIES=/mypath/lib/liblapack.so;/mypath/lib/libblas.so \
> /home/myname/sundials/srcdir

% make install

Building with KLU

The KLU libraries are part of SuiteSparse, a suite of sparse matrix software, available from the Texas A&M University
website: http://faculty.cse.tamu.edu/davis/suitesparse.html .

SUNDIALS has been tested with SuiteSparse version 4.2.1. To enable KLU, set KLU_ENABLE to ON, set
KLU_INCLUDE_DIR to the include path of the KLU installation and set KLU_LIBRARY_DIR to the lib path
of the KLU installation. The CMake configure will result in populating the following variables: AMD_LIBRARY,
AMD_LIBRARY_DIR, BTF_LIBRARY, BTF_LIBRARY_DIR, COLAMD_LIBRARY, COLAMD_LIBRARY_DIR,
and KLU_LIBRARY.

Building with SuperLU_MT

The SuperLU_MT libraries are available for download from the Lawrence Berkeley National Laboratory website:
http://crd-legacy.lbl.gov/simxiaoye/SuperLU/#superlu_mt .

SUNDIALS has been tested with SuperLU_MT version 2.4. To enable SuperLU_MT, set SUPERLUMT_ENABLE
to ON, set SUPERLUMT_INCLUDE_DIR to the SRC path of the SuperLU_MT installation, and set the variable
SUPERLUMT_LIBRARY_DIR to the lib path of the SuperLU_MT installation. At the same time, the variable
SUPERLUMT_THREAD_TYPE must be set to either Pthread or OpenMP.

Do not mix thread types when building SUNDIALS solvers. If threading is enabled for SUNDIALS by having either
OPENMP_ENABLE or PTHREAD_ENABLE set to ON then SuperLU_MT should be set to use the same threading type.

8.1.5 Building and Running Examples

Each of the SUNDIALS solvers is distributed with a set of examples demonstrating basic usage. To build and install
the examples, set both EXAMPLES_ENABLE and EXAMPLES_INSTALL to ON. Specify the installation path for the
examples with the variable EXAMPLES_INSTALL_PATH. CMake will generate CMakeLists.txt configuration
files (and Makefile files if on Linux/Unix) that reference the installed SUNDIALS headers and libraries.

8.1. CMake-based installation 213

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://crd-legacy.lbl.gov/\protect \T1\textdollar sim\protect \T1\textdollar xiaoye/SuperLU/

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Either the CMakeLists.txt file or the traditional Makefile may be used to build the examples as well as serve
as a template for creating user developed solutions. To use the supplied Makefile simply run make to compile
and generate the executables. To use CMake, from within the installed example directory, run cmake (or ccmake
or cmake-gui to use the GUI) followed by make to compile the example code. Note that if CMake is used, it will
overwrite the traditional Makefile with a new CMake generated Makefile.

The resulting output from running the examples can be compared with example output bundled in the SUNDIALS
distribution.

NOTE: There will potentially be differences in the output due to machine architecture, compiler versions, use of third
party libraries etc.

8.1.6 Configuring, building, and installing on Windows

CMake can also be used to build SUNDIALS on Windows. To build SUNDIALS for use with Visual Studio the
following steps should be performed:

1. Unzip the downloaded tar file(s) into a directory, this will be the SRCDIR

2. Create a separate BUILDDIR

3. Open a Visual Studio Command Prompt and cd to BUILDDIR

4. Run cmake-gui ../SRCDIR

(a) Hit Configure

(b) Check/Uncheck solvers to be built

(c) Change CMAKE_INSTALL_PREFIX to INSTDIR

(d) Set other options as desired

(e) Hit Generate

5. Back in the VS Command Window:

(a) Run msbuild ALL_BUILD.vcxproj

(b) Run msbuild INSTALL.vcxproj

The resulting libraries will be in the INSTDIR.

The SUNDIALS project can also now be opened in Visual Studio. Double click on the ALL_BUILD.vcxproj file
to open the project. Build the whole solution to create the SUNDIALS libraries. To use the SUNDIALS libraries in
your own projects, you must set the include directories for your project, add the SUNDIALS libraries to your project
solution, and set the SUNDIALS libraries as dependencies for your project.

8.2 Installed libraries and exported header files

Using the CMake SUNDIALS build system, the command

$ make install

will install the libraries under LIBDIR and the public header files under INCLUDEDIR. The values for these directo-
ries are INSTDIR/lib and INSTDIR/include, respectively. The location can be changed by setting the CMake
variable CMAKE_INSTALL_PREFIX. Although all installed libraries reside under LIBDIR/lib, the public header
files are further organized into subdirectories under INCLUDEDIR/include.

214 Chapter 8. ARKode Installation Procedure

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

The installed libraries and exported header files are listed for reference in the Table: SUNDIALS libraries and header
files. The file extension .LIB is typically .so for shared libraries and .a for static libraries. Note that, in this table
names are relative to LIBDIR for libraries and to INCLUDEDIR for header files.

A typical user program need not explicitly include any of the shared SUNDIALS header files from under the
INCLUDEDIR/include/sundials directory since they are explicitly included by the appropriate solver header
files (e.g., cvode_dense.h includes sundials_dense.h). However, it is both legal and safe to do so, and would
be useful, for example, if the functions declared in sundials_dense.h are to be used in building a preconditioner.

8.2. Installed libraries and exported header files 215

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

216 Chapter 8. ARKode Installation Procedure

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

8.2.1 Table: SUNDIALS libraries and header files

Shared Header
files

sundials/sundials_band.h, sundials/sundials_config.h,
sundials/sundials_dense.h, sundials/sundials_direct.h,
sundials/sundials_fnvector.h, sundials/sundials_iterative.h,
sundials/sundials_lapack.h, sundials/sundials_math.h,
sundials/sundials_nvector.h, sundials/sundials_pcg.h,
sundials/sundials_sparse.h, sundials/sundials_spbcgs.h,
sundials/sundials_spfgmr.h, sundials/sundials_spgmr.h,
sundials/sundials_sptfqmr.h, sundials/sundials_types.h

NVEC-
TOR_SERIAL

Li-
braries

libsundials_nvecserial.LIB, libsundials_fnvecserial.a

NVEC-
TOR_SERIAL

Header
files

nvector/nvector_serial.h

NVEC-
TOR_PARALLEL

Li-
braries

libsundials_nvecparallel.LIB, libsundials_fnvecparallel.a

NVEC-
TOR_PARALLEL

Header
files

nvector/nvector_parallel.h

NVEC-
TOR_OPENMP

Li-
braries

libsundials_nvecopenmp.LIB, libsundials_fnvecopenmp.a

NVEC-
TOR_OPENMP

Header
files

nvector/nvector_openmp.h

NVEC-
TOR_PTHREADS

Li-
braries

libsundials_nvecpthreads.LIB, libsundials_fnvecpthreads.a

NVEC-
TOR_PTHREADS

Header
files

nvector/nvector_pthreads.h

CVODE Li-
braries

libsundials_cvode.LIB, libsundials_fcvoce.a

CVODE Header
files

cvode/cvode.h, cvode/cvode_band.h, cvode/cvode_bandpre.h,
cvode/cvode_bbdpre.h, cvode/cvode_dense.h,
cvode/cvode_diag.h, cvode/cvode_direct.h, cvode/cvode_impl.h,
cvode/cvode_klu.h, cvode/cvode_lapack.h,
cvode/cvode_sparse.h, cvode/cvode_spbcgs.h,
cvode/cvode_spgmr.h, cvode/cvode_spils.h,
cvode/cvode_sptfqmr.h, cvode/cvode_superlumt.h

CVODES Li-
braries

libsundials_cvodes.LIB

CVODES Header
files

cvodes/cvodes.h, cvodes/cvodes_band.h,
cvodes/cvodes_bandpre.h, cvodes/cvodes_bbdpre.h,
cvodes/cvodes_dense.h, cvodes/cvodes_diag.h,
cvodes/cvodes_direct.h, cvodes/cvodes_impl.h,
cvodes/cvodes_klu.h, cvodes/cvodes_lapack.h,
cvodes/cvodes_sparse.h, cvodes/cvodes_spbcgs.h,
cvodes/cvodes_spgmr.h, cvodes/cvodes_spils.h,
cvodes/cvodes_sptfqmr.h, cvodes/cvodes_superlumt.h

ARKODE Li-
braries

libsundials_arkode.LIB, libsundials_farkode.a

ARKODE Header
files

arkode/arkode.h, arkode/arkode_band.h,
arkode/arkode_bandpre.h, arkode/arkode_bbdpre.h,
arkode/arkode_dense.h, arkode/arkode_direct.h,
arkode/arkode_impl.h, arkode/arkode_klu.h,
arkode/arkode_lapack.h, arkode/arkode_pcg.h,
arkode/arkode_sparse.h, arkode/arkode_spbcgs.h,
arkode/arkode_spfgmr.h, arkode/arkode_spgmr.h,
arkode/arkode_spils.h, arkode/arkode_sptfqmr.h,
arkode/arkode_superlumt.h

IDA Li-
braries

libsundials_ida.LIB, libsundials_fida.a

IDA Header
files

ida/ida.h, ida/ida_band.h, ida/ida_bbdpre.h, ida/ida_dense.h,
ida/ida_direct.h, ida/ida_impl.h, ida/ida_klu.h,
ida/ida_lapack.h, ida/ida_sparse.h, ida/ida_spbcgs.h,
ida/ida_spgmr.h, ida/ida_spils.h, ida/ida_sptfqmr.h,
ida/ida_superlumt.h

IDAS Li-
braries

libsundials_idas.LIB

IDAS Header
files

idas/idas.h, idas/idas_band.h, idas/idas_bbdpre.h
idas/idas_dense.h, idas/idas_direct.h, idas/idas_impl.h,
idas/idas_klu.h, idas/idas_lapack.h, idas/idas_sparse.h,
idas/idas_spbcgs.h, idas/idas_spgmr.h, idas/idas_spils.h,
idas/idas_sptfqmr.h, idas/idas_superlumt.h

KINSOL Li-
braries

libsundials_kinsol.LIB, libsundials_fkinsol.a

KINSOL Header
files

kinsol/kinsol.h, kinsol/kinsol_band.h,
kinsol/kinsol_bbdpre.h, kinsol/kinsol_dense.h,
kinsol/kinsol_direct.h, kinsol/kinsol_impl.h,
kinsol/kinsol_klu.h, kinsol/kinsol_lapack.h,
kinsol/kinsol_sparse.h, kinsol/kinsol_spbcgs.h,
kinsol/kinsol_spfgmr.h, kinsol/kinsol_spgmr.h,
kinsol/kinsol_spils.h, kinsol/kinsol_sptfqmr.h,
kinsol/kinsol_superlumt.h

8.2. Installed libraries and exported header files 217

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

218 Chapter 8. ARKode Installation Procedure

CHAPTER

NINE

APPENDIX: ARKODE CONSTANTS

Below we list all input and output constants used by the main solver and linear solver modules, together with their
numerical values and a short description of their meaning.

9.1 ARKode input constants

9.1.1 ARKode main solver module

ARK_NORMAL (1): Solver returns at a specified output time.

ARK_ONE_STEP (2): Solver returns after each successful step.

9.1.2 Iterative linear solver module

PREC_NONE (0): No preconditioning.

PREC_LEFT (1): Preconditioning on the left only.

PREC_RIGHT (2): Preconditioning on the right only.

PREC_BOTH (3): Preconditioning on both the left and the right.

MODIFIED_GS (1): Use modified Gram-Schmidt procedure.

CLASSICAL_GS (2): Use classical Gram-Schmidt procedure.

9.2 ARKode output constants

9.2.1 ARKode main solver module

ARK_SUCCESS (0): Successful function return.

ARK_TSTOP_RETURN (1): ARKode succeeded by reachign the specified stopping point.

ARK_ROOT_RETURN (2): ARKode succeeded and found one more more roots.

ARK_WARNING (99): ARKode succeeded but an unusual situation occurred.

ARK_TOO_MUCH_WORK (-1): The solver took mxstep internal steps but could not reach tout.

ARK_TOO_MUCH_ACC (-2): The solver could not satisfy the accuracy demanded by the user for some internal
step.

219

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

ARK_ERR_FAILURE (-3): Error test failures occurred too many times during one internal time step, or the mini-
mum step size was reached.

ARK_CONV_FAILURE (-4): Convergence test failures occurred too many times during one internal time step, or
the minimum step size was reached.

ARK_LINIT_FAIL (-5): The linear solver’s initialization function failed.

ARK_LSETUP_FAIL (-6): The linear solver’s setup function failed in an unrecoverable manner.

ARK_LSOLVE_FAIL (-7): The linear solver’s solve function failed in an unrecoverable manner.

ARK_RHSFUNC_FAIL (-8): The right-hand side function failed in an unrecoverable manner.

ARK_FIRST_RHSFUNC_ERR (-9): The right-hand side function failed at the first call.

ARK_REPTD_RHSFUNC_ERR (-10): The right-hand side function had repeated recoverable errors.

ARK_UNREC_RHSFUNC_ERR (-11): The right-hand side function had a recoverable error, but no recovery is
possible.

ARK_RTFUNC_FAIL (-12): The rootfinding function failed in an unrecoverable manner.

ARK_LFREE_FAIL (-13): The linear solver’s memory deallocation function failed.

ARK_MASSINIT_FAIL (-14): The mass matrix linear solver’s initialization function failed.

ARK_MASSSETUP_FAIL (-15): The mass matrix linear solver’s setup function failed in an unrecoverable manner.

ARK_MASSSOLVE_FAIL (-16): The mass matrix linear solver’s solve function failed in an unrecoverable manner.

ARK_MASSFREE_FAIL (-17): The mass matrix linear solver’s memory deallocation function failed.

ARK_MASSMULT_FAIL (-17): The mass matrix-vector product function failed.

ARK_MEM_FAIL (-20): A memory allocation failed.

ARK_MEM_NULL (-21): The arkode_mem argument was NULL.

ARK_ILL_INPUT (-22): One of the function inputs is illegal.

ARK_NO_MALLOC (-23): The ARKode memory block was not allocated by a call to ARKodeMalloc().

ARK_BAD_K (-24): The derivative order k is larger than allowed.

ARK_BAD_T (-25): The time t is outside the last step taken.

ARK_BAD_DKY (-26): The output derivative vector is NULL.

ARK_TOO_CLOSE (-27): The output and initial times are too close to each other.

9.2.2 ARKDLS linear solver modules

ARKDLS_SUCCESS (0): Successful function return.

ARKDLS_MEM_NULL (-1): The arkode_mem argument was NULL.

ARKDLS_LMEM_NULL (-2): The ARKDLS linear solver has not been initialized.

ARKDLS_ILL_INPUT (-3): The ARKDLS solver is not compatible with the current NVECTOR module.

ARKDLS_MEM_FAIL (-4): A memory allocation request failed.

ARKDLS_MASSMEM_FAIL (-5): A memory allocation request failed for the mass matrix solver.

ARKDLS_JACFUNC_UNRECVR (-6): The Jacobian function failed in an unrecoverable manner.

ARKDLS_JACFUNC_RECVR (-7): The Jacobian function had a recoverable error.

220 Chapter 9. Appendix: ARKode Constants

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

ARKDLS_MASSFUNC_UNRECVR (-8): The mass matrix function failed in an unrecoverable manner.

ARKDLS_MASSFUNC_RECVR (-9): The mass matrix function had a recoverable error.

9.2.3 ARKSLS linear solver modules

ARKSLS_SUCCESS (0): Successful function return.

ARKSLS_MEM_NULL (-1): The arkode_mem argument was NULL.

ARKSLS_LMEM_NULL (-2): The ARKSLS linear solver has not been initialized.

ARKSLS_ILL_INPUT (-3): The ARKSLS solver is not compatible with the current NVECTOR module.

ARKSLS_MEM_FAIL (-4): A memory allocation request failed.

ARKSLS_JAC_NOSET (-5): The sparse Jacobian evaluation routine has not been set.

ARKSLS_MASS_NOSET (-6): The sparse mass matrix evaluation routine has not been set.

ARKSLS_PACKAGE_FAIL (-7): A failure occurred in the sparse matrix library (KLU or SuperLU-MT).

ARKSLS_MASSMEM_NULL (-8): The ARKSLS mass matrix solver has been used but not initialized.

ARKSLS_JACFUNC_UNRECVR (-9): The Jacobian function failed in an unrecoverable manner.

ARKSLS_JACFUNC_RECVR (-10): The Jacobian function had a recoverable error.

ARKSLS_MASSFUNC_UNRECVR (-11): The mass matrix function failed in an unrecoverable manner.

ARKSLS_MASSFUNC_RECVR (-12): The mass matrix function had a recoverable error.

9.2.4 ARKSPILS linear solver modules

ARKSPILS_SUCCESS (0): Successful function return.

ARKSPILS_MEM_NULL (-1): The arkode_mem argument was NULL.

ARKSPILS_LMEM_NULL (-2): The ARKSPILS linear solver has not been initialized.

AKRSPILS_ILL_INPUT (-3): The ARKSPILS solver is not compatible with the current NVECTOR module, or an
input value was illegal.

ARKSPILS_MEM_FAIL (-4): A memory allocation request failed.

ARKSPILS_PMEM_FAIL (-5): The preconditioner module has not been initialized.

ARKSPILS_MASSMEM_FAIL (-6): A memory allocation request failed in the mass matrix solver.

9.2.5 SPGMR generic linear solver module

SPGMR_SUCCESS (0): Converged.

SPGMR_RES_REDUCED (1): No convergence, but the residual norm was reduced.

SPGMR_CONV_FAIL (2): Failure to converge.

SPGMR_QRFACT_FAIL (3): A singular matrix was found during the QR factorization.

SPGMR_PSOLVE_FAIL_REC (4): The preconditioner solve function failed recoverably.

SPGMR_ATIMES_FAIL_REC (5): The Jacobian-times-vector function failed recoverably.

SPGMR_PSET_FAIL_REC (6): The preconditioner setup routine failed recoverably.

9.2. ARKode output constants 221

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

SPGMR_MEM_NULL (-1): The SPGMR memory is NULL

SPGMR_ATIMES_FAIL_UNREC (-2): The Jacobian-times-vector function failed unrecoverably.

SPGMR_PSOLVE_FAIL_UNREC (-3): The preconditioner solve function failed unrecoverably.

SPGMR_GS_FAIL (-4): Failure in the Gram-Schmidt procedure.

SPGMR_QRSOL_FAIL (-5): The matrix R was found to be singular during the QR solve phase.

SPGMR_PSET_FAIL_UNREC (-6): The preconditioner setup routine failed unrecoverably.

9.2.6 SPFGMR generic linear solver module (only available in KINSOL and
ARKODE)

SPFGMR_SUCCESS (0): Converged.

SPFGMR_RES_REDUCED (1): No convergence, but the residual norm was reduced.

SPFGMR_CONV_FAIL (2): Failure to converge.

SPFGMR_QRFACT_FAIL (3): A singular matrix was found during the QR factorization.

SPFGMR_PSOLVE_FAIL_REC (4): The preconditioner solve function failed recoverably.

SPFGMR_ATIMES_FAIL_REC (5): The Jacobian-times-vector function failed recoverably.

SPFGMR_PSET_FAIL_REC (6): The preconditioner setup routine failed recoverably.

SPFGMR_MEM_NULL (-1): The SPFGMR memory is NULL

SPFGMR_ATIMES_FAIL_UNREC (-2): The Jacobian-times-vector function failed unrecoverably.

SPFGMR_PSOLVE_FAIL_UNREC (-3): The preconditioner solve function failed unrecoverably.

SPFGMR_GS_FAIL (-4): Failure in the Gram-Schmidt procedure.

SPFGMR_QRSOL_FAIL (-5): The matrix R was found to be singular during the QR solve phase.

SPFGMR_PSET_FAIL_UNREC (-6): The preconditioner setup routine failed unrecoverably.

9.2.7 SPBCG generic linear solver module

SPBCG_SUCCESS (0): Converged.

SPBCG_RES_REDUCED (1): No convergence, but the residual norm was reduced.

SPBCG_CONV_FAIL (2): Failure to converge.

SPBCG_PSOLVE_FAIL_REC (3): The preconditioner solve function failed recoverably.

SPBCG_ATIMES_FAIL_REC (4): The Jacobian-times-vector function failed recoverably.

SPBCG_PSET_FAIL_REC (5): The preconditioner setup routine failed recoverably.

SPBCG_MEM_NULL (-1): The SPBCG memory is NULL

SPBCG_ATIMES_FAIL_UNREC (-2): The Jacobian-times-vector function failed unrecoverably.

SPBCG_PSOLVE_FAIL_UNREC (-3): The preconditioner solve function failed unrecoverably.

SPBCG_PSET_FAIL_UNREC (-4): The preconditioner setup routine failed unrecoverably.

222 Chapter 9. Appendix: ARKode Constants

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

9.2.8 SPTFQMR generic linear solver module

SPTFQMR_SUCCESS (0): Converged.

SPTFQMR_RES_REDUCED (1): No convergence, but the residual norm was reduced.

SPTFQMR_CONV_FAIL (2): Failure to converge.

SPTFQMR_PSOLVE_FAIL_REC (3): The preconditioner solve function failed recoverably.

SPTFQMR_ATIMES_FAIL_REC (4): The Jacobian-times-vector function failed recoverably.

SPTFQMR_PSET_FAIL_REC (5): The preconditioner setup routine failed recoverably.

SPTFQMR_MEM_NULL (-1): The SPTFQMR memory is NULL

SPTFQMR_ATIMES_FAIL_UNREC (-2): The Jacobian-times-vector function failed.

SPTFQMR_PSOLVE_FAIL_UNREC (-3): The preconditioner solve function failed unrecoverably.

SPTFQMR_PSET_FAIL_UNREC (-4): The preconditioner setup routine failed unrecoverably.

9.2.9 PCG generic linear solver module (only available in ARKODE)

PCG_SUCCESS (0): Converged.

PCG_RES_REDUCED (1): No convergence, but the residual norm was reduced.

PCG_CONV_FAIL (2): Failure to converge.

PCG_PSOLVE_FAIL_REC (3): The preconditioner solve function failed recoverably.

PCG_ATIMES_FAIL_REC (4): The Jacobian-times-vector function failed recoverably.

PCG_PSET_FAIL_REC (5): The preconditioner setup routine failed recoverably.

PCG_MEM_NULL (-1): The PCG memory is NULL

PCG_ATIMES_FAIL_UNREC (-2): The Jacobian-times-vector function failed unrecoverably.

PCG_PSOLVE_FAIL_UNREC (-3): The preconditioner solve function failed unrecoverably.

PCG_PSET_FAIL_UNREC (-4): The preconditioner setup routine failed unrecoverably.

9.2. ARKode output constants 223

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

224 Chapter 9. Appendix: ARKode Constants

CHAPTER

TEN

APPENDIX: BUTCHER TABLES

Here we catalog the full set of Butcher tables included in ARKode. We group these into three categories: explicit, im-
plicit and additive. However, since the methods that comprise an additive Runge Kutta method are themselves explicit
and implicit, their component Butcher tables are listed within their separate sections, but are referenced together in the
additive section.

In each of the following tables, we use the following notation (shown for a 3-stage method):

c1 a1,1 a1,2 a1,3

c2 a2,1 a2,2 a2,3

c3 a3,1 a3,2 a3,3

q b1 b2 b3
p b̃1 b̃2 b̃3

where here the method and embedding share stage A and c values, but use their stages zi differently through the
coefficients b and b̃ to generate methods of orders q (the main method) and p (the embedding, typically q = p+ 1).

Method authors often use different naming conventions to categorize their methods. For each of the methods below,
we follow a uniform naming convention:

NAME-S-P-Q

where here

• NAME is the author (if applicable),

• S is the number of stages in the method,

• P is the global order of accuracy for the embedding,

• Q is the global order of accuracy for the method.

Additionally, for each method we provide a plot of the linear stability region in the complex plane. These have been
computed via the following approach. For any Runge Kutta method as defined above, we may define the stability
function

R(η) = 1 + ηb[I − ηA]−1e,

where e ∈ Rs is a column vector of all ones, η = hλ and h is the time step size. If the stability function satisfies
|R(η)| ≤ 1 for all eigenvalues, λ, of ∂

∂yf(t, y) for a given IVP, then the method will be linearly stable for that problem
and step size. The stability region

S = {η ∈ C : |R(η)| ≤ 1}

is typically given by an enclosed region of the complex plane, so it is standard to search for the border of that region in
order to understand the method. Since all complex numbers with unit magnitude may be written as eiθ for some value
of θ, we perform the following algorithm to trace out this boundary.

225

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

1. Define an array of values Theta. Since we wish for a smooth curve, and since we wish to trace out the
entire boundary, we choose 10,000 linearly-spaced points from 0 to 16π. Since some angles will correspond
to multiple locations on the stability boundary, by going beyond 2π we ensure that all boundary locations are
plotted, and by using such a fine discretization the Newton method (next step) is more likely to converge to the
root closest to the previous boundary point, ensuring a smooth plot.

2. For each value θ ∈ Theta, we solve the nonlinear equation

0 = f(η) = R(η)− eiθ

using a finite-difference Newton iteration, using tolerance 10−7, and differencing parameter
√
ε (≈ 10−8).

In this iteration, we use as initial guess the solution from the previous value of θ, starting with an initial-initial
guess of η = 0 for θ = 0.

3. We then plot the resulting η values that trace the stability region boundary.

We note that for any stable IVP method, the value η0 = −ε+ 0i is always within the stability region. So in each of the
following pictures, the interior of the stability region is the connected region that includes η0. Resultingly, methods
whose linear stability boundary is located entirely in the right half-plane indicate an A-stable method.

10.1 Explicit Butcher tables

In the category of explicit Runge-Kutta methods, ARKode includes methods that have orders 2 through 6, with em-
beddings that are of orders 1 through 5.

10.1.1 Heun-Euler-2-1-2

Butcher table number 0 for ARKodeSetERKTableNum(). This is the default 2nd order explicit method.

0 0 0
1 1 0
2 1/2 1/2
1 1 0

Fig. 10.1: Linear stability region for the Heun-Euler method. The method’s region is outlined in blue; the embedding’s
region is in red.

226 Chapter 10. Appendix: Butcher tables

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

10.1.2 Bogacki-Shampine-4-2-3

Butcher table number 1 for ARKodeSetERKTableNum(). This is the default 3rd order explicit method.

0 0 0 0 0
1/2 1/2 0 0 0
3/4 0 3/4 0 0

1 2/9 1/3 4/9 0
3 2/9 1/3 4/9
2 7/24 1/4 1/3 1/8

Fig. 10.2: Linear stability region for the Bogacki-Shampine method. The method’s region is outlined in blue; the
embedding’s region is in red.

10.1.3 ARK-4-2-3 (explicit)

Butcher table number 2 for ARKodeSetERKTableNum(). This is the explicit portion of the default 3rd order
additive method.

0 0 0 0 0
1767732205903
2027836641118

1767732205903
2027836641118 0 0 0

3/5 5535828885825
10492691773637

788022342437
10882634858940 0 0

1 6485989280629
16251701735622 − 4246266847089

9704473918619
10755448449292
10357097424841 0

3 1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

2 2756255671327
12835298489170 − 10771552573575

22201958757719
9247589265047
10645013368117

2193209047091
5459859503100

10.1. Explicit Butcher tables 227

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Fig. 10.3: Linear stability region for the explicit ARK-4-2-3 method. The method’s region is outlined in blue; the
embedding’s region is in red.

10.1.4 Zonneveld-5-3-4

Butcher table number 3 for ARKodeSetERKTableNum(). This is the default 4th order explicit method.

0 0 0 0 0 0
1/2 1/2 0 0 0 0
1/2 0 1/2 0 0 0

1 0 0 1 0 0
3/4 5/32 7/32 13/32 −1/32 0

4 1/6 1/3 1/3 1/6 0
3 −1/2 7/3 7/3 13/6 −16/3

Fig. 10.4: Linear stability region for the Zonneveld method. The method’s region is outlined in blue; the embedding’s
region is in red.

228 Chapter 10. Appendix: Butcher tables

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

10.1.5 ARK-6-3-4 (explicit)

Butcher table number 4 for ARKodeSetERKTableNum(). This is the explicit portion of the default 4th order
additive method.

0 0 0 0 0 0 0
1
2

1
2 0 0 0 0 0

83
250

13861
62500

6889
62500 0 0 0 0

31
50 − 116923316275

2393684061468 − 2731218467317
15368042101831

9408046702089
11113171139209 0 0 0

17
20 − 451086348788

2902428689909 − 2682348792572
7519795681897

12662868775082
11960479115383

3355817975965
11060851509271 0 0

1 647845179188
3216320057751

73281519250
8382639484533

552539513391
3454668386233

3354512671639
8306763924573

4040
17871 0

4 82889
524892 0 15625

83664
69875
102672 − 2260

8211
1
4

3 4586570599
29645900160 0 178811875

945068544
814220225
1159782912 − 3700637

11593932
61727
225920

Fig. 10.5: Linear stability region for the explicit ARK-6-3-4 method. The method’s region is outlined in blue; the
embedding’s region is in red.

10.1.6 Sayfy-Aburub-6-3-4

Butcher table number 5 for ARKodeSetERKTableNum().

0 0 0 0 0 0 0
1/2 1/2 0 0 0 0 0

1 −1 2 0 0 0 0
1 1/6 2/3 1/6 0 0 0

1/2 0.137 0.226 0.173 0 0 0
1 0.452 −0.904 −0.548 0 2 0
4 1/6 1/3 1/12 0 1/3 1/12
3 1/6 2/3 1/6 0 0 0

10.1. Explicit Butcher tables 229

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Fig. 10.6: Linear stability region for the Sayfy-Aburub-6-3-4 method. The method’s region is outlined in blue; the
embedding’s region is in red.

10.1.7 Cash-Karp-6-4-5

Butcher table number 6 for ARKodeSetERKTableNum(). This is the default 5th order explicit method.

0 0 0 0 0 0 0
1/5 1/5 0 0 0 0 0

3/10 3/40 9/40 0 0 0 0
3/5 3/10 −9/10 6/5 0 0 0

1 −11/54 5/2 −70/27 35/27 0 0
7/8 1631/55296 175/512 575/13824 44275/110592 253/4096 0

5 2825/27648 0 18575/48384 13525/55296 277/14336 1/4
4 37/348 0 250/621 125/594 0 512/1771

Fig. 10.7: Linear stability region for the Cash-Karp method. The method’s region is outlined in blue; the embedding’s
region is in red.

230 Chapter 10. Appendix: Butcher tables

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

10.1.8 Fehlberg-6-4-5

Butcher table number 7 for ARKodeSetERKTableNum().

0 0 0 0 0 0 0
1/4 1/4 0 0 0 0 0
3/8 3/32 9/32 0 0 0 0

12/13 1932/2197 −7200/2197 7296/2197 0 0 0
1 439/216 −8 3680/513 −845/4104 0 0

1/2 −8/27 2 −3544/2565 1859/4104 −11/40 0
5 16/135 0 6656/12825 28561/56430 −9/50 2/55
4 25/216 0 1408/2565 2197/4104 −1/5 0

Fig. 10.8: Linear stability region for the Fehlberg method. The method’s region is outlined in blue; the embedding’s
region is in red.

10.1.9 Dormand-Prince-7-4-5

Butcher table number 8 for ARKodeSetERKTableNum().

0 0 0 0 0 0 0 0
1/5 1/5 0 0 0 0 0 0

3/10 3/40 9/40 0 0 0 0 0
4/5 44/45 −56/15 32/9 0 0 0 0
8/9 19372/6561 −25360/2187 64448/6561 −212/729 0 0 0

1 9017/3168 −355/33 46732/5247 49/176 −5103/18656 0 0
1 35/384 0 500/1113 125/192 −2187/6784 11/84 0
5 35/384 0 500/1113 125/192 −2187/6784 11/84 0
4 5179/57600 0 7571/16695 393/640 −92097/339200 187/2100 1/40

10.1. Explicit Butcher tables 231

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Fig. 10.9: Linear stability region for the Dormand-Prince method. The method’s region is outlined in blue; the
embedding’s region is in red.

10.1.10 ARK-8-4-5 (explicit)

Butcher table number 9 for ARKodeSetERKTableNum(). This is the explicit portion of the default 5th order
additive method.

0 0 0 0 0 0 0 0 0
41
100

41
100 0 0 0 0 0 0 0

2935347310677
11292855782101

367902744464
2072280473677

677623207551
8224143866563 0 0 0 0 0 0

1426016391358
7196633302097

1268023523408
10340822734521 0 1029933939417

13636558850479 0 0 0 0 0
92
100

14463281900351
6315353703477 0 66114435211212

5879490589093 − 54053170152839
4284798021562 0 0 0 0

24
100

14090043504691
34967701212078 0 15191511035443

11219624916014 − 18461159152457
12425892160975 − 281667163811

9011619295870 0 0 0
3
5

19230459214898
13134317526959 0 21275331358303

2942455364971 − 38145345988419
4862620318723 − 1

8 − 1
8 0 0

1 − 19977161125411
11928030595625 0 − 40795976796054

6384907823539
177454434618887
12078138498510

782672205425
8267701900261 − 69563011059811

9646580694205
7356628210526
4942186776405 0

5 − 872700587467
9133579230613 0 0 22348218063261

9555858737531 − 1143369518992
8141816002931 − 39379526789629

19018526304540
32727382324388
42900044865799

41
200

4 − 975461918565
9796059967033 0 0 78070527104295

32432590147079 − 548382580838
3424219808633 − 33438840321285

15594753105479
3629800801594
4656183773603

4035322873751
18575991585200

Fig. 10.10: Linear stability region for the explicit ARK-8-4-5 method. The method’s region is outlined in blue; the
embedding’s region is in red.

232 Chapter 10. Appendix: Butcher tables

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

10.1.11 Verner-8-5-6

Butcher table number 10 for ARKodeSetERKTableNum(). This is the default 6th order explicit method.

0 0 0 0 0 0 0 0 0
1/6 1/6 0 0 0 0 0 0 0

4/15 4/75 16/75 0 0 0 0 0 0
2/3 5/6 −8/3 5/2 0 0 0 0 0
5/6 −165/64 55/6 −425/64 85/96 0 0 0 0

1 12/5 −8 4015/612 −11/36 88/255 0 0 0
1/15 −8263/15000 124/75 −643/680 −81/250 2484/10625 0 0 0

1 3501/1720 −300/43 297275/52632 −319/2322 24068/84065 0 3850/26703 0
6 3/40 0 875/2244 23/72 264/1955 0 125/11592 43/616
5 13/160 0 2375/5984 5/16 12/85 3/44 0 0

Fig. 10.11: Linear stability region for the Verner-8-5-6 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

10.2 Implicit Butcher tables

In the category of diagonally implicit Runge-Kutta methods, ARKode includes methods that have orders 2 through 5,
with embeddings that are of orders 1 through 4.

10.2.1 SDIRK-2-1-2

Butcher table number 11 for ARKodeSetIRKTableNum(). This is the default 2nd order implicit method. Both the
method and embedding are A- and B-stable.

1 1 0
0 −1 1
2 1/2 1/2
1 1 0

10.2. Implicit Butcher tables 233

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Fig. 10.12: Linear stability region for the SDIRK-2-1-2 method. The method’s region is outlined in blue; the
embedding’s region is in red.

10.2.2 Billington-3-2-3

Butcher table number 12 for ARKodeSetIRKTableNum(). Here, the higher-order method is less stable than the
lower-order embedding.

0.292893218813 0.292893218813 0 0
1.091883092037 0.798989873223 0.292893218813 0
1.292893218813 0.740789228841 0.259210771159 0.292893218813

3 0.691665115992 0.503597029883 −0.195262145876
2 0.740789228840 0.259210771159 0

Fig. 10.13: Linear stability region for the Billington method. The method’s region is outlined in blue; the embedding’s
region is in red.

234 Chapter 10. Appendix: Butcher tables

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

10.2.3 TRBDF2-3-2-3

Butcher table number 13 for ARKodeSetIRKTableNum(). As with Billington, here the higher-order method is
less stable than the lower-order embedding.

0 0 0 0
2−
√

2 2−
√

2
2

2−
√

2
2 0

1
√

2
4

√
2

4
2−
√

2
2

3 1−
√

2
4

3

3
√

2
4 +1

3
2−
√

2
6

2
√

2
4

√
2

4
2−
√

2
2

Fig. 10.14: Linear stability region for the TRBDF2 method. The method’s region is outlined in blue; the embedding’s
region is in red.

10.2.4 Kvaerno-4-2-3

Butcher table number 14 for ARKodeSetIRKTableNum(). Both the method and embedding are A-stable; addi-
tionally the method is L-stable.

0 0 0 0 0
0.871733043 0.4358665215 0.4358665215 0 0

1 0.490563388419108 0.073570090080892 0.4358665215 0
1 0.308809969973036 1.490563388254106 −1.235239879727145 0.4358665215
3 0.308809969973036 1.490563388254106 −1.235239879727145 0.4358665215
2 0.490563388419108 0.073570090080892 0.4358665215 0

10.2.5 ARK-4-2-3 (implicit)

Butcher table number 15 for ARKodeSetIRKTableNum(). This is the default 3rd order implicit method, and the
implicit portion of the default 3rd order additive method. Both the method and embedding are A-stable; additionally

10.2. Implicit Butcher tables 235

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Fig. 10.15: Linear stability region for the Kvaerno-4-2-3 method. The method’s region is outlined in blue; the
embedding’s region is in red.

the method is L-stable.

0 0 0 0 0
1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236 0 0

3
5

2746238789719
10658868560708 − 640167445237

6845629431997
1767732205903
4055673282236 0

1 1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

3 1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

2 2756255671327
12835298489170 − 10771552573575

22201958757719
9247589265047
10645013368117

2193209047091
5459859503100

Fig. 10.16: Linear stability region for the implicit ARK-4-2-3 method. The method’s region is outlined in blue; the
embedding’s region is in red.

236 Chapter 10. Appendix: Butcher tables

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

10.2.6 Cash-5-2-4

Butcher table number 16 for ARKodeSetIRKTableNum(). Both the method and embedding are A-stable; addi-
tionally the method is L-stable.

0.435866521508 0.435866521508 0 0 0 0
−0.7 −1.13586652150 0.435866521508 0 0 0

0.8 1.08543330679 −0.721299828287 0.435866521508 0 0
0.924556761814 0.416349501547 0.190984004184 −0.118643265417 0.435866521508 0

1 0.896869652944 0.0182725272734 −0.0845900310706 −0.266418670647 0.435866521508
4 0.896869652944 0.0182725272734 −0.0845900310706 −0.266418670647 0.435866521508
2 1.05646216107052 −0.0564621610705236 0 0 0

Fig. 10.17: Linear stability region for the Cash-5-2-4 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

10.2.7 Cash-5-3-4

Butcher table number 17 for ARKodeSetIRKTableNum(). Both the method and embedding are A-stable; addi-
tionally the method is L-stable.

0.435866521508 0.435866521508 0 0 0 0
−0.7 −1.13586652150 0.435866521508 0 0 0

0.8 1.08543330679 −0.721299828287 0.435866521508 0 0
0.924556761814 0.416349501547 0.190984004184 −0.118643265417 0.435866521508 0

1 0.896869652944 0.0182725272734 −0.0845900310706 −0.266418670647 0.435866521508
4 0.896869652944 0.0182725272734 −0.0845900310706 −0.266418670647 0.435866521508
3 0.776691932910 0.0297472791484 −0.0267440239074 0.220304811849 0

10.2. Implicit Butcher tables 237

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Fig. 10.18: Linear stability region for the Cash-5-3-4 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

10.2.8 SDIRK-5-3-4

Butcher table number 18 for ARKodeSetIRKTableNum(). This is the default 4th order implicit method. Here, the
method is both A- and L-stable, although the embedding has reduced stability.

1/4 1/4 0 0 0 0
3/4 1/2 1/4 0 0 0

11/20 17/50 −1/25 1/4 0 0
1/2 371/1360 −137/2720 15/544 1/4 0

1 25/24 −49/48 125/16 −85/12 1/4
4 25/24 −49/48 125/16 −85/12 1/4
3 59/48 −17/96 225/32 −85/12 0

Fig. 10.19: Linear stability region for the SDIRK-5-3-4 method. The method’s region is outlined in blue; the
embedding’s region is in red.

238 Chapter 10. Appendix: Butcher tables

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

10.2.9 Kvaerno-5-3-4

Butcher table number 19 for ARKodeSetIRKTableNum(). Both the method and embedding are A-stable.

0 0 0 0 0 0
0.871733043 0.4358665215 0.4358665215 0 0 0

0.468238744853136 0.140737774731968 −0.108365551378832 0.4358665215 0 0
1 0.102399400616089 −0.376878452267324 0.838612530151233 0.4358665215 0
1 0.157024897860995 0.117330441357768 0.61667803039168 −0.326899891110444 0.4358665215
4 0.157024897860995 0.117330441357768 0.61667803039168 −0.326899891110444 0.4358665215
3 0.102399400616089 −0.376878452267324 0.838612530151233 0.4358665215 0

Fig. 10.20: Linear stability region for the Kvaerno-5-3-4 method. The method’s region is outlined in blue; the
embedding’s region is in red.

10.2.10 ARK-6-3-4 (implicit)

Butcher table number 20 for ARKodeSetIRKTableNum(). This is the implicit portion of the default 4th order
additive method. Both the method and embedding are A-stable; additionally the method is L-stable.

0 0 0 0 0 0 0
1
2

1
4

1
4 0 0 0 0

83
250

8611
62500 − 1743

31250
1
4 0 0 0

31
50

5012029
34652500 − 654441

2922500
174375
388108

1
4 0 0

17
20

15267082809
155376265600 − 71443401

120774400
730878875
902184768

2285395
8070912

1
4 0

1 82889
524892 0 15625

83664
69875
102672 − 2260

8211
1
4

4 82889
524892 0 15625

83664
69875
102672 − 2260

8211
1
4

3 4586570599
29645900160 0 178811875

945068544
814220225
1159782912 − 3700637

11593932
61727
225920

10.2. Implicit Butcher tables 239

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Fig. 10.21: Linear stability region for the implicit ARK-6-3-4 method. The method’s region is outlined in blue; the
embedding’s region is in red.

10.2.11 Kvaerno-7-4-5

Butcher table number 21 for ARKodeSetIRKTableNum(). Both the method and embedding are A-stable; addi-
tionally the method is L-stable.

0 0 0 0 0 0 0 0
0.52 0.26 0.26 0 0 0 0 0

1.230333209967908 0.13 0.84033320996790809 0.26 0 0 0 0
0.895765984350076 0.22371961478320505 0.47675532319799699 −0.06470895363112615 0.26 0 0 0
0.436393609858648 0.16648564323248321 0.10450018841591720 0.03631482272098715 −0.13090704451073998 0.26 0 0

1 0.13855640231268224 0 −0.04245337201752043 0.02446657898003141 0.61943039072480676 0.26 0
1 0.13659751177640291 0 −0.05496908796538376 −0.04118626728321046 0.62993304899016403 0.06962479448202728 0.26
5 0.13659751177640291 0 −0.05496908796538376 −0.04118626728321046 0.62993304899016403 0.06962479448202728 0.26
4 0.13855640231268224 0 −0.04245337201752043 0.02446657898003141 0.61943039072480676 0.26 0

Fig. 10.22: Linear stability region for the Kvaerno-7-4-5 method. The method’s region is outlined in blue; the
embedding’s region is in red.

240 Chapter 10. Appendix: Butcher tables

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

10.2.12 ARK-8-4-5 (implicit)

Butcher table number 22 for ARKodeSetIRKTableNum(). This is the default 5th order implicit method, and the
implicit portion of the default 5th order additive method. Both the method and embedding are A-stable; additionally
the method is L-stable.

0 0 0 0 0 0 0 0 0
41
100

41
200

41
200 0 0 0 0 0 0

2935347310677
11292855782101

41
400 − 567603406766

11931857230679
41
200 0 0 0 0 0

1426016391358
7196633302097

683785636431
9252920307686 0 − 110385047103

1367015193373
41
200 0 0 0 0

92
100

3016520224154
10081342136671 0 30586259806659

12414158314087 − 22760509404356
11113319521817

41
200 0 0 0

24
100

218866479029
1489978393911 0 638256894668

5436446318841 − 1179710474555
5321154724896 − 60928119172

8023461067671
41
200 0 0

3
5

1020004230633
5715676835656 0 25762820946817

25263940353407 − 2161375909145
9755907335909 − 211217309593

5846859502534 − 4269925059573
7827059040749

41
200 0

1 − 872700587467
9133579230613 0 0 22348218063261

9555858737531 − 1143369518992
8141816002931 − 39379526789629

19018526304540
32727382324388
42900044865799

41
200

5 − 872700587467
9133579230613 0 0 22348218063261

9555858737531 − 1143369518992
8141816002931 − 39379526789629

19018526304540
32727382324388
42900044865799

41
200

4 − 975461918565
9796059967033 0 0 78070527104295

32432590147079 − 548382580838
3424219808633 − 33438840321285

15594753105479
3629800801594
4656183773603

4035322873751
18575991585200

Fig. 10.23: Linear stability region for the implicit ARK-8-4-5 method. The method’s region is outlined in blue; the
embedding’s region is in red.

10.3 Additive Butcher tables

In the category of additive Runge-Kutta methods for split implicit and explicit calculations, ARKode includes methods
that have orders 3 through 5, with embeddings that are of orders 2 through 4. These Butcher table pairs are as follows:

• 3rd-order pair: ARK-4-2-3 (explicit) with ARK-4-2-3 (implicit), corresponding to Butcher tables 2 and 15 for
ARKodeSetARKTableNum().

• 4th-order pair: ARK-6-3-4 (explicit) with ARK-6-3-4 (implicit), corresponding to Butcher tables 4 and 20 for
ARKodeSetARKTableNum().

• 5th-order pair: ARK-8-4-5 (explicit) with ARK-8-4-5 (implicit), corresponding to Butcher tables 9 and 22 for
ARKodeSetARKTableNum().

10.3. Additive Butcher tables 241

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

242 Chapter 10. Appendix: Butcher tables

BIBLIOGRAPHY

[BH1989] P.N. Brown and A.C. Hindmarsh. Reduced Storage Matrix Methods in Stiff ODE Systems. J. Appl. Math.
& Comp., 31:49-91, 1989.

[B1992] G.D. Byrne. Pragmatic Experiments with Krylov Methods in the Stiff ODE Setting. In J.R. Cash and I.
Gladwell, editors, Computational Ordinary Differential Equations, pp. 323-356, Oxford University Press, 1992.

[DP2010] T. Davis and E. Palamadai Natarajan. Algortithm 907: KLU, a direct sparse solver for circuit simulation
problems. ACM Trans. Math. Soft., 37, 2010.

[DGL1999] J.W. Demmel, J.R. Gilbert and X.S. Li. An Asynchronous Parallel Supernodal Algorithm for Sparse
Gaussian Elimination. SIAM J. Matrix Analysis and Applications, 20:915-952, 1999.

[G1991] K. Gustafsson. Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods. ACM
Trans. Math. Soft., 17:533-554, 1991.

[G1994] K. Gustafsson. Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods. ACM
Trans. Math. Soft. 20:496-512, 1994.

[HW1993] E. Hairer, S. Norsett and G. Wanner. Solving Ordinary Differential Equations I. Springer Series in Com-
putational Mathematics, vol. 8, 1993.

[HS1980] K.L. Hiebert and L.F. Shampine. Implicitly Defined Output Points for Solutions of ODEs. Technical Report
SAND80-0180, Sandia National Laboratories, February 1980.

[HS2012] A.C. Hindmarsh and R. Serban. User Documentation for CVODE v2.7.0. Technical Report UCRL-SM-
208108, LLNL, March 2012.

[HT1998] A.C. Hindmarsh and A.G. Taylor. PVODE and KINSOL: Parallel Software for Differential and Nonlinear
Systems. Technical Report UCRL-IL-129739, LLNL, February 1998.

[KC2003] C.A. Kennedy and M.H. Carpenter. Additive Runge-Kutta schemes for convection-diffusion-reaction equa-
tions. Appl. Numer. Math., 44:139-181, 2003.

[KLU] KLU Sparse Matrix Factorization Library.

[L2005] X.S. Li. An Overview of SuperLU: Algorithms, Implementation, and User Interface. ACM Trans. Math. Soft.,
31:302-325, 2005.

[R2013] D.R. Reynolds. ARKode Example Documentation. Technical Report, Southern Methodist University Center
for Scientific Computation, 2013.

[S1993] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput., 14:461-469, 1993.

[S1998] G. Soderlind. The automatic control of numerical integration. CWI Quarterly, 11:55-74, 1998.

[S2003] G. Soderlind. Digital filters in adaptive time-stepping. ACM Trans. Math. Soft., 29:1-26, 2003.

[S2006] G. Soderlind. Time-step selection algorithms: Adaptivity, control and signal processing. Appl. Numer. Math.,
56:488-502, 2006.

243

http://faculty.cse.tamu.edu/davis/suitesparse.html

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

[SuperLUMT] SuperLU_MT Threaded Sparse Matrix Factorization Library.

[WN2011] H.F. Walker and P. Ni. Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal., 49:1715-
1735, 2011.

244 Bibliography

http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

INDEX

A
AddIdentity (C function), 188, 190
AddIdentitySparseMat (C function), 193
additive Runge-Kutta methods, 6
AKRSPILS_ILL_INPUT, 221
Anderson-accelerated fixed point iteration, 7
ARK-4-2-3 ARK method, 241
ARK-4-2-3 ERK method, 227
ARK-4-2-3 ESDIRK method, 235
ARK-6-3-4 ARK method, 241
ARK-6-3-4 ERK method, 229
ARK-6-3-4 ESDIRK method, 239
ARK-8-4-5 ARK method, 241
ARK-8-4-5 ERK method, 232
ARK-8-4-5 ESDIRK method, 241
ARK_BAD_DKY, 220
ARK_BAD_K, 220
ARK_BAD_T, 220
ARK_CONV_FAILURE, 220
ARK_ERR_FAILURE, 220
ARK_FIRST_RHSFUNC_ERR, 220
ARK_ILL_INPUT, 220
ARK_LFREE_FAIL, 220
ARK_LINIT_FAIL, 220
ARK_LSETUP_FAIL, 220
ARK_LSOLVE_FAIL, 220
ARK_MASSFREE_FAIL, 220
ARK_MASSINIT_FAIL, 220
ARK_MASSMULT_FAIL, 220
ARK_MASSSETUP_FAIL, 220
ARK_MASSSOLVE_FAIL, 220
ARK_MEM_FAIL, 220
ARK_MEM_NULL, 220
ARK_NO_MALLOC, 220
ARK_NORMAL, 219
ARK_ONE_STEP, 219
ARK_REPTD_RHSFUNC_ERR, 220
ARK_RHSFUNC_FAIL, 220
ARK_ROOT_RETURN, 219
ARK_RTFUNC_FAIL, 220
ARK_SUCCESS, 219
ARK_TOO_CLOSE, 220

ARK_TOO_MUCH_ACC, 219
ARK_TOO_MUCH_WORK, 219
ARK_TSTOP_RETURN, 219
ARK_UNREC_RHSFUNC_ERR, 220
ARK_WARNING, 219
ARKAdaptFn (C function), 104
ARKBand (C function), 39
ARKBandPrecGetNumRhsEvals (C function), 117
ARKBandPrecGetWorkSpace (C function), 117
ARKBandPrecInit (C function), 116
ARKBBDPrecGetNumGfnEvals (C function), 122
ARKBBDPrecGetWorkSpace (C function), 122
ARKBBDPrecInit (C function), 121
ARKBBDPrecReInit (C function), 122
ARKCommFn (C function), 119
ARKDense (C function), 38
ARKDLS_ILL_INPUT, 220
ARKDLS_JACFUNC_RECVR, 220
ARKDLS_JACFUNC_UNRECVR, 220
ARKDLS_LMEM_NULL, 220
ARKDLS_MASSFUNC_RECVR, 221
ARKDLS_MASSFUNC_UNRECVR, 221
ARKDLS_MASSMEM_FAIL, 220
ARKDLS_MEM_FAIL, 220
ARKDLS_MEM_NULL, 220
ARKDLS_SUCCESS, 220
ARKDlsBandJacFn (C function), 107
ARKDlsBandMassFn (C function), 111
ARKDlsDenseJacFn (C function), 106
ARKDlsDenseMassFn (C function), 111
ARKDlsGetLastFlag (C function), 92
ARKDlsGetLastMassFlag (C function), 93
ARKDlsGetMassWorkSpace (C function), 91
ARKDlsGetNumJacEvals (C function), 91
ARKDlsGetNumMassEvals (C function), 92
ARKDlsGetNumRhsEvals (C function), 92
ARKDlsGetReturnFlagName (C function), 93
ARKDlsGetWorkSpace (C function), 91
ARKDlsSetBandJacFn (C function), 71
ARKDlsSetBandMassFn (C function), 71
ARKDlsSetDenseJacFn (C function), 70
ARKDlsSetDenseMassFn (C function), 70

245

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

ARKErrHandlerFn (C function), 103
ARKEwtFn (C function), 103
ARKExpStabFn (C function), 105
ARKKLU (C function), 40
ARKKLUReInit (C function), 73
ARKKLUSetOrdering (C function), 74
ARKLapackBand (C function), 39
ARKLapackDense (C function), 38
ARKLocalFn (C function), 119
ARKMassBand (C function), 44
ARKMassDense (C function), 43
ARKMassKLU (C function), 45
ARKMassKLUReInit (C function), 73
ARKMassKLUSetOrdering (C function), 74
ARKMassLapackBand (C function), 44
ARKMassLapackDense (C function), 44
ARKMassPcg (C function), 48
ARKMassSpbcg (C function), 46
ARKMassSpfgmr (C function), 47
ARKMassSpgmr (C function), 46
ARKMassSptfqmr (C function), 47
ARKMassSuperLUMT (C function), 45
ARKMassSuperLUMTSetOrdering (C function), 75
ARKode (C function), 49
ARKodeCreate (C function), 33
ARKodeFree (C function), 33
ARKodeGetActualInitStep (C function), 85
ARKodeGetCurrentButcherTables (C function), 86
ARKodeGetCurrentStep (C function), 86
ARKodeGetCurrentTime (C function), 86
ARKodeGetDky (C function), 82
ARKodeGetErrWeights (C function), 87
ARKodeGetEstLocalErrors (C function), 87
ARKodeGetIntegratorStats (C function), 88
ARKodeGetLastStep (C function), 86
ARKodeGetNonlinSolvStats (C function), 90
ARKodeGetNumAccSteps (C function), 85
ARKodeGetNumErrTestFails (C function), 85
ARKodeGetNumExpSteps (C function), 84
ARKodeGetNumGEvals (C function), 90
ARKodeGetNumLinSolvSetups (C function), 89
ARKodeGetNumMassSolves (C function), 89
ARKodeGetNumNonlinSolvConvFails (C function), 89
ARKodeGetNumNonlinSolvIters (C function), 89
ARKodeGetNumRhsEvals (C function), 85
ARKodeGetNumStepAttempts (C function), 85
ARKodeGetNumSteps (C function), 84
ARKodeGetReturnFlagName (C function), 88
ARKodeGetRootInfo (C function), 90
ARKodeGetTolScaleFactor (C function), 87
ARKodeGetWorkSpace (C function), 84
ARKodeInit (C function), 33
ARKodeReInit (C function), 100
ARKodeResFtolerance (C function), 36

ARKodeResize (C function), 101
ARKodeResStolerance (C function), 35
ARKodeResVtolerance (C function), 35
ARKodeRootInit (C function), 49
ARKodeSetAdaptivityFn (C function), 61
ARKodeSetAdaptivityMethod (C function), 62
ARKodeSetARKTableNum (C function), 60
ARKodeSetARKTables (C function), 58
ARKodeSetCFLFraction (C function), 62
ARKodeSetDefaults (C function), 52
ARKodeSetDeltaGammaMax (C function), 68
ARKodeSetDenseOrder (C function), 52
ARKodeSetDiagnostics (C function), 52
ARKodeSetERKTable (C function), 59
ARKodeSetERKTableNum (C function), 60
ARKodeSetErrFile (C function), 53
ARKodeSetErrHandlerFn (C function), 53
ARKodeSetErrorBias (C function), 62
ARKodeSetExplicit (C function), 58
ARKodeSetFixedPoint (C function), 65
ARKodeSetFixedStep (C function), 54
ARKodeSetFixedStepBounds (C function), 63
ARKodeSetImEx (C function), 57
ARKodeSetImplicit (C function), 58
ARKodeSetInitStep (C function), 53
ARKodeSetIRKTable (C function), 59
ARKodeSetIRKTableNum (C function), 61
ARKodeSetLinear (C function), 66
ARKodeSetMaxCFailGrowth (C function), 63
ARKodeSetMaxConvFails (C function), 69
ARKodeSetMaxEFailGrowth (C function), 63
ARKodeSetMaxErrTestFails (C function), 55
ARKodeSetMaxFirstGrowth (C function), 63
ARKodeSetMaxGrowth (C function), 64
ARKodeSetMaxHnilWarns (C function), 54
ARKodeSetMaxNonlinIters (C function), 67
ARKodeSetMaxNumSteps (C function), 55
ARKodeSetMaxStep (C function), 55
ARKodeSetMaxStepsBetweenLSet (C function), 68
ARKodeSetMinStep (C function), 56
ARKodeSetNewton (C function), 66
ARKodeSetNoInactiveRootWarn (C function), 82
ARKodeSetNonlinConvCoef (C function), 67
ARKodeSetNonlinCRDown (C function), 68
ARKodeSetNonlinear (C function), 66
ARKodeSetNonlinRDiv (C function), 68
ARKodeSetOptimalParams (C function), 56
ARKodeSetOrder (C function), 57
ARKodeSetPredictorMethod (C function), 67
ARKodeSetRootDirection (C function), 81
ARKodeSetSafetyFactor (C function), 64
ARKodeSetSmallNumEFails (C function), 64
ARKodeSetStabilityFn (C function), 65
ARKodeSetStopTime (C function), 56

246 Index

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

ARKodeSetUserData (C function), 56
ARKodeSStolerances (C function), 34
ARKodeSVtolerances (C function), 34
ARKodeWFtolerances (C function), 34
ARKPcg (C function), 42
ARKRhsFn (C function), 102
ARKRootFn (C function), 105
ARKRwtFn (C function), 104
ARKSLS_ILL_INPUT, 221
ARKSLS_JAC_NOSET, 221
ARKSLS_JACFUNC_RECVR, 221
ARKSLS_JACFUNC_UNRECVR, 221
ARKSLS_LMEM_NULL, 221
ARKSLS_MASS_NOSET, 221
ARKSLS_MASSFUNC_RECVR, 221
ARKSLS_MASSFUNC_UNRECVR, 221
ARKSLS_MASSMEM_NULL, 221
ARKSLS_MEM_FAIL, 221
ARKSLS_MEM_NULL, 221
ARKSLS_PACKAGE_FAIL, 221
ARKSLS_SUCCESS, 221
ARKSlsGetLastFlag (C function), 94
ARKSlsGetLastMassFlag (C function), 94
ARKSlsGetNumJacEvals (C function), 93
ARKSlsGetNumMassEvals (C function), 94
ARKSlsGetReturnFlagName (C function), 94
ARKSlsSetSparseJacFn (C function), 72
ARKSlsSetSparseMassFn (C function), 72
ARKSlsSparseJacFn (C function), 108
ARKSlsSparseMassFn (C function), 112
ARKSpbcg (C function), 41
ARKSpfgmr (C function), 42
ARKSpgmr (C function), 40
ARKSPILS_LMEM_NULL, 221
ARKSPILS_MASSMEM_FAIL, 221
ARKSPILS_MEM_FAIL, 221
ARKSPILS_MEM_NULL, 221
ARKSPILS_PMEM_FAIL, 221
ARKSPILS_SUCCESS, 221
ARKSpilsGetLastFlag (C function), 97
ARKSpilsGetLastMassFlag (C function), 99
ARKSpilsGetMassWorkSpace (C function), 98
ARKSpilsGetNumConvFails (C function), 96
ARKSpilsGetNumJtimesEvals (C function), 96
ARKSpilsGetNumLinIters (C function), 96
ARKSpilsGetNumMassConvFails (C function), 99
ARKSpilsGetNumMassIters (C function), 99
ARKSpilsGetNumMassPrecEvals (C function), 98
ARKSpilsGetNumMassPrecSolves (C function), 98
ARKSpilsGetNumMtimesEvals (C function), 99
ARKSpilsGetNumPrecEvals (C function), 95
ARKSpilsGetNumPrecSolves (C function), 96
ARKSpilsGetNumRhsEvals (C function), 97
ARKSpilsGetReturnFlagName (C function), 98

ARKSpilsGetWorkSpace (C function), 95
ARKSpilsJacTimesVecFn (C function), 109
ARKSpilsMassPrecSetupFn (C function), 114
ARKSpilsMassPrecSolveFn (C function), 113
ARKSpilsMassTimesVecFn (C function), 113
ARKSpilsPrecSetupFn (C function), 110
ARKSpilsPrecSolveFn (C function), 109
ARKSpilsSetEpsLin (C function), 77
ARKSpilsSetGSType (C function), 77
ARKSpilsSetJacTimesVecFn (C function), 76
ARKSpilsSetMassEpsLin (C function), 79
ARKSpilsSetMassGSType (C function), 80
ARKSpilsSetMassMaxl (C function), 79
ARKSpilsSetMassPreconditioner (C function), 80
ARKSpilsSetMassPrecType (C function), 81
ARKSpilsSetMassTimesVecFn (C function), 79
ARKSpilsSetMaxl (C function), 77
ARKSpilsSetPreconditioner (C function), 78
ARKSpilsSetPrecType (C function), 78
ARKSptfqmr (C function), 41
ARKSuperLUMT (C function), 40
ARKSuperLUMTSetOrdering (C function), 75
ARKVecResizeFn (C function), 115

B
BAND_COL (C macro), 186
BAND_COL_ELEM (C macro), 186
BAND_ELEM (C macro), 186
bandAddIdentity (C function), 191
BandCopy (C function), 190
bandCopy (C function), 191
BandGBTRF (C function), 190
bandGBTRF (C function), 191
BandGBTRS (C function), 190
bandGBTRS (C function), 191
BandMatvec (C function), 190
bandMatvec (C function), 191
BandScale (C function), 190
bandScale (C function), 191
BIG_REAL, 28
Billington-3-2-3 SDIRK method, 234
Bogacki-Shampine-4-2-3 ERK method, 227
booleantype, 28
BUILD_ARKODE (CMake option), 209
BUILD_CVODE (CMake option), 209
BUILD_CVODES (CMake option), 209
BUILD_IDA (CMake option), 209
BUILD_IDAS (CMake option), 209
BUILD_KINSOL (CMake option), 209
BUILD_SHARED_LIBS (CMake option), 209
BUILD_STATIC_LIBS (CMake option), 209

C
Cash-5-2-4 SDIRK method, 237

Index 247

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

Cash-5-3-4 SDIRK method, 237
Cash-Karp-6-4-5 ERK method, 230
ccmake, 206
CLASSICAL_GS, 219
cmake, 207
cmake-gui, 206
CMAKE_BUILD_TYPE (CMake option), 209
CMAKE_C_COMPILER (CMake option), 209
CMAKE_C_FLAGS (CMake option), 209
CMAKE_C_FLAGS_DEBUG (CMake option), 209
CMAKE_C_FLAGS_MINSIZEREL (CMake option),

210
CMAKE_C_FLAGS_RELEASE (CMake option), 210
CMAKE_CXX_COMPILER (CMake option), 210
CMAKE_CXX_FLAGS (CMake option), 210
CMAKE_CXX_FLAGS_DEBUG (CMake option), 210
CMAKE_CXX_FLAGS_MINSIZEREL (CMake op-

tion), 210
CMAKE_CXX_FLAGS_RELEASE (CMake option),

210
CMAKE_Fortran_COMPILER (CMake option), 210
CMAKE_Fortran_FLAGS (CMake option), 210
CMAKE_Fortran_FLAGS_DEBUG (CMake option),

210
CMAKE_Fortran_FLAGS_MINSIZEREL (CMake op-

tion), 210
CMAKE_Fortran_FLAGS_RELEASE (CMake option),

210
CMAKE_INSTALL_PREFIX (CMake option), 210
CopySparseMat (C function), 193
CXX_ENABLE (CMake option), 210

D
dense output, 12
DENSE_COL (C macro), 186
DENSE_ELEM (C macro), 186
denseAddIdentity (C function), 189
DenseCopy (C function), 188
denseCopy (C function), 189
DenseGEQRF (C function), 188
denseGEQRF (C function), 189
DenseGETRF (C function), 188
denseGETRF (C function), 188, 189
denseGETRS (C function), 189
DenseMatvec (C function), 188
denseMatvec (C function), 190
DenseORMQR (C function), 188
denseORMQR (C function), 189
DensePOTRF (C function), 188
densePOTRF (C function), 189
DensePOTRS (C function), 188
densePOTRS (C function), 189
DenseScale (C function), 188
denseScale (C function), 189

DestroyArray (C function), 188, 190
destroyArray (C function), 189, 191
DestroyMat (C function), 186, 190
destroyMat (C function), 188, 191
DestroySparseMat (C function), 193
diagonally-implicit Runge-Kutta methods, 6
DlsMat (C type), 184
Dormand-Prince-7-4-5 ERK method, 231

E
error weight vector, 10
EXAMPLES_ENABLE (CMake option), 210
EXAMPLES_INSTALL (CMake option), 211
EXAMPLES_INSTALL_PATH (CMake option), 211
explicit Runge-Kutta methods, 6

F
F90_ENABLE (CMake option), 211
FARKADAPT() (fortran subroutine), 136
FARKADAPTSET() (fortran subroutine), 136
FARKBAND() (fortran subroutine), 138
FARKBANDSETJAC() (fortran subroutine), 139
FARKBANDSETMASS() (fortran subroutine), 147
FARKBBDINIT() (fortran subroutine), 163
FARKBBDOPT() (fortran subroutine), 164
FARKBBDREINIT() (fortran subroutine), 164
FARKBJAC() (fortran subroutine), 139
FARKBMASS() (fortran subroutine), 147
FARKBPINIT() (fortran subroutine), 162
FARKBPOPT() (fortran subroutine), 162
FARKCOMMFN() (fortran subroutine), 165
FARKDENSE() (fortran subroutine), 137
FARKDENSESETJAC() (fortran subroutine), 138
FARKDENSESETMASS() (fortran subroutine), 146
FARKDJAC() (fortran subroutine), 137
FARKDKY() (fortran subroutine), 153
FARKDMASS() (fortran subroutine), 146
FARKEFUN() (fortran subroutine), 129
FARKEWT() (fortran subroutine), 131
FARKEWTSET() (fortran subroutine), 132
FARKEXPSTAB() (fortran subroutine), 136
FARKEXPSTABSET() (fortran subroutine), 137
FARKFREE() (fortran subroutine), 157
FARKGETERRWEIGHTS() (fortran subroutine), 159
FARKGETESTLOCALERR() (fortran subroutine), 159
FARKGLOCFN() (fortran subroutine), 165
FARKIFUN() (fortran subroutine), 129
FARKJTIMES() (fortran subroutine), 143
FARKKLU() (fortran subroutine), 140
FARKKLUREINIT() (fortran subroutine), 154
FARKLAPACKBAND() (fortran subroutine), 138
FARKLAPACKDENSE() (fortran subroutine), 137
FARKMALLOC() (fortran subroutine), 131
FARKMASSBAND() (fortran subroutine), 146

248 Index

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

FARKMASSDENSE() (fortran subroutine), 145
FARKMASSKLU() (fortran subroutine), 147
FARKMASSKLUREINIT() (fortran subroutine), 155
FARKMASSLAPACKBAND() (fortran subroutine), 146
FARKMASSLAPACKDENSE() (fortran subroutine),

145
FARKMASSPCG() (fortran subroutine), 150
FARKMASSPCGREINIT() (fortran subroutine), 156
FARKMASSPSET() (fortran subroutine), 151
FARKMASSPSOL() (fortran subroutine), 151
FARKMASSSPBCG() (fortran subroutine), 149
FARKMASSSPBCGREINIT() (fortran subroutine), 155
FARKMASSSPFGMR() (fortran subroutine), 150
FARKMASSSPFGMRREINIT() (fortran subroutine),

155
FARKMASSSPGMR() (fortran subroutine), 149
FARKMASSSPGMRREINIT() (fortran subroutine), 155
FARKMASSSPTFQMR() (fortran subroutine), 150
FARKMASSSPTFQMRREINIT() (fortran subroutine),

155
FARKMASSSUPERLUMT() (fortran subroutine), 148
FARKMTIMES() (fortran subroutine), 150
FARKODE() (fortran subroutine), 152
FARKPCG() (fortran subroutine), 142
FARKPCGREINIT() (fortran subroutine), 154
FARKPSET() (fortran subroutine), 144
FARKPSOL() (fortran subroutine), 144
FARKREINIT() (fortran subroutine), 153
FARKRESIZE() (fortran subroutine), 156
FARKROOTFN() (fortran subroutine), 160
FARKROOTFREE() (fortran subroutine), 161
FARKROOTINFO() (fortran subroutine), 160
FARKROOTINIT() (fortran subroutine), 160
FARKSETADAPTIVITYMETHOD() (fortran subrou-

tine), 135
FARKSETARKTABLES() (fortran subroutine), 135
FARKSETDEFAULTS() (fortran subroutine), 134
FARKSETERKTABLE() (fortran subroutine), 134
FARKSETIIN() (fortran subroutine), 132
FARKSETIRKTABLE() (fortran subroutine), 134
FARKSETRIN() (fortran subroutine), 133
FARKSPARSESETJAC() (fortran subroutine), 141
FARKSPARSESETMASS() (fortran subroutine), 149
FARKSPBCG() (fortran subroutine), 142
FARKSPBCGREINIT() (fortran subroutine), 154
FARKSPFGMR() (fortran subroutine), 142
FARKSPFGMRREINIT() (fortran subroutine), 154
FARKSPGMR() (fortran subroutine), 141
FARKSPGMRREINIT() (fortran subroutine), 154
FARKSPILSSETJAC() (fortran subroutine), 143
FARKSPILSSETMASS() (fortran subroutine), 151
FARKSPILSSETMASSPREC() (fortran subroutine), 151
FARKSPILSSETPREC() (fortran subroutine), 143
FARKSPJAC() (fortran subroutine), 140

FARKSPMASS() (fortran subroutine), 148
FARKSPTFQMR() (fortran subroutine), 142
FARKSPTFQMRREINIT() (fortran subroutine), 154
FARKSUPERLUMT() (fortran subroutine), 140
FCMIX_ENABLE (CMake option), 211
Fehlberg-6-4-5 ERK method, 231
FNVINITOMP() (fortran subroutine), 130
FNVINITP() (fortran subroutine), 130
FNVINITPTS() (fortran subroutine), 130
FNVINITS() (fortran subroutine), 130

H
Heun-Euler-2-1-2 ERK method, 226

I
inexact Newton iteration, 9

K
Kvaerno-4-2-3 ESDIRK method, 235
Kvaerno-5-3-4 ESDIRK method, 239
Kvaerno-7-4-5 ESDIRK method, 240

L
LAPACK_ENABLE (CMake option), 211
LAPACK_LIBRARIES (CMake option), 211
lfree (C function), 202
linit (C function), 200
lsetup (C function), 200
lsolve (C function), 201

M
mfree (C function), 202
minit (C function), 200
modified Newton iteration, 8
MODIFIED_GS, 219
MPI_ENABLE (CMake option), 211
MPI_MPICC (CMake option), 211
MPI_MPICXX (CMake option), 211
MPI_MPIF77 (CMake option), 212
MPI_MPIF90 (CMake option), 212
msetup (C function), 201
msolve (C function), 202

N
N_VAbs (C function), 179
N_VAddConst (C function), 180
N_VClone (C function), 178
N_VCloneEmpty (C function), 178
N_VCloneEmptyVectorArray_OpenMP (C function),

173
N_VCloneEmptyVectorArray_Parallel (C function), 170
N_VCloneEmptyVectorArray_Pthreads (C function), 175
N_VCloneEmptyVectorArray_Serial (C function), 168
N_VCloneVectorArray_OpenMP (C function), 173

Index 249

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

N_VCloneVectorArray_Parallel (C function), 170
N_VCloneVectorArray_Pthreads (C function), 175
N_VCloneVectorArray_Serial (C function), 168
N_VCompare (C function), 181
N_VConst (C function), 179
N_VConstrMask (C function), 181
N_VDestroy (C function), 178
N_VDestroyVectorArray_OpenMP (C function), 173
N_VDestroyVectorArray_Parallel (C function), 170
N_VDestroyVectorArray_Pthreads (C function), 175
N_VDestroyVectorArray_Serial (C function), 168
N_VDiv (C function), 179
N_VDotProd (C function), 180
N_VGetArrayPointer (C function), 178
N_VInv (C function), 180
N_VInvTest (C function), 181
N_VL1Norm (C function), 181
N_VLinearSum (C function), 179
N_VMake_OpenMP (C function), 173
N_VMake_Parallel (C function), 170
N_VMake_Pthreads (C function), 175
N_VMake_Serial (C function), 168
N_VMaxNorm (C function), 180
N_VMin (C function), 181
N_VMinQuotient (C function), 182
N_VNew_OpenMP (C function), 172
N_VNew_Parallel (C function), 170
N_VNew_Pthreads (C function), 175
N_VNew_Serial (C function), 168
N_VNewEmpty_OpenMP (C function), 172
N_VNewEmpty_Parallel (C function), 170
N_VNewEmpty_Pthreads (C function), 175
N_VNewEmpty_Serial (C function), 168
N_VPrint_OpenMP (C function), 173
N_VPrint_Parallel (C function), 171
N_VPrint_Pthreads (C function), 175
N_VPrint_Serial (C function), 168
N_VProd (C function), 179
N_VScale (C function), 179
N_VSetArrayPointer (C function), 178
N_VSpace (C function), 178
N_VWl2Norm (C function), 181
N_VWrmsNorm (C function), 180
N_VWrmsNormMask (C function), 180
NewBandMat (C function), 190
newBandMat (C function), 191
NewDenseMat (C function), 186
newDenseMat (C function), 188
NewIntArray (C function), 188, 190
newIntArray (C function), 189, 191
NewLintArray (C function), 188, 190
newLintArray (C function), 189, 191
NewRealArray (C function), 188, 190
newRealArray (C function), 189, 191

NewSparseMat (C function), 193
Newton system, 7
Newton update, 7
Newton’s method, 7
NV_COMM_P (C macro), 170
NV_CONTENT_OMP (C macro), 171
NV_CONTENT_P (C macro), 169
NV_CONTENT_PT (C macro), 173
NV_CONTENT_S (C macro), 167
NV_DATA_OMP (C macro), 172
NV_DATA_P (C macro), 169
NV_DATA_PT (C macro), 174
NV_DATA_S (C macro), 168
NV_GLOBLENGTH_P (C macro), 170
NV_Ith_OMP (C macro), 172
NV_Ith_P (C macro), 170
NV_Ith_PT (C macro), 174
NV_Ith_S (C macro), 168
NV_LENGTH_OMP (C macro), 172
NV_LENGTH_PT (C macro), 174
NV_LENGTH_S (C macro), 168
NV_LOCLENGTH_P (C macro), 170
NV_NUM_THREADS_OMP (C macro), 172
NV_NUM_THREADS_PT (C macro), 174
NV_OWN_DATA_OMP (C macro), 171
NV_OWN_DATA_P (C macro), 169
NV_OWN_DATA_PT (C macro), 174
NV_OWN_DATA_S (C macro), 167

O
OPENMP_ENABLE (CMake option), 212

P
PCG_ATIMES_FAIL_REC, 223
PCG_ATIMES_FAIL_UNREC, 223
PCG_CONV_FAIL, 223
PCG_MEM_NULL, 223
PCG_PSET_FAIL_REC, 223
PCG_PSET_FAIL_UNREC, 223
PCG_PSOLVE_FAIL_REC, 223
PCG_PSOLVE_FAIL_UNREC, 223
PCG_RES_REDUCED, 223
PCG_SUCCESS, 223
PREC_BOTH, 219
PREC_LEFT, 219
PREC_NONE, 219
PREC_RIGHT, 219
PrintMat (C function), 188, 190
PrintSparseMat (C function), 195
PTHREAD_ENABLE (CMake option), 212

R
RCONST, 28
ReallocSparseMat (C function), 195

250 Index

User Documentation for ARKode v1.0.1
(SUNDIALS v2.6.1),

realtype, 28
residual weight vector, 10

S
Sayfy-Aburub-6-3-4 ERK method, 229
ScaleSparseMat (C function), 193
SDIRK-2-1-2 method, 233
SDIRK-5-3-4 method, 238
SetToZero (C function), 188, 190
SlsAddMat (C function), 195
SlsConvertDls (C function), 193
SlsMat (C type), 192
SlsMatvec (C function), 195
SlsSetToZero (C function), 193
SMALL_REAL, 28
SPBCG_ATIMES_FAIL_REC, 222
SPBCG_ATIMES_FAIL_UNREC, 222
SPBCG_CONV_FAIL, 222
SPBCG_MEM_NULL, 222
SPBCG_PSET_FAIL_REC, 222
SPBCG_PSET_FAIL_UNREC, 222
SPBCG_PSOLVE_FAIL_REC, 222
SPBCG_PSOLVE_FAIL_UNREC, 222
SPBCG_RES_REDUCED, 222
SPBCG_SUCCESS, 222
SPFGMR_ATIMES_FAIL_REC, 222
SPFGMR_ATIMES_FAIL_UNREC, 222
SPFGMR_CONV_FAIL, 222
SPFGMR_GS_FAIL, 222
SPFGMR_MEM_NULL, 222
SPFGMR_PSET_FAIL_REC, 222
SPFGMR_PSET_FAIL_UNREC, 222
SPFGMR_PSOLVE_FAIL_REC, 222
SPFGMR_PSOLVE_FAIL_UNREC, 222
SPFGMR_QRFACT_FAIL, 222
SPFGMR_QRSOL_FAIL, 222
SPFGMR_RES_REDUCED, 222
SPFGMR_SUCCESS, 222
SPGMR_ATIMES_FAIL_REC, 221
SPGMR_ATIMES_FAIL_UNREC, 222
SPGMR_CONV_FAIL, 221
SPGMR_GS_FAIL, 222
SPGMR_MEM_NULL, 222
SPGMR_PSET_FAIL_REC, 221
SPGMR_PSET_FAIL_UNREC, 222
SPGMR_PSOLVE_FAIL_REC, 221
SPGMR_PSOLVE_FAIL_UNREC, 222
SPGMR_QRFACT_FAIL, 221
SPGMR_QRSOL_FAIL, 222
SPGMR_RES_REDUCED, 221
SPGMR_SUCCESS, 221
SPTFQMR_ATIMES_FAIL_REC, 223
SPTFQMR_ATIMES_FAIL_UNREC, 223
SPTFQMR_CONV_FAIL, 223

SPTFQMR_MEM_NULL, 223
SPTFQMR_PSET_FAIL_REC, 223
SPTFQMR_PSET_FAIL_UNREC, 223
SPTFQMR_PSOLVE_FAIL_REC, 223
SPTFQMR_PSOLVE_FAIL_UNREC, 223
SPTFQMR_RES_REDUCED, 223
SPTFQMR_SUCCESS, 223
SUNDIALS_PRECISION (CMake option), 212
SUPERLUMT_ENABLE (CMake option), 212

T
TRBDF2-3-2-3 ESDIRK method, 235

U
UNIT_ROUNDOFF, 28
USE_GENERIC_MATH (CMake option), 212

V
Verner-8-5-6 ERK method, 233

W
weighted root-mean-square norm, 10

Z
Zonneveld-5-3-4 ERK method, 228

Index 251

	Introduction
	Mathematical Considerations
	Additive Runge-Kutta methods
	Nonlinear solver methods
	Linear solver methods
	Iteration Error Control
	Preconditioning
	Implicit predictors
	Time step adaptivity
	Explicit stability
	Mass matrix solver
	Rootfinding

	Code Organization
	ARKode organization

	Using ARKode for C and C++ Applications
	Access to library and header files
	Data Types
	Header Files
	A skeleton of the user's main program
	User-callable functions
	User-supplied functions
	Preconditioner modules

	FARKODE, an Interface Module for FORTRAN Applications
	Important note on portability
	Fortran Data Types

	Vector Data Structures
	The NVECTOR_SERIAL Module
	The NVECTOR_PARALLEL Module
	The NVECTOR_OPENMP Module
	The NVECTOR_PTHREADS Module
	NVECTOR functions required by ARKode
	Description of the NVECTOR Modules
	Description of the NVECTOR operations

	Linear Solvers in ARKode
	The DLS modules: DENSE and BAND
	The SLS modules
	The SPILS modules: SPGMR, SPFGMR, SPBCG, SPTFQMR and PCG
	Providing Alternate Linear Solver Modules

	ARKode Installation Procedure
	CMake-based installation
	Installed libraries and exported header files

	Appendix: ARKode Constants
	ARKode input constants
	ARKode output constants

	Appendix: Butcher tables
	Explicit Butcher tables
	Implicit Butcher tables
	Additive Butcher tables

	Bibliography
	Index

